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| Side-Channel Analysis

L] Cryptographic algorithm don’t run on paper...
] ...they run on physical device!

B Cryptographic sensitive variables : may physically leak through side-channels
(accoustic noise, timing, power consumption, electromagnetic emannation etc...).

B [T perspective : an unintended communication channel of the secret key from the
hardware to the attacker.
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] Theoretical Model

lT
K X Y
Crypto Side-channel Attack

~>
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] Theoretical Model

L T

-<
~>

Attack

Crypto Side-channel

B K= (Ky...,K):the secret key; K ~ U(M = 2"") is composed of r bytes of n bits;
B T =(Ty,...,Tr) : a public information (plaintext or ciphertext)

® X : a sensitive variable; (X1,...,X;) = (f(K1,T1),...,f(K-, T;));
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B K= (K]_ cey
BT = (Tl,..
B X : a sensitive variable; (Xq,..

Theoretical Model

|7

|

Crypto

Side-channel

Attack

., Tr) : a public information (plaintext or ciphertext)
. ,Xr) = (f(K]_’ T1)7 ey f(Kr7 Tr));

~>

Ky) : the secret key; K ~ U(M = 2"") is composed of r bytes of n bits;

B Y : the corresponding noisy leakage, and the side channel X; — Y is stationary
and memoryless; and the adversary performs m measurements to achieve a given
guessing entropy.
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| Quantifying the Adversary’s Advantage : Guessing
Entropy

1. Let X be a M-ary random variable with probability mass function (p1,. .., pm).
Without loss of generality we can assume thatp; > ... > pum.
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| Quantifying the Adversary’s Advantage : Guessing
Entropy

1. Let X be a M-ary random variable with probability mass function (p1,. .., pm).
Without loss of generality we can assume thatp; > ... > pu.

2. A guessing strategy is a permutation o € 8y that specify in which order to guess
the key hypothesis

3. The guesswork is the average number of guesses of such strategy given by

4. The guessing entropy is the guesswork of the optimal guessing strategy
G(X) = min G,(X).

'
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| Guessing Entropy

Lemma

The guessing entropy is given by
M

G(X)=> ipi

i=1
Démonstration.

Assume that the minimum in the definition of guessing entropy is achieved for
o # (1,...,M). Then tere exists i < j such that o(i) > o(j). Let & = (i j) o o then
Go(X) = Gs(X) = (a(i) — o () (i — pj) = 0. O
Given side-information Y the conditional guessing entropy is obtained by averaging the

guessing entropies G(X|Y = y) foreach y :

GIX|Y) =E,GX]Y =y) (=E[X]ifp1>pa...> pu).
=4 i |
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] Blind Guess and Clear Guess

When the side-information Y is independent of the secret key K then for every Y = y the

key is uniform hence
M .
i M+1
G(K|lY)=E — | =—
=5 (30) ="

i=1
When the side-information completly reveals the secret key K then then forevery Y =y
the key is a Dirac hence

G(K|Y) =E,1=1.
: M+1 : :
The guessing entropy should range from == to 1 as information
leakage increases.
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But Guessing Entropy Is Not Scalable...

_ Liron David and Avishai Wool. A bounded-space near-optimal key enumeration algorithm for multi-dimensional

side-channel attacks.

For a full AES key M = 2™ where n = 8 and r = 16 is so huge that computing Zfil ipj is
not computationally feasible. We only know the crude :

,
[1Gkilvi) <
i=1

G(K|Y) < 2™ — ﬁ(z" — G(Ki|Y)).
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| Informational Leakage Measure

Instead we evaluate a scalable leakage measure and lower bound the guessing entropy.
Perhaps the most natural is mutual information :

r

;
I(K; Y) = Dx(Per[[PcPy) = Y D I(Ki; Yi) = nrilog2 — >~ H(Ki|Y)). (1)
i=1 i=1
We need to evaluate each equivocation separately which reduces the complexity from
O(2") to O(r2").
Also
I(K; Y™) < mI(X; Y).
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Mc Eliece and Yu’s Inequality

Robert ] McEliece and Zhong Yu. An inequality on entropy. ISIT'95

Theorem (Mc Eliece & Yu Inequality)

M —1H(X|Y
GXlY) <1+ —— (X]Y)
2  logM

(2)

This inequality is optimal i.e. achived everywhere e.g. for when X is uniform and the
channel X — Y is an erasure channel.
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Massey’s Inequality

J. Massey. Guessing and Entropy. ISIT'94

Theorem (Massey’s Inequality)

G(X) =22 11 (3)

provided that H(X) > 2 bits.
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Rioul’s Inequality

0. Rioul. Variations on a Theme by Massey. TIT'22

Theorem (Rioul’s Inequality)

2H(K|Y) 1
T2

G(K|Y) >

Other improved bounds exist see e.g., Sason and Verdu, Improved Bounds on Lossless
Source Coding and Guessing Moments via Rényi Measures

(4)
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| Problem with These Inequalities

When H(K|Y) = logM i.e. I(K;Y) = 0 bits the Rioul’s bound saturates to
M 1 M+1

<
e+2 2

. T . 2
There is a multiplicative gap of £.

—> Let’s derive the optimal bound'!
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Dx1(P||Q) =0
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| Key Tool : Gibbs Inequality

Theorem
For any distribution P and Q with respective pmfp,q,

Dx.(P||Q) = Zplogf Zplog——z,olog > 0.

c(PllQ) H(P)

That is
H(P) < C(PllQ)
with equality if and only if P = Q. Or equivalently

H(X) < Ex log q(lX)
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| Example

Let X be a M-ary random variable. Let g(x) = % then

H(X) < ExlogM = log M.
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| Back To Guessing

Fix G(X) = G. We need to choose g(X) such that log -% a0y — @x +bthatis q(x) = ¢~
-1
where ¢, = (Zf:’:l 7") . Let v € (0,1] so that g(x) deacreases wrt x then

M
H(X) < —Exlog(c,7*) = — log ¢, — 7ExX = log (Z 7*) -
x=1

Since the bound is linear it directly extends to the conditional case :

H(X]Y) < |0g<27> YG(X]Y).

1. If y =1, g is the uniform distribution and H(Q) = log M
2. Asy — 0, gis aDiracand H(Q) — 0
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| Back to Guessing Il

Equality is achived in the inequality when X|Y =y ~ q for every y in which case

H(X|Y) = chv log (c47¥) (5)
= — Z 7" logcy — Z c,7" log ¥ (6)
x=1 x=1
M
—logcy — ¢, Iog’yZ’yXX (7)
x=1
Now "
19" o A1 =AM) M
Cy =7 and ny X = > +M . (8)
1=v x=1 (1 B 7) 1=v TELECOM

N2 1P PARIS
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| Back to Guessing IlI

Theorem
The lower bound on G(X|Y) vs. H(X|Y) is given by the parametric curve for v € (0,1) :

{(X|Y) = 1MWMMH(X|Y) Iog(vlf_”f) ()
~(log 7)(125 — 1%

1—’yM)

The parametric curve can be reparametrized for —% Invy £ p € (0, +00) :

L — G(X|Y) = 3 (M coth(Mpu) — coth(u)) a9
log M — H(X|Y) = log o + 2u(log e)(*3E — G(X|Y)).
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Rioul Inequality
Massey Inequality

H(X|Y) in bits

8
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Guessing Moments

Let p > 0, the p-th guessing momment is given by

.

G,(X) = min

UE(‘S)
Mi=1

M

(pi =

Z i°p;.
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This time we need log g(x) = ax” + b. That is g(x) = c,v*" where c;* = 3"\ | v and
v € (0,1]. g decreases with respect to x, if v = 1 it is uniform and as y — 0 it
approaches the Dirac distribution.

Theorem

The optimal lower bound of G,(X|Y) vs. H(X|Y) is given by the parametric curve for
v €(0,1]:

Gp(X|Y) = (il i7" )il ) )
M oy

H(X|Y) = log(So1, 7") — (log 7) S5

i=1

(11)
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| Arimoto a-Equivocation and Sibson’s a-Information

Leta > 0, o # 1, o/ the Hélder conjugate (£ + 4 = 1),

1
Ha(X|Y) = =/ log By||Pxy[la = —c/log > _ Py(y) (Z Px|Y(X|Y)a)
%/—/ y X
Ka(X]Y)
1
1a(X;Y) = o log Ey(Pxy||Px) = o/ log Ey (Z Pj‘<“|Y(x|y)PX(x)1_“>
X
.
la(K;Y) = log M — Ho(K|Y) = logM — > " Ha(Ki|Y})
i=1
Also
1o (K; Y™) < mig(X; Y).
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| Existing Bounds

The upper bound is due to Serder Bostaz (TIT'97) while the lower bound is due to Rioul

(TIT'22) which slightly improves the original inequality of Arikan (TIT'96).

Arikan’s inequality (An Inequality on Guessing and its Application to Sequential

Decoding) is :

France PhD IT Workshop, Palaiseau, ht

expH1(K|Y)
2
In(2M + 1)

Gp(X[Y) =

< G(X|Y) <

1+ expHi(K|Y)
2

2

explH 2 (XI"))
(1 + InMm)r
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Rényi Divergence

Rényi Entropy Power and Normal Transport, O.Rioul, ISITA 2020

B Let P,Q be two distributions with respective pmf p, g. Rényi’s divergence is positive

D.(PIQ) =

7Zp

“ >

0.
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Rényi Divergence

Rényi Entropy Power and Normal Transport, O.Rioul, ISITA 2020

B Let P,Q be two distributions with respective pmf p, g. Rényi’s divergence is positive
D.(P|Q) = —— Zp ®>0.
B Relative Rényi-entropy (Lapidoth and Pfister) is positive

Aa(P|Q) = D1 (Pa|0x) > 0

where P,, Q,, are a-escort distributions of P, Q (i.e. P, = P*/||P||%)
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Rényi Divergence

Rényi Entropy Power and Normal Transport, O.Rioul, ISITA 2020

B Let P,Q be two distributions with respective pmf p, g. Rényi’s divergence is positive
Da(Pl|Q) = — Zp >0.

B Relative Rényi-entropy (Lapidoth and Pfister) is positive
Ao(P|Q) = D1 (PallQa) > 0

where P, Q,, are a-escort distributions of P, Q (i.e. P, = P*/||P||%)
|
Ha(X) = —a' log Exql/* (X) — Aa(Px[|Q) < —a log Exql/™ (X).
5.4 fi |
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| a-Gibbs Inequality

Lemma (Generalized Gibbs Inequality)

For any pmfq,
Ha(X) < —0’ log Exq}/ (X)

with equality iff px = q. Here q,, is the escort distribution of q, defined by
ga(x) = q*(x)/llql5-

(14)

Since 2 + L =1 we have & = o — 1. The distribution in Gibbs inequality depends on

the relative position of a with respect to 1.
Now depending on the sign of ¢/,

Ka(X) s Equal(x)

which shows that it extends to the conditional setting.
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I < (0,1)

)

o

1. We need g</(x) =q

*~l(x) = ax” + b.
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I < (0,1)

1. We need go’ (x) = q*~1(x) = ax” + b.
2. q(x) = (ax? + b)a1 = (ax” + b)*' L,

¥ fi |
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I < (0,1)

1. We need go’ (x) = q*~1(x) = ax” + b.

2. q(x) = (ax” + b)ﬁ = (ax? 4+ b)*' 1,

3. Since a — 1 < 0 we want ax” + b to increase with x that is a > 0 and since
ax”+b>0,a>—b.
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I < (0,1)

1. We need go’ (x) = q*~1(x) = ax” + b.

2. q(x) = (ax? + b)a-1 = (ax” + b)*' 1,

3. Since o« — 1 < 0 we want ax” 4+ b to increase with x that is @ > 0 and since
ax’P+b>0,a>-b.

4. ax*+b=a(x*—1)+a+b
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I < (0,1)

1. We need go’ (x) = q*~1(x) = ax” + b.

2. q(x) = (ax? + b)a-1 = (ax” + b)*' 1,

3. Since o« — 1 < 0 we want ax” 4+ b to increase with x that is @ > 0 and since
ax’P+b>0,a>-b.

4. ax*+b=a(x*—1)+a+b

5. q(x) = (a+b)* (33 (x” — 1) + 1)1

5.4 fi |
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I < (0,1)

1. We need go’ (x) = g*1(x) = ax” + b.

2. q(x) = (ax” + b)a—T = (ax? + b)*' 1.

3. Since o« — 1 < 0 we want ax” 4+ b to increase with x that is @ > 0 and since
ax’P+b>0,a>-b.

4. ax*+b=a(x*—1)+a+b

5. q(x) = (a+ b) L (25 (x — 1) + 1)¥ 1

6. q(x) = ¢, (y(x? — 1) + 1)*~ where v € [0, ).

5.4 fi |
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I < (0,1)

1. We need go’ (x) = q*~1(x) = ax” + b.

2. q(x) = (ax? + b)a-1 = (ax” + b)*' 1,

Since @« — 1 < 0 we want ax” 4+ b to increase with x that is @ > 0 and since
ax’+b>0,a>—b.

ax*+b=a(x*—1)+a+b

a(x) = (a+b)* M35 (x* — 1) + 1)~

- q(x) = ¢, (Y(x? — 1) + 1)*~ where vy € [0, ).

w

N o v s

_ M (1—y+yi?)e
Gy(XIY) = 1+ v (G 1) (15)

Ha(X|Y) = o log 3770, (1 — 7 +7i7)* 71 4 (1 — /) log D171 (1 — 7 + i)
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e

1. We need g</(x) =q

“~1(x) = ax” +b.
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| a>1

1. We need q=’ (x) = q*~1(x) = ax” + b.
2. q(x) = (ax” + b)a1 = (ax? + b)*' 1,

¥ fi |
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| a>1

1. We need q=’ (x) = q*~1(x) = ax” + b.
2. q(x) = (ax? + b)a—1 = (ax” + b)*' 1.
3. Since « — 1 > 0 we want ax” + b to decrease with x thatisb < 0and a > —b.
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| a>1

1.
2.
3.
4.

We need g=’ (x) = q*~1(x) = ax” + b.

q(x) = (ax? + b)a—T = (ax? + b)*' 1.

Since @ — 1 > 0 we want ax” 4+ b to decrease with x thatisb < 0anda > —b.
q(x) = b* 7 (§x + 1)1

5.4 fi |
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] a>1
We need g=’ (x) = q*~1(x) = ax” + b.
q(x) = (ax? +b)a1 = (ax’ + b)*' L.

q(x) = b~ H(gxP + 1)7 1
q(x) = ¢, (1 — x?)3 " where v € (0,1) and x; = max(x, 0).

bk W

France PhD IT Workshop, Palaiseau, ht

Since « — 1 > 0 we want ax” + b to decrease with x thatis b < 0and a > —b.
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| a>1

We need g=’ (x) = q*~1(x) = ax” + b.

g(x) = (ax? + b)=-T = (ax” + b)*' "1,

Since « — 1 > 0 we want ax” 4+ b to decrease with x thatisb < 0anda > —b.
alx) = b1 (3x + 1)y

q(x) = ¢, (1 — x?)3 " where v € (0,1) and x; = max(x, 0).

o vk wnN =

S () )
Sy (1—rin)y
Ha(X|Y) = o/ log 33111 (1 = 7)Y 71 + (1 — o) log 3712, (1 — 7i?)4

G,(X|Y)=~"1(1-
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] General Statement

When 0 < «a < 1, the optimal lower bound of G,(X|Y) vs. H,(X|Y) is given by the
parametric curve for v € (0,00) :

_ S M i)
GP(X|Y) =1 + v (Z;‘ﬂ:l(l_,},_i_,yip)a/—l 1)

Ha(X|Y) = a’log 210 (1 — 7 +7i7)* 1 + (1 — ) log 374 (1 — y + i)

(17)

When « > 1, the optimal lower bound of G,(X|Y) in terms of H,(X|Y) is given by the
parametric curve fory € (0,1) :
_ -1 . 2?4:1(1*'7"”)?./

G,(X|Y) =771 (1 —ﬁl(l—wip)i"l)

Ha(X|Y) = o' log 11 (1 — 7i?)Y 1 + (1 — o) log S 1 (1 — ~if)g

(18)
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As an important consequence, an explicit first-order upper bound can be obtained,
which is easy to compute for any adversary observing small leakages.

Corollary
As 1o (K;Y) — 0, up to first order,

T \/2(Gzp(M)a— G2(M)) /algg eY)_ -

7 M2 (K;Y)
In particular, G,(K) — G,(K|Y) < \/7\/;

Démonstration.

Taylor expansion about v = 0 gives

{Gpuo = Gy(K|Y) =71 = /|(G2y(M) — G}(M)) +O(»?) 20)
Hege! = TG, (M)~ G (M) +0(?)

TELECOM
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Figure — Validation of the Corollary
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120 4 —— Exact Value Computed Numerically
—— Thm 1, (a=1)
—— Rioul Inequality
100 - — Thm 3, a=1
—— Arikan Inequality
80
<
<
O 60
g
40 A
20 A
0 1 T T T T T T
0 5 10 15 20 25
o

Figure - Hamming weight of a byte leak perturabated by additive Gaussian noise.
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Noise o= 32.0
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% 1 === Guessing Entropy 1

1 —— Arithmetic Mean Rank =

01 + True Ranks (Evaluated with SCALIb)
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Figure - Hamming Weight of each bytes leak perturbated by addtive Gaussian noise. Increa
number of measurents and fixed noise level. =TT
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Random Probing Model

If K =Y = (Z,fz(K)) where {f;|z € Z} is a given set of function then we can obtain an
equality in terms of guessing advantage given by :
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Any Question?

Julien Béguinot, Olivier Rioul

LTCI, Télécom Paris, Institut Polytechnique de Paris
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