What Can Information Guess?

Guessing Advantage vs. Rényi Entropy for Small Leakages

Julien Béguinot, Olivier Rioul

LTCI, Télécom Paris, Institut Polytechnique de Paris

France PhD IT Workshop, Palaiseau, https://arxiv.org/pdf/2401.17057

What Can Information Guess

Cryptographic algorithm don't run on paper...

Cryptographic algorithm don't run on paper. they run on physical device !

Side-Channel Analysis

Cryptographic algorithm don't run on paper...

... they run on physical device !

- Cryptographic sensitive variables : may physically leak through side-channels (accoustic noise, timing, power consumption, electromagnetic emannation etc...).
- IT perspective : an unintended communication channel of the secret key from the hardware to the attacker.

Theoretical Model

- $K = (K_1 \dots, K_r)$: the secret key; $K \sim \mathcal{U}(M = 2^{nr})$ is composed of r bytes of n bits;
- **T** = (T_1, \ldots, T_r) : a public information (plaintext or ciphertext)
- X : a sensitive variable; $(X_1, ..., X_r) = (f(K_1, T_1), ..., f(K_r, T_r));$

🔊 IP PARIS

Theoretical Model

- $K = (K_1 \dots, K_r)$: the secret key; $K \sim \mathcal{U}(M = 2^{nr})$ is composed of r bytes of n bits;
- **T = (T_1, \ldots, T_r):** a public information (plaintext or ciphertext)
- X : a sensitive variable; $(X_1, ..., X_r) = (f(K_1, T_1), ..., f(K_r, T_r));$
- **Y** : the corresponding noisy leakage, and the side channel $X_i \mapsto Y_i$ is stationary and memoryless; and the adversary performs *m* measurements to achieve a given guessing entropy.

🔊 IP PARIS

1. Let X be a M-ary random variable with probability mass function (p_1, \ldots, p_M) . Without loss of generality we can assume that $p_1 \ge \ldots \ge p_M$.

- 1. Let X be a M-ary random variable with probability mass function (p_1, \ldots, p_M) . Without loss of generality we can assume that $p_1 \ge \ldots \ge p_M$.
- 2. A guessing strategy is a permutation $\sigma \in S_M$ that specify in which order to guess the key hypothesis

- 1. Let X be a M-ary random variable with probability mass function (p_1, \ldots, p_M) . Without loss of generality we can assume that $p_1 \ge \ldots \ge p_M$.
- 2. A guessing strategy is a permutation $\sigma \in S_M$ that specify in which order to guess the key hypothesis
- 3. The guesswork is the average number of guesses of such strategy given by

$$G_{\sigma}(X) = \sum_{i=1}^{M} \sigma(i) p_i.$$

- 1. Let X be a M-ary random variable with probability mass function (p_1, \ldots, p_M) . Without loss of generality we can assume that $p_1 \ge \ldots \ge p_M$.
- 2. A guessing strategy is a permutation $\sigma \in S_M$ that specify in which order to guess the key hypothesis
- 3. The guesswork is the average number of guesses of such strategy given by

$$G_{\sigma}(X) = \sum_{i=1}^{M} \sigma(i) p_i.$$

4. The guessing entropy is the guesswork of the optimal guessing strategy

$$G(X) = \min_{\sigma} G_{\sigma}(X).$$

IP PARIS

Guessing Entropy

Lemma

The guessing entropy is given by

$$G(X)=\sum_{i=1}^{M}ip_{i}.$$

Démonstration.

Assume that the minimum in the definition of guessing entropy is achieved for $\sigma \neq (1, ..., M)$. Then tere exists i < j such that $\sigma(i) > \sigma(j)$. Let $\tilde{\sigma} = (i j) \circ \sigma$ then $G_{\sigma}(X) - G_{\tilde{\sigma}}(X) = (\sigma(i) - \sigma(j))(p_i - p_j) \ge 0$.

Given side-information Y the conditional guessing entropy is obtained by averaging the guessing entropies G(X|Y = y) for each y :

$$G(X|Y) = \mathbb{E}_y G(X|Y = y)$$
 $(= \mathbb{E}[X] \text{ if } p_1 \ge p_2 \ldots \ge p_M).$

🐼 IP PARIS

Blind Guess and Clear Guess

When the side-information Y is independent of the secret key K then for every Y = y the key is uniform hence

$$G(K|Y) = \mathbb{E}_{y}\left(\sum_{i=1}^{M} \frac{i}{M}\right) = \frac{M+1}{2}.$$

When the side-information completly reveals the secret key K then then for every Y = y the key is a Dirac hence

$$G(K|Y) = \mathbb{E}_{y}1 = 1.$$

The guessing entropy should range from $\frac{M+1}{2}$ to 1 as information leakage increases.

But Guessing Entropy Is Not Scalable...

Liron David and Avishai Wool. A bounded-space near-optimal key enumeration algorithm for multi-dimensional side-channel attacks.

For a full AES key $M = 2^{nr}$ where n = 8 and r = 16 is so huge that computing $\sum_{i=1}^{M} ip_i$ is not computationally feasible. We only know the crude :

$$\prod_{i=1}^r G(\mathcal{K}_i|Y_i) \leqslant G(\mathcal{K}|Y) \leqslant 2^{nr} - \prod_{i=1}^r (2^n - G(\mathcal{K}_i|Y_i)).$$

Informational Leakage Measure

Instead we evaluate a scalable leakage measure and lower bound the guessing entropy. Perhaps the most natural is mutual information :

$$I(K;Y) = D_{KL}(P_{KY} || P_K P_Y) = \sum_{i=1}^r I(K_i;Y_i) = nr \log 2 - \sum_{i=1}^r H(K_i |Y_i).$$
(1)

We need to evaluate each equivocation separately which reduces the complexity from $O(2^{nr})$ to $O(r2^n)$. Also

$$I(K; Y^m) \leqslant mI(X; Y).$$

Mc Eliece and Yu's Inequality

Robert J McEliece and Zhong Yu. An inequality on entropy. ISIT'95

Theorem (Mc Eliece & Yu Inequality)

$$G(X|Y) \leqslant 1 + rac{M-1}{2} rac{H(X|Y)}{\log M}$$

This inequality is optimal i.e. achived everywhere e.g. for when X is uniform and the channel $X \rightarrow Y$ is an erasure channel.

(2)

J. Massey. Guessing and Entropy. ISIT'94

Theorem (Massey's Inequality)

$$G(X) \geqslant 2^{H(X)-2} + 1$$

provided that $H(X) \ge 2$ bits.

(3)

O. Rioul. Variations on a Theme by Massey. TIT'22

Theorem (Rioul's Inequality)

$$G(K|Y) \geqslant rac{2^{H(K|Y)}}{e} + rac{1}{2}$$

Other improved bounds exist see e.g., Sason and Verdù, Improved Bounds on Lossless Source Coding and Guessing Moments via Rényi Measures

(4)

Problem with These Inequalities

When $H(K|Y) = \log M$ i.e. I(K; Y) = 0 bits the Rioul's bound saturates to

$$\frac{M}{e}+\frac{1}{2}<\frac{M+1}{2}.$$

There is a multiplicative gap of $\frac{2}{e}$.

\implies Let's derive the optimal bound !

$D_{\mathrm{KL}}(P\|Q) \geqslant 0$

Key Tool : Gibbs Inequality

Theorem

For any distribution P and Q with respective pmf p, q,

$$D_{\mathrm{KL}}(P||Q) = \sum p \log rac{p}{q} = \underbrace{\sum p \log rac{1}{q}}_{C(P||Q)} - \underbrace{\sum p \log rac{1}{p}}_{H(P)} \geqslant 0.$$

That is

 $H(P) \leqslant C(P \| Q)$

with equality if and only if P = Q. Or equivalently

$$H(X) \leqslant \mathbb{E}_X \log \frac{1}{q(X)}.$$

D IP PARIS

Let *X* be a *M*-ary random variable. Let $q(x) = \frac{1}{M}$ then

 $H(X) \leq \mathbb{E}_X \log M = \log M.$

Back To Guessing

Fix G(X) = G. We need to choose q(X) such that $\log \frac{1}{q(x)} = ax + b$ that is $q(x) = c_{\gamma} \gamma^{x}$ where $c_{\gamma} = \left(\sum_{x=1}^{M} \gamma^{x}\right)^{-1}$. Let $\gamma \in (0, 1]$ so that q(x) deacreases wrt x then

$$H(X) \leqslant -\mathbb{E}_X \log(c_\gamma \gamma^X) = -\log c_\gamma - \gamma \mathbb{E}_X X = \log \left(\sum_{x=1}^M \gamma^x\right) - \gamma G.$$

Since the bound is linear it directly extends to the conditional case :

$$H(X|Y) \leqslant \log\left(\sum_{x=1}^{M} \gamma^{x}\right) - \gamma G(X|Y).$$

1. If $\gamma = 1$, q is the uniform distribution and $H(Q) = \log M$ 2. As $\gamma \to 0$, q is a Dirac and $H(Q) \to 0$

IP PARIS

Back to Guessing II

Equality is achived in the inequality when $X|Y = y \sim q$ for every y in which case

$$H(X|Y) = -\sum_{x=1}^{M} c_{\gamma} \gamma^{x} \log (c_{\gamma} \gamma^{x})$$

$$= -\sum_{x=1}^{M} c_{\gamma} \gamma^{x} \log c_{\gamma} - \sum_{x=1}^{M} c_{\gamma} \gamma^{x} \log \gamma^{x}$$

$$= -\log c_{\gamma} - c_{\gamma} \log \gamma \sum_{x=1}^{M} \gamma^{x} x$$
(5)
(5)
(6)
(6)
(7)

Now

😥 IP PARIS

Back to Guessing III

Theorem

The lower bound on G(X|Y) vs. H(X|Y) is given by the parametric curve for $\gamma \in (0,1)$:

$$\begin{cases} G(X|Y) = \frac{1}{1-\gamma} - \frac{M\gamma^{M}}{1-\gamma^{M}}H(X|Y) = \log(\gamma\frac{1-\gamma^{M}}{1-\gamma}) \\ -(\log\gamma)(\frac{1}{1-\gamma} - \frac{M\gamma^{M}}{1-\gamma^{M}}) \end{cases}$$
(9)

The parametric curve can be reparametrized for $-\frac{1}{2}\ln\gamma\triangleq\mu\in(0,+\infty)$:

$$\begin{cases} \frac{M+1}{2} - G(X|Y) = \frac{1}{2} (M \coth(M\mu) - \coth(\mu)) \\ \log M - H(X|Y) = \log \frac{M \sinh \mu}{\sinh(M\mu)} + 2\mu(\log e)(\frac{M+1}{2} - G(X|Y)). \end{cases}$$
(10)

Let $\rho > 0$, the ρ -th guessing momment is given by

$$G_{\rho}(X) = \min_{\sigma \in \mathcal{S}_M} \sum_{i=1}^M \sigma(i)^{\rho} p_i = \sum_{i=1}^M i^{\rho} p_i.$$

🐼 IP PARIS

This time we need $\log q(x) = ax^{\rho} + b$. That is $q(x) = c_{\gamma}\gamma^{x^{\rho}}$ where $c_{\gamma}^{-1} = \sum_{x=1}^{M} \gamma^{x^{\rho}}$ and $\gamma \in (0, 1]$. q decreases with respect to x, if $\gamma = 1$ it is uniform and as $\gamma \to 0$ it approaches the Dirac distribution.

Theorem

The optimal lower bound of $G_{\rho}(X|Y)$ vs. H(X|Y) is given by the parametric curve for $\gamma \in (0, 1]$:

$$\begin{cases} G_{\rho}(X|Y) = (\sum_{i=1}^{M} i^{\rho} \gamma^{i^{\rho}}) (\sum_{i=1}^{M} \gamma^{i^{\rho}})^{-1} \\ H(X|Y) = \log(\sum_{i=1}^{M} \gamma^{i^{\rho}}) - (\log \gamma) \frac{\sum_{i=1}^{M} i^{\rho} \gamma^{i^{\rho}}}{\sum_{i=1}^{M} \gamma^{i^{\rho}}} \end{cases}$$
(11)

Arimoto α -Equivocation and Sibson's α -Information

Let $\alpha > 0$, $\alpha \neq 1$, α' the Hölder conjugate $(\frac{1}{\alpha} + \frac{1}{\alpha'} = 1)$,

$$H_{\alpha}(X|Y) = -\alpha' \log \underbrace{\mathbb{E}_{Y} \| P_{X|Y} \|_{\alpha}}_{\mathcal{K}_{\alpha}(X|Y)} = -\alpha' \log \sum_{y} P_{Y}(y) \left(\sum_{x} P_{X|Y}(x|y)^{\alpha} \right)^{\frac{1}{\alpha}}$$

$$I_{\alpha}(X;Y) = \alpha' \log \mathbb{E}_{Y} \langle P_{X|Y} || P_{X} \rangle = \alpha' \log \mathbb{E}_{Y} \left(\sum_{x} P_{X|Y}^{\alpha}(x|y) P_{X}(x)^{1-\alpha} \right)^{\frac{1}{\alpha}}$$
$$I_{\alpha}(K;Y) = \log M - H_{\alpha}(K|Y) = \log M - \sum_{i=1}^{r} H_{\alpha}(K_{i}|Y_{i})$$

Also

 $I_{\alpha}(K; Y^m) \leqslant m I_{\alpha}(X; Y).$

😥 IP PARIS

1

Existing Bounds

The upper bound is due to Serder Bostaz (TIT'97) while the lower bound is due to Rioul (TIT'22) which slightly improves the original inequality of Arikan (TIT'96).

$$\frac{\exp H_{\frac{1}{2}}(K|Y)}{\ln(2M+1)} \leqslant G(X|Y) \leqslant \frac{1 + \exp H_{\frac{1}{2}}(K|Y)}{2}$$
(12)

Arikan's inequality (An Inequality on Guessing and its Application to Sequential Decoding) is :

$$G_{\rho}(X|Y) \geqslant \frac{\exp(H_{\frac{1}{1+\rho}}(X|Y))}{(1+\ln M)^{\rho}}.$$
(13)

Rényi Entropy Power and Normal Transport, O.Rioul, ISITA 2020

Let P, Q be two distributions with respective pmf p, q. Rényi's divergence is positive

$$D_{\alpha}(P \| Q) = rac{1}{lpha - 1} \sum_{x} p(x)^{lpha} q(x)^{1 - lpha} \geqslant 0.$$

Rényi Entropy Power and Normal Transport, O.Rioul, ISITA 2020

Let P, Q be two distributions with respective pmf p, q. Rényi's divergence is positive

$$D_{\alpha}(P \| Q) = rac{1}{lpha - 1} \sum_{x}
ho(x)^{lpha} q(x)^{1 - lpha} \geqslant 0.$$

Relative Rényi-entropy (Lapidoth and Pfister) is positive

$$\Delta_{\alpha}(P||Q) = D_{\frac{1}{\alpha}}(P_{\alpha}||Q_{\alpha}) \ge 0$$

where P_{α}, Q_{α} are α -escort distributions of P, Q (i.e. $P_{\alpha} = P^{\alpha}/\|P\|_{\alpha}^{\alpha}$).

😥 IP PARIS

Rényi Entropy Power and Normal Transport, O.Rioul, ISITA 2020

Let P, Q be two distributions with respective pmf p, q. Rényi's divergence is positive

$$D_{\alpha}(P \| Q) = rac{1}{lpha - 1} \sum_{x} p(x)^{lpha} q(x)^{1 - lpha} \geqslant 0.$$

Relative Rényi-entropy (Lapidoth and Pfister) is positive

$$\Delta_{\alpha}(P||Q) = D_{\frac{1}{\alpha}}(P_{\alpha}||Q_{\alpha}) \ge 0$$

where P_{α}, Q_{α} are α -escort distributions of P, Q (i.e. $P_{\alpha} = P^{\alpha}/||P||_{\alpha}^{\alpha}$).

$$H_{\alpha}(X) = -\alpha' \log \mathbb{E}_{X} q_{\alpha}^{1/\alpha'}(X) - \Delta_{\alpha}(P_{X} \| Q) \leqslant -\alpha' \log \mathbb{E}_{X} q_{\alpha}^{1/\alpha'}(X).$$

😥 IP PARIS

α -Gibbs Inequality

Lemma (Generalized Gibbs Inequality)

For any pmf q,

$$H_{\alpha}(X) \leqslant -\alpha' \log \mathbb{E}_{X} q_{\alpha}^{1/\alpha'}(X)$$
(14)

with equality iff $p_X = q$. Here q_α is the escort distribution of q, defined by $q_\alpha(x) = q^\alpha(x)/||q||_\alpha^\alpha$.

Since $\frac{1}{\alpha} + \frac{1}{\alpha'} = 1$ we have $\frac{\alpha}{\alpha'} = \alpha - 1$. The distribution in Gibbs inequality depends on the relative position of α with respect to 1.

Now depending on the sign of α' ,

$$\mathcal{K}_{\alpha}(X) \leq \mathbb{E}_{X} q_{\alpha}^{1/\alpha'}(X)$$

which shows that it extends to the conditional setting.

🐼 IP PARIS

1. We need
$$q^{\frac{\alpha}{\alpha'}}(x) = q^{\alpha-1}(x) = ax^{\rho} + b$$
.

1. We need
$$q^{\frac{\alpha}{\alpha'}}(x) = q^{\alpha-1}(x) = ax^{\rho} + b$$
.
2. $q(x) = (ax^{\rho} + b)^{\frac{1}{\alpha-1}} = (ax^{\rho} + b)^{\alpha'-1}$.

- 1. We need $q^{\frac{\alpha}{\alpha'}}(x) = q^{\alpha-1}(x) = ax^{\rho} + b$.
- 2. $q(x) = (ax^{\rho} + b)^{\frac{1}{\alpha-1}} = (ax^{\rho} + b)^{\alpha'-1}$.
- 3. Since $\alpha 1 < 0$ we want $ax^{\rho} + b$ to increase with x that is $a \ge 0$ and since $ax^{\rho} + b > 0$, a > -b.

- 1. We need $q^{\frac{\alpha}{\alpha'}}(x) = q^{\alpha-1}(x) = ax^{\rho} + b$.
- 2. $q(x) = (ax^{\rho} + b)^{\frac{1}{\alpha-1}} = (ax^{\rho} + b)^{\alpha'-1}$.
- 3. Since $\alpha 1 < 0$ we want $ax^{\rho} + b$ to increase with x that is $a \ge 0$ and since $ax^{\rho} + b > 0$, a > -b.
- 4. $ax^{\rho} + b = a(x^{\rho} 1) + a + b$

- 1. We need $q^{\frac{\alpha}{\alpha'}}(x) = q^{\alpha-1}(x) = ax^{\rho} + b$.
- 2. $q(x) = (ax^{\rho} + b)^{\frac{1}{\alpha-1}} = (ax^{\rho} + b)^{\alpha'-1}$.
- 3. Since $\alpha 1 < 0$ we want $ax^{\rho} + b$ to increase with x that is $a \ge 0$ and since $ax^{\rho} + b > 0$, a > -b.
- 4. $ax^{\rho} + b = a(x^{\rho} 1) + a + b$ 5. $q(x) = (a + b)^{\alpha' - 1} (\frac{a}{a + b}(x^{\rho} - 1) + 1)^{\alpha' - 1}$

- 1. We need $q^{\frac{\alpha}{\alpha'}}(x) = q^{\alpha-1}(x) = ax^{\rho} + b$.
- 2. $q(x) = (ax^{\rho} + b)^{\frac{1}{\alpha-1}} = (ax^{\rho} + b)^{\alpha'-1}$.
- 3. Since $\alpha 1 < 0$ we want $ax^{\rho} + b$ to increase with x that is $a \ge 0$ and since $ax^{\rho} + b > 0$, a > -b.

4.
$$ax^{\rho} + b = a(x^{\rho} - 1) + a + b$$

5. $q(x) = (a + b)^{\alpha' - 1} (\frac{a}{a + b}(x^{\rho} - 1) + 1)^{\alpha' - 1}$
6. $q(x) = c_{\gamma}(\gamma(x^{\rho} - 1) + 1)^{\alpha' - 1}$ where $\gamma \in [0, \infty)$.

- 1. We need $q^{\frac{\alpha}{\alpha'}}(x) = q^{\alpha-1}(x) = ax^{\rho} + b$.
- 2. $q(x) = (ax^{\rho} + b)^{\frac{1}{\alpha-1}} = (ax^{\rho} + b)^{\alpha'-1}$.
- 3. Since $\alpha 1 < 0$ we want $ax^{\rho} + b$ to increase with x that is $a \ge 0$ and since $ax^{\rho} + b > 0$, a > -b.

4.
$$ax^{\rho} + b = a(x^{\rho} - 1) + a + b$$

5. $q(x) = (a + b)^{\alpha' - 1} (\frac{a}{a + b}(x^{\rho} - 1) + 1)^{\alpha' - 1}$
6. $q(x) = c_{\gamma}(\gamma(x^{\rho} - 1) + 1)^{\alpha' - 1}$ where $\gamma \in [0, \infty)$.
7.

$$\begin{cases} G_{\rho}(X|Y) = 1 + \gamma^{-1} \left(\frac{\sum_{i=1}^{M} (1 - \gamma + \gamma i^{\rho})^{\alpha'}}{\sum_{i=1}^{M} (1 - \gamma + \gamma i^{\rho})^{\alpha'-1}} - 1 \right) \\ H_{\alpha}(X|Y) = \alpha' \log \sum_{i=1}^{M} (1 - \gamma + \gamma i^{\rho})^{\alpha'-1} + (1 - \alpha') \log \sum_{i=1}^{M} (1 - \gamma + \gamma i^{\rho})^{\alpha'}. \end{cases}$$
(15)

1. We need
$$q^{rac{lpha}{lpha'}}(x)=q^{lpha-1}(x)=ax^
ho+b.$$

 $\alpha > 1$

1. We need
$$q^{\frac{\alpha}{\alpha'}}(x) = q^{\alpha-1}(x) = ax^{\rho} + b$$
.
2. $q(x) = (ax^{\rho} + b)^{\frac{1}{\alpha-1}} = (ax^{\rho} + b)^{\alpha'-1}$.

- 1. We need $q^{\frac{\alpha}{\alpha'}}(x) = q^{\alpha-1}(x) = ax^{\rho} + b$. 2. $q(x) = (ax^{\rho} + b)^{\frac{1}{\alpha-1}} = (ax^{\rho} + b)^{\alpha'-1}$.
- 3. Since $\alpha 1 > 0$ we want $ax^{\rho} + b$ to decrease with x that is b < 0 and $a \ge -b$.

1. We need
$$q^{\frac{\alpha}{\alpha'}}(x) = q^{\alpha-1}(x) = ax^{\rho} + b$$
.
2. $q(x) = (ax^{\rho} + b)^{\frac{1}{\alpha-1}} = (ax^{\rho} + b)^{\alpha'-1}$.

3. Since $\alpha - 1 > 0$ we want $ax^{\rho} + b$ to decrease with x that is b < 0 and $a \ge -b$. 4. $q(x) = b^{\alpha'-1}(\frac{a}{b}x^{\rho} + 1)^{\alpha'-1}_+$

1. We need
$$q^{\frac{\alpha}{\alpha'}}(x) = q^{\alpha-1}(x) = ax^{\rho} + b$$
.
2. $q(x) = (ax^{\rho} + b)^{\frac{1}{\alpha-1}} = (ax^{\rho} + b)^{\alpha'-1}$.
3. Since $\alpha - 1 > 0$ we want $ax^{\rho} + b$ to decrease with x that is $b < 0$ and $a \ge -b$.
4. $q(x) = b^{\alpha'-1}(\frac{a}{b}x^{\rho} + 1)^{\alpha'-1}_{+}$
5. $q(x) = c_{\gamma}(1 - \gamma x^{\rho})^{\alpha'-1}_{+}$ where $\gamma \in (0, 1)$ and $x_{+} = \max(x, 0)$.

1. We need
$$q^{\frac{\alpha}{\alpha'}}(x) = q^{\alpha-1}(x) = ax^{\rho} + b$$
.
2. $q(x) = (ax^{\rho} + b)^{\frac{1}{\alpha-1}} = (ax^{\rho} + b)^{\alpha'-1}$.
3. Since $\alpha - 1 > 0$ we want $ax^{\rho} + b$ to decrease with x that is $b < 0$ and $a \ge -b$.
4. $q(x) = b^{\alpha'-1}(\frac{a}{b}x^{\rho} + 1)^{\alpha'-1}_{+}$
5. $q(x) = c_{\gamma}(1 - \gamma x^{\rho})^{\alpha'-1}_{+}$ where $\gamma \in (0, 1)$ and $x_{+} = \max(x, 0)$.
6.
$$\begin{cases} G_{\rho}(X|Y) = \gamma^{-1}(1 - \frac{\sum_{i=1}^{M}(1 - \gamma i^{\rho})^{\alpha'}_{+})}{\sum_{i=1}^{M}(1 - \gamma i^{\rho})^{\alpha'-1}_{+}}) \\ H_{\alpha}(X|Y) = \alpha' \log \sum_{i=1}^{M}(1 - \gamma i^{\rho})^{\alpha'-1}_{+} + (1 - \alpha') \log \sum_{i=1}^{M}(1 - \gamma i^{\rho})^{\alpha'}_{+} \end{cases}$$

(16)

General Statement

When $0 < \alpha < 1$, the optimal lower bound of $G_{\rho}(X|Y)$ vs. $H_{\alpha}(X|Y)$ is given by the parametric curve for $\gamma \in (0, \infty)$:

$$\begin{cases} G_{\rho}(X|Y) = 1 + \gamma^{-1} \left(\frac{\sum_{i=1}^{M} (1 - \gamma + \gamma i^{\rho})^{\alpha'}}{\sum_{i=1}^{M} (1 - \gamma + \gamma i^{\rho})^{\alpha'-1}} - 1 \right) \\ H_{\alpha}(X|Y) = \alpha' \log \sum_{i=1}^{M} (1 - \gamma + \gamma i^{\rho})^{\alpha'-1} + (1 - \alpha') \log \sum_{i=1}^{M} (1 - \gamma + \gamma i^{\rho})^{\alpha'}. \end{cases}$$
(17)

When $\alpha > 1$, the optimal lower bound of $G_{\rho}(X|Y)$ in terms of $H_{\alpha}(X|Y)$ is given by the parametric curve for $\gamma \in (0, 1)$:

$$\begin{cases} G_{\rho}(X|Y) = \gamma^{-1} \left(1 - \frac{\sum_{i=1}^{M} (1 - \gamma i^{\rho})_{+}^{\alpha'}}{\sum_{i=1}^{M} (1 - \gamma i^{\rho})_{+}^{\alpha'-1}} \right) \\ H_{\alpha}(X|Y) = \alpha' \log \sum_{i=1}^{M} (1 - \gamma i^{\rho})_{+}^{\alpha'-1} + (1 - \alpha') \log \sum_{i=1}^{M} (1 - \gamma i^{\rho})_{+}^{\alpha'} \end{cases}$$
(18)

😥 IP PARIS

4

As an important consequence, an explicit first-order upper bound can be obtained, which is easy to compute for any adversary observing small leakages.

Corollary

As $I_{lpha}(K;Y)
ightarrow$ 0, up to first order,

$$G_{\rho}(K) - G_{\rho}(K|Y) \lesssim \sqrt{\frac{2(G_{2\rho}(M) - G_{\rho}^{2}(M))}{\alpha}} \sqrt{\frac{I_{\alpha}(K;Y)}{\log e}}.$$
(19)

In particular,
$$G_{
ho}({\cal K})-G_{
ho}({\cal K}|{Y})\lesssim \sqrt{rac{M^2-1}{6lpha}}\sqrt{rac{I({\cal K};{Y})}{\log e}}.$$

Démonstration.

Taylor expansion about $\gamma = 0$ gives

$$\begin{cases} G_{\rho}(K) - G_{\rho}(K|Y) = \gamma |1 - \alpha'| (G_{2\rho}(M) - G_{\rho}^{2}(M)) + O(\gamma^{2}) \\ \frac{I_{\alpha}(K;Y)}{\log e} = \frac{|\alpha'(1 - \alpha')|}{2} (G_{2\rho}(M) - G_{\rho}^{2}(M))\gamma^{2} + O(\gamma^{3}) \end{cases}$$
(20)

😥 IP PARIS

Figure – Validation of the Corollary

Figure – Hamming weight of a byte leak perturabated by additive Gaussian noise.

Figure – Hamming Weight of each bytes leak perturbated by addtive Gaussian noise. Increa number of measurents and fixed noise level.

France PhD IT Workshop, Palaiseau, htt

What Can Information Guess

Random Probing Model

If $K \to Y = (Z, f_Z(K))$ where $\{f_z | z \in \mathcal{Z}\}$ is a given set of function then we can obtain an equality in terms of guessing advantage given by :

$$G(K) - G(K|Y) = \frac{M}{2} (1 - \exp(-I_{\frac{1}{2}}(K;Y))) \approx \frac{M}{2} I_{\frac{1}{2}}(K;Y).$$
(21)

Any Question?

What Can Information Guess?

Julien Béguinot, Olivier Rioul

LTCI, Télécom Paris, Institut Polytechnique de Paris

https://arxiv.org/pdf/2401.17057

