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Side-Channel Analysis

Cryptographic algorithm don’t run on paper. . .

. . . they run on physical device !

Cryptographic sensitive variables : may physically leak through side-channels
(accoustic noise, timing, power consumption, electromagnetic emannation etc...).

IT perspective : an unintended communication channel of the secret key from the
hardware to the attacker.
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Theoretical Model

Crypto Side-channel Attack
XK Y K̂

T T

K = (K1 . . . ,Kr) : the secret key ; K ∼ U(M = 2nr) is composed of r bytes of n bits ;

T = (T1, . . . , Tr) : a public information (plaintext or ciphertext)

X : a sensitive variable ; (X1, . . . ,Xr) = (f(K1, T1), . . . , f(Kr, Tr)) ;

Y : the corresponding noisy leakage, and the side channel Xi 7−→ Yi is stationary
and memoryless ; and the adversary performs m measurements to achieve a given
guessing entropy.
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Quantifying the Adversary’s Advantage : Guessing

Entropy

1. Let X be a M-ary random variable with probability mass function (p1, . . . ,pM).
Without loss of generality we can assume that p1 > . . . > pM.

2. A guessing strategy is a permutation σ ∈ SM that specify in which order to guess
the key hypothesis

3. The guesswork is the average number of guesses of such strategy given by

Gσ(X) =
M∑
i=1

σ(i)pi.

4. The guessing entropy is the guesswork of the optimal guessing strategy

G(X) = min
σ

Gσ(X).
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Guessing Entropy

Lemma

The guessing entropy is given by

G(X) =
M∑
i=1

ipi.

Démonstration.

Assume that the minimum in the definition of guessing entropy is achieved for
σ 6= (1, . . . ,M). Then tere exists i < j such that σ(i) > σ(j). Let σ̃ = (i j) ◦ σ then
Gσ(X)− Gσ̃(X) = (σ(i)− σ(j))(pi − pj) > 0.

Given side-information Y the conditional guessing entropy is obtained by averaging the
guessing entropies G(X|Y = y) for each y :

G(X|Y) = EyG(X|Y = y) (= E[X] if p1 > p2 . . . > pM).
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Blind Guess and Clear Guess

When the side-information Y is independent of the secret key K then for every Y = y the
key is uniform hence

G(K|Y) = Ey

(
M∑
i=1

i

M

)
=

M+ 1

2
.

When the side-information completly reveals the secret key K then then for every Y = y
the key is a Dirac hence

G(K|Y) = Ey1 = 1.

The guessing entropy should range from M+1
2 to 1 as information

leakage increases.
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But Guessing Entropy Is Not Scalable. . .
Liron David and Avishai Wool. A bounded-space near-optimal key enumeration algorithm for multi-dimensional

side-channel attacks.

For a full AES key M = 2nr where n = 8 and r = 16 is so huge that computing
∑M

i=1 ipi is
not computationally feasible. We only know the crude :

r∏
i=1

G(Ki|Yi) 6 G(K|Y) 6 2nr −
r∏

i=1

(2n − G(Ki|Yi)).
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Informational Leakage Measure

Instead we evaluate a scalable leakage measure and lower bound the guessing entropy.
Perhaps the most natural is mutual information :

I(K; Y) = DKL(PKY‖PKPY) =
r∑

i=1

I(Ki; Yi) = nr log 2−
r∑

i=1

H(Ki|Yi). (1)

We need to evaluate each equivocation separately which reduces the complexity from
O(2nr) to O(r2n).
Also

I(K; Ym) 6 mI(X; Y).
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Mc Eliece and Yu’s Inequality
Robert J McEliece and Zhong Yu. An inequality on entropy. ISIT’95

Theorem (Mc Eliece & Yu Inequality)

G(X|Y) 6 1+
M− 1

2

H(X|Y)
logM

(2)

This inequality is optimal i.e. achived everywhere e.g. for when X is uniform and the
channel X → Y is an erasure channel.
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Massey’s Inequality
J. Massey. Guessing and Entropy. ISIT’94

Theorem (Massey’s Inequality)

G(X) > 2H(X)−2 + 1 (3)

provided that H(X) > 2 bits.
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Rioul’s Inequality
O. Rioul. Variations on a Theme by Massey. TIT’22

Theorem (Rioul’s Inequality)

G(K|Y) > 2H(K|Y)

e
+

1

2
(4)

Other improved bounds exist see e.g., Sason and Verdù, Improved Bounds on Lossless

Source Coding and Guessing Moments via Rényi Measures
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Problem with These Inequalities

When H(K|Y) = logM i.e. I(K; Y) = 0 bits the Rioul’s bound saturates to

M

e
+

1

2
<

M+ 1

2
.

There is a multiplicative gap of 2
e .

=⇒ Let’s derive the optimal bound!
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DKL(P‖Q)> 0
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Key Tool : Gibbs Inequality

Theorem

For any distribution P and Q with respective pmf p,q,

DKL(P||Q) =
∑

p log
p

q
=
∑

p log
1

q︸ ︷︷ ︸
C(P‖Q)

−
∑

p log
1

p︸ ︷︷ ︸
H(P)

> 0.

That is
H(P) 6 C(P‖Q)

with equality if and only if P = Q. Or equivalently

H(X) 6 EX log
1

q(X)
.
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Example

Let X be a M-ary random variable. Let q(x) = 1
M then

H(X) 6 EX logM = logM.
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Back To Guessing

Fix G(X) = G. We need to choose q(X) such that log 1
q(x) = ax+ b that is q(x) = cγγx

where cγ =
(∑M

x=1 γ
x
)−1

. Let γ ∈ (0,1] so that q(x) deacreases wrt x then

H(X) 6 −EX log(cγγ
x) = − log cγ − γEXX = log

(
M∑

x=1

γx

)
− γG.

Since the bound is linear it directly extends to the conditional case :

H(X|Y) 6 log

(
M∑

x=1

γx

)
− γG(X|Y).

1. If γ = 1, q is the uniform distribution and H(Q) = logM

2. As γ → 0, q is a Dirac and H(Q) → 0
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Back to Guessing II

Equality is achived in the inequality when X|Y = y ∼ q for every y in which case

H(X|Y) = −
M∑

x=1

cγγ
x log (cγγ

x) (5)

= −
M∑

x=1

cγγ
x log cγ −

M∑
x=1

cγγ
x log γx (6)

= − log cγ − cγ log γ
M∑

x=1

γxx (7)

Now

cγ = γ
1− γM

1− γ
and

M∑
x=1

γxx =
γ(1− γM)

(1− γ)2
+M

γM+1

1− γ
. (8)
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Back to Guessing III

Theorem

The lower bound on G(X|Y) vs. H(X|Y) is given by the parametric curve for γ ∈ (0,1) :{
G(X|Y) = 1

1−γ − MγM

1−γM
H(X|Y) = log(γ 1−γM

1−γ )

−(log γ)( 1
1−γ−

MγM

1−γM
)

(9)

The parametric curve can be reparametrized for −1
2 ln γ , µ ∈ (0,+∞) :{

M+1
2 − G(X|Y) = 1

2

(
M coth(Mµ)− coth(µ)

)
logM− H(X|Y) = log M sinhµ

sinh(Mµ) + 2µ(log e)(M+1
2 − G(X|Y)).

(10)
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Guessing Moments

Let ρ > 0, the ρ-th guessing momment is given by

Gρ(X) = min
σ∈SM

M∑
i=1

σ(i)ρpi =
M∑
i=1

iρpi.

20
France PhD IT Workshop, Palaiseau, https://arxiv.org/pdf/2401.17057 What Can Information Guess?

https://arxiv.org/pdf/2401.17057


This time we need log q(x) = axρ + b. That is q(x) = cγγx
ρ
where c−1

γ =
∑M

x=1 γ
xρ and

γ ∈ (0,1]. q decreases with respect to x, if γ = 1 it is uniform and as γ → 0 it
approaches the Dirac distribution.

Theorem

The optimal lower bound of Gρ(X|Y) vs. H(X|Y) is given by the parametric curve for
γ ∈ (0,1] : Gρ(X|Y) = (

∑M
i=1 i

ργ i
ρ
)(
∑M

i=1 γ
iρ)−1

H(X|Y) = log(
∑M

i=1 γ
iρ)− (log γ)

∑M
i=1 i

ργ i
ρ∑M

i=1 γ
iρ

(11)
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Arimoto α-Equivocation and Sibson’s α-Information

Let α > 0, α 6= 1, α′ the Hölder conjugate ( 1α + 1
α′ = 1),

Hα(X|Y) = −α′ logEY‖PX|Y‖α︸ ︷︷ ︸
Kα(X|Y)

= −α′ log
∑
y

PY(y)

(∑
x

PX|Y(x|y)α
) 1

α

Iα(X; Y) = α′ logEY〈PX|Y‖PX〉 = α′ logEY

(∑
x

PαX|Y(x|y)PX(x)
1−α

) 1
α

Iα(K; Y) = logM− Hα(K|Y) = logM−
r∑

i=1

Hα(Ki|Yi)

Also
Iα(K; Y

m) 6 mIα(X; Y).
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Existing Bounds

The upper bound is due to Serder Bostaz (TIT’97) while the lower bound is due to Rioul
(TIT’22) which slightly improves the original inequality of Arikan (TIT’96).

expH 1
2
(K|Y)

ln(2M+ 1)
6 G(X|Y) 6

1+ expH 1
2
(K|Y)

2
(12)

Arikan’s inequality (An Inequality on Guessing and its Application to Sequential
Decoding) is :

Gρ(X|Y) >
exp(H 1

1+ρ
(X|Y))

(1+ lnM)ρ
. (13)
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Rényi Divergence
Rényi Entropy Power and Normal Transport, O.Rioul, ISITA 2020

Let P,Q be two distributions with respective pmf p,q. Rényi’s divergence is positive

Dα(P‖Q) =
1

α− 1

∑
x

p(x)αq(x)1−α > 0.

Relative Rényi-entropy (Lapidoth and Pfister) is positive

∆α(P‖Q) = D 1
α
(Pα‖Qα) > 0

where Pα,Qα are α-escort distributions of P,Q (i.e. Pα = Pα/‖P‖αα).

Hα(X) = −α′ logEXq
1/α′
α (X)−∆α(PX‖Q) 6 −α′ logEXq

1/α′
α (X).
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α-Gibbs Inequality

Lemma (Generalized Gibbs Inequality)

For any pmf q,
Hα(X) 6 −α′ logEXq

1/α′
α (X) (14)

with equality iff pX = q. Here qα is the escort distribution of q, defined by
qα(x) = qα(x)/‖q‖αα.

Since 1
α + 1

α′ = 1 we have α
α′ = α− 1. The distribution in Gibbs inequality depends on

the relative position of α with respect to 1.
Now depending on the sign of α′,

Kα(X) ≶ EXq
1/α′
α (X)

which shows that it extends to the conditional setting.
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α ∈ (0,1)

1. We need q
α
α′ (x) = qα−1(x) = axρ + b.

2. q(x) = (axρ + b)
1

α−1 = (axρ + b)α
′−1.

3. Since α− 1 < 0 we want axρ + b to increase with x that is a > 0 and since
axρ + b > 0, a > −b.

4. axρ + b = a(xρ − 1) + a+ b

5. q(x) = (a+ b)α
′−1( a

a+b(x
ρ − 1) + 1)α

′−1

6. q(x) = cγ(γ(xρ − 1) + 1)α
′−1 where γ ∈ [0,∞).

7. Gρ(X|Y) = 1+ γ−1
( ∑M

i=1(1−γ+γiρ)α
′∑M

i=1(1−γ+γiρ)α′−1 − 1
)

Hα(X|Y) = α′ log
∑M

i=1(1− γ + γiρ)α
′−1 + (1− α′) log

∑M
i=1(1− γ + γiρ)α

′
.

(15)
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α ∈ (0,1)
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3. Since α− 1 < 0 we want axρ + b to increase with x that is a > 0 and since
axρ + b > 0, a > −b.
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α > 1

1. We need q
α
α′ (x) = qα−1(x) = axρ + b.

2. q(x) = (axρ + b)
1

α−1 = (axρ + b)α
′−1.

3. Since α− 1 > 0 we want axρ + b to decrease with x that is b < 0 and a > −b.
4. q(x) = bα

′−1(abx
ρ + 1)α

′−1
+

5. q(x) = cγ(1− γxρ)α
′−1

+ where γ ∈ (0,1) and x+ = max(x,0).

6. Gρ(X|Y) = γ−1
(
1−

∑M
i=1(1−γiρ)α

′
+∑M

i=1(1−γiρ)α
′−1

+

)
Hα(X|Y) = α′ log

∑M
i=1(1− γiρ)α

′−1
+ + (1− α′) log

∑M
i=1(1− γiρ)α

′
+

(16)
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General Statement

When 0 < α < 1, the optimal lower bound of Gρ(X|Y) vs. Hα(X|Y) is given by the
parametric curve for γ ∈ (0,∞) :Gρ(X|Y) = 1+ γ−1

( ∑M
i=1(1−γ+γiρ)α

′∑M
i=1(1−γ+γiρ)α′−1 − 1

)
Hα(X|Y) = α′ log

∑M
i=1(1− γ + γiρ)α

′−1 + (1− α′) log
∑M

i=1(1− γ + γiρ)α
′
.

(17)

When α > 1, the optimal lower bound of Gρ(X|Y) in terms of Hα(X|Y) is given by the
parametric curve for γ ∈ (0,1) :Gρ(X|Y) = γ−1

(
1−

∑M
i=1(1−γiρ)α

′
+∑M

i=1(1−γiρ)α
′−1

+

)
Hα(X|Y) = α′ log

∑M
i=1(1− γiρ)α

′−1
+ + (1− α′) log

∑M
i=1(1− γiρ)α

′
+

. (18)
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As an important consequence, an explicit first-order upper bound can be obtained,
which is easy to compute for any adversary observing small leakages.

Corollary

As Iα(K; Y) → 0, up to first order,

Gρ(K)− Gρ(K|Y) .

√
2(G2ρ(M)− G2

ρ(M))

α

√
Iα(K; Y)

log e
. (19)

In particular, Gρ(K)− Gρ(K|Y) .
√

M2−1
6α

√
I(K;Y)
log e .

Démonstration.

Taylor expansion about γ = 0 gives{
Gρ(K)− Gρ(K|Y) = γ|1− α′|(G2ρ(M)− G2

ρ(M)) + O(γ2)
Iα(K;Y)
log e = |α′(1−α′)|

2 (G2ρ(M)−G2
ρ(M))γ2 + O(γ3)

(20)
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Figure – Validation of the Corollary
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Figure – Hamming weight of a byte leak perturabated by additive Gaussian noise.
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Figure – Hamming Weight of each bytes leak perturbated by addtive Gaussian noise. Increasing
number of measurents and fixed noise level.
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Random Probing Model

If K → Y = (Z, fZ(K)) where {fz|z ∈ Z} is a given set of function then we can obtain an
equality in terms of guessing advantage given by :

G(K)− G(K|Y) = M

2
(1− exp(−I 1

2
(K; Y))) ≈ M

2
I 1
2
(K; Y). (21)
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What Can Information Guess?
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