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Distributed Hypothesis Testing: Cooperation
and Concurrent Detection
Pierre Escamilla, Michèle Wigger, and Abdellatif Zaidi

Abstract—A single-sensor two-detectors system is considered
where the sensor communicates with both detectors and
Detector 1 communicates with Detector 2, all over noise-free
rate-limited links. The sensor and both detectors observe
discrete memoryless source sequences whose joint proba-
bility mass function depends on a binary hypothesis. The
goal at each detector is to guess the binary hypothesis in a
way that, for increasing observation lengths, the probability
of error under one of the hypotheses decays to zero with
largest possible exponential decay, whereas the probability
of error under the other hypothesis can decay to zero or to a
small positive number arbitrarily slow. For the setting with
positive communication rates from the sensor to the detectors
and when both detectors are interested in maximizing the
error exponent under the same hypothesis, we characterize
the set of all possible exponents in a special case of testing
against independence. In this case the cooperation link
allows Detector 2 to increase its Type-II error exponent
by an amount that is equal to the exponent attained at
Detector 1. We also provide a general inner bound on the set
of achievable error exponents that shows a tradeoff between
the exponents at the two detectors in most cases. When the
two detectors aim at maximizing the error exponent under
different hypotheses and the distribution at the Sensor is
different under the two hypotheses, then we show that such
a tradeoff does not exist. We propose a general scheme that
allows each detector to attain the same exponent as if it was
the only detector in the system. For the setting with zero-
rate communication on both links, we exactly characterize
the set of possible exponents and the gain brought up by
cooperation, in function of the number of bits that are sent
over the two links. Notice that, for this setting, tradeoffs
between the exponents achieved at the two detectors arise
only in few particular cases. In all other cases, each detector
achieves the same performance as if it were the only detector
in the system.

I. Introduction

Problems of distributed hypothesis testing are strongly
rooted in both statistics and information theory. In partic-
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Fig. 1. A Heegard-Berger type source coding model with unidirectional
conferencing for multiterminal hypothesis testing.

ular, [1]–[3] considered a distributed hypothesis testing
problem where a single sensor communicates with a
single detector over a rate-limited but noise-free link.
The goal of [1]–[3] was to determine the largest Type-II
error exponent under a fixed(small) bound on the Type-I
error exponent. Ahlswede and Csiszár in [1] presented
a coding and testing scheme and the corresponding
Type-II error exponent for this problem and established
optimality of the exponent for the special case of test-
ing against independence, i.e., when the distribution of
the observations under the alternate hypothesis equals
the product of the marginals distributions under the
null hypothesis. For the general case, the scheme was
subsequently improved by Han [2] and by Shimokawa,
Han and Amari [3]. The latter scheme was shown to
achieve the optimal exponent in the special case of testing
against conditional independence by Rahman and Wagner
[4]. This line of work has also been extended to networks
with multiple sensors [2], [4]–[8], multiple detectors [9],
interactive terminals [10]–[12], multi-hop networks [5],
[13]–[16], noisy channels [17], [18], and scenarios with
privacy constraints [19]–[22].
In this paper, we consider the single-sensor two-
detectors system shown in Fig. 1 where Detector 1, after
receiving a message from the Sensor, can send a message
to Detector 2. This additional message allows the detec-
tors to collaborate in their decision and one of the goals
of the paper is to quantify the increase in the Type-II
error exponents that is enabled by this collaboration. We
show that even a single bit of communication between
the detectors (the tentative guess about the hypothesis
by the transmitting detector) can provide a large gain in
the Type-II error exponent of the detector receiving the
bit.
We consider two versions of binary hypothesis testing. In
the first version, termed coherent detection, both detectors
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are interested in maximizing the error exponent under
the same hypothesis. In the second version, termed con-
current detection, one of the detectors wishes to maximize
the error exponent under hypothesisH = 0 and the other
under H = 1. In other words, in this second version the
two detectors have concurring goals.
Decentralized detection systems are of major importance
for various applications such as autonomous vehicles
and complex monitoring systems. These systems use
multiple detection pipelines that base their decisions
on common or individual observations and often these
decisions are combined at one or several central detec-
tors. Our scenario can model both multiple detection
pipelines and, through the cooperation link, the process
of fusioning various decisions.
The works most closely related to the present manuscript
are [9], [14], [15], [23]. The former two, [9], [14], fully
characterize the set of possible Type-II error exponents
in the special case of testing against independence and
testing against conditional independence for a scenario
with a single sensor and two non-cooperative detectors.
Notice that the presence of a cooperation link between
the detectors appears to make the problem of identi-
fying the optimal Type-II exponents significantly more
difficult. For example, without cooperation, the set of
achievable exponents for testing against independence
is achievable with a simple scheme that does not rely on
binning. With cooperation, we managed to identify the
optimal exponents only under the additional assumption
that the observations at the two detectors are indepen-
dent under both hypotheses and the cooperation rate is
zero. In the general case, binning is necessary, and the
optimal exponent is yet to be found. Notable exceptions
where exponents achieved with binning are shown to be
optimal can be found in [4], [6], [7], [17], [18], [24]–[26].
In [23] Zhao and Lai studied our setup in Figure 1 but
where Detector 1 does not take any decision (i.e., Detec-
tor 1 does not produce Ĥ1). As a consequence, in [23],
there is no distinction between concurrent or coherent
detection. The work [23] identifies the optimal Type-II
error exponent for testing against independence when
the joint distribution of the observations at the Sensor
and Detector 1 is the same under both hypotheses (i.e.
(X,Y1) has the same distribution under both hypotheses
H = 0 and H = 1). This special case is only of limited
interest in our scenario because under both coherent
and concurrent detection Detector 1 cannot achieve any
positive Type-II error exponent. We will therefore con-
sider a different testing against independence scenario
where under the alternate hypothesis the distribution
of the observations at the three terminals is given by
the product of the three marginal distributions under
the null hypothesis. Zhao and Lai also presented a
lower bound on the optimal Type-II error exponent for
arbitrary distributions under the two hypotheses. The
lower bound is based on a simple scheme that does not
use binning.
The third scenario closely related to ours is the multi-

hop single-relay network considered in [15]. It differs
from the setup of Figure 1 in that Detector 2 does
not observe the message M1 sent by the Sensor. If one
wishes that information propagates from the Sensor to
Detector 2, then in the multi-hop setup, Detector 1 has
to forward this information. The work in [15] presented
general inner bounds on the optimal exponents region
of the multi-hop setup based on schemes that employ
binning. Only coherent detection was considered where
both detectors aim at maximizing the error exponents
under the same hypothesis. The proposed schemes in
[15] apply also to our setup, except that there is no need
for Detector 1 to relay the information from the Sensor
to Detector 2, because Detector 2 directly observes the
Sensor’s message M1. We present the performance of this
modified scheme for the simpler version of [15] without
binning. The use of binning leads to exponents whose
expressions are rather involved; and, for this reason, we
sometimes omit them for simplicity and because this is
not the main focus of this paper.
The results discussed so far all pertain to positive-
rate communication scenarios. Another important line
of work assumes zero-rate communication. The single-
sensor single-detector version of this problem was ad-
dressed in [2] and [27], where Han identified the op-
timal exponent for the case where only a single bit
is communicated and Shalaby and Papamarcou proved
that this exponent is also optimal when communication
comprises a sublinear number of bits. The finite length
regime was investigated in [28]. The optimal Type-II
error exponents of zero-rate hypothesis testing in an
interactive setup and in a cascaded-encoders network
were presented respectively in [29] and [13], [16], [23],
[30]. In particular, in our previous work [16], we proved
such a result for the single-sensor two-detectors setup.
In the current manuscript we extend this result to a
cooperative setup.

A. Main Contributions and Organization

In this paper we consider both scenarios of coherent
detection and concurrent detection on the single-sensor
two-detectors system in Figure 1. The exponents re-
gion can significantly differ under the two, in particular
when based on its own observation the sensor can
guess the hypothesis (with probability of error < 1/2),
communicate this guess to the detectors, and adapt the
communication to this guess. With this general strategy,
the exponents region is a rectangle under concurrent
detection, which means that each detector’s exponent
is the same as in a setup where the other detector
is not present. Under coherent detection or concurrent
detection when the sensor observations have the same
marginal distribution under both hypotheses, the expo-
nents region achieved by our scheme shows a trade-
off between the two exponents. In particular, we can
show that the proposed scheme is optimal for a case of
testing against independence under coherent detection
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and when the cooperation message from Detector 1 to
Detector 2 has zero rate. This shows that the described
tradeoff of the two exponents is not an artifact of our
scheme but intrinsic to the problem – it reflects the fact
that the message sent by the Sensor has to serve both
detectors simulatenously.
We also consider the case with fixed-length commu-
nication. Under coherent detection or under concur-
rent detection when the sensor can send more than
a single bit or the sensor observations have the same
marginal distributions under the two hypotheses, the
exponents region is a rectangle. In these cases, each
detector achieves the same exponent as if it were the
only one in the system. In contrast, a tradeoff arises
under concurrent detection if the sensor can distinguish
the two hypotheses but can only send a single bit to
the detectors. A comparison with the optimal exponents
regions without cooperation [16], allows us to exactly
quantify the benefits of detector cooperation in this setup
with fixed communication alphabets’ sizes. All results
summarized in this paragraph remain valid when the
alphabets’ sizes are not fixed but grow sublinearly in the
length of the observed sequences. They also generalize
to an arbitrary number of hypotheses. Whereas for two
detectors a tradeoff between the exponents arises only
when the sensor sends a single bit to the detectors, in a
multi-hypothesis testing scenario with H ≥ 3 hypotheses
such a trade-off can arise whenever the number of
communicated bits does not exceed log2 H.
The following two tables summarize our main results
for the setup with positive communication rates and for
fixed communication alphabets:

Positive Rate
Concurrent Detection Inner Bound: Prop. 4–5

in Subsec. III-A.
Coherent Detection Inner Bound: Prop. 6.

in Subsec III-B.

and

Fixed Alphabets
Concurrent Detection Optimal Region: Prop. 9–10

and Thm. 11 in Subsec. IV-A.
Coherent Detection Optimal Region: Prop. 12

in Sec. IV-A.

In addition to these main results, the paper also presents
a general characterization of the optimal exponents re-
gion E(R1,R2) in terms of the optimal exponents of
previously studied hypothesis testing problems in the
special case of concurrent detection and when PX , P̄X
(Theorem 3 in Section III). Moreover, a computable
single-letter characterization of the optimal exponents
region E(R1,R2) under coherent detection is given for
a case of testing against independence and with zero
cooperation rate (Theorem 7 in Subsection III-B). Our
result shows that Detector 2 achieves a Type-II error
exponent which is given by the summation of the Type-

II exponent of Detector 1 with its own Type-II error
exponent that it achieves without cooperation.
The remainder of this paper is organized as follows.
Section II describes the system model. Sections III and
Section IV describe our main results: Section III focuses
on communications of positive rates and Section IV
on fixed communication alphabets. Technical proofs are
referred to appendices. The paper is concluded in Sec-
tion V.

B. Notation
Throughout, we use the following notation. Sets are
denoted by script symbols, e.g., X, random variables by
capital letters and their realizations by lower case letters,
e.g., X and x. The n-fold product of a set X is abbreviated
as Xn, and a random or deterministic indexed n-tuple
X1, . . . ,Xn or x1, . . . , xn is abbreviated as Xn or as xn. We
typically write PX or P̄X for the probability mass function
(pmf) of a random variable. The set of all pmfs over an
alphabet X is denoted P(X).
The type of a tuple xn (i.e., its empirical distribution)
[31] is denoted tp(xn). We write Pn(X) for the set of all
possible types of n-length sequences over an alphabet
X. For µ > 0, the set of sequences xn that are µ-typical
with respect to the probability mass function (pmf) PX
is denoted T n

µ (PX) [31].
For random variables X and X̄ over the same alphabet
X with pmfs PX and P̄X satisfying PX � P̄X (i.e., for
every x0 ∈ X, if P̄X(x0) = 0 then also PX(x0) = 0), both
D(PX‖P̄X) and D(X‖X̄) denote the Kullback-Leiber diver-
gence between X and X̄. Finally, H(X) and I(X; Y) denote
entropy and mutual information of random variables X
and Y. When the joint pmf of these random variables is
not clear from the context, we write IP(X; Y) to indicate
that mutual information is meant with respect to the joint
pmf P.

II. Formal Problem Statement

Consider a three-terminal problem with a Sensor observ-
ing the sequence Xn, a Detector 1 observing Yn

1 , and
a Detector 2 observing Yn

2 . The joint pmf of the tuple
(Xn,Yn

1 ,Y
n
2) depends on one of two hypotheses. Under

hypothesis

H = 0: {(Xt,Y1,t,Y2,t)}nt=1 i.i.d. PXY1Y2 (1)

and under hypothesis

H = 1: {(Xt,Y1,t,Y2,t)}nt=1 i.i.d. P̄XY1Y2 (2)

The Sensor applies an encoding function1

φ1,n : Xn
→M1 := {0, 1, . . . ,W1,n − 1} (3)

1For convenience, we sometimes also write M1 = (a, b) for positive
integers a, b. We then assume that the numbers satisfy 0 ≤ a ≤ A−1 and
0 ≤ b ≤ B − 1 for some positive integers A and B satisfying AB = W1,n
and there is thus a bijective mapping between the pairs (a, b) and the
values {0, 1, . . . ,W1,n}. The writing M1 = (a, b) is then meant as a short-
hand notation for M1 = aB + b. The values of A and B will be clear
from the context.
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to its observed source sequence Xn and sends the result-
ing index

M1 = φ1,n(Xn) (4)

to both detectors. Detector 1 then applies two functions
to the pair (M1,Yn

1): an encoding function

φ2,n : M1 ×Y
n
1 →M2 := {0, 1, . . . ,W2,n − 1}, (5)

and a decision function

ψ1,n : M1 ×Y
n
1 → {0, 1}. (6)

It sends the index2

M2 = φ2,n(M1,Yn
1) (7)

to Detector 2, and decides on the hypothesis

Ĥ1 := ψ1,n(M1,Yn
1). (8)

Detector 2 applies a decision function

ψ2,n : M1 ×M2 ×Y
n
2 → {0, 1} (9)

to the triple (M1,M2,Yn
2) to produce the decision

Ĥ2 := ψ2,n(M1,M2,Yn
2). (10)

Both Detectors are required to have vanishing proba-
bilities of error under both hypotheses. Moreover, for
Detector 2, we require that the probability of error under
H = 1 decays exponentially fast with the largest possible
exponent. For Detector 1, we consider two scenarios:
coherent detection and concurrent detection. Under coherent
detection, Detector 1 wishes to maximize the exponential
decay of the probability of error under H = 1. Under
concurrent detection, Detector 1 wishes to maximize
the exponential decay of the probability of error under
H = 0. In an unifying manner, we define the following
error probabilities

α1,n := Pr
{
Ĥ1 = h̄1

∣∣∣H = h1

}
, (11)

β1,n := Pr
{
Ĥ1 = h1

∣∣∣H = h̄1

}
, (12)

α2,n := Pr
{
Ĥ2 = 1

∣∣∣H = 0
}
, (13)

β2,n := Pr
{
Ĥ2 = 0

∣∣∣H = 1
}
, (14)

where under coherent detection h1 = 0 and under
concurrent detection h1 = 1 and in both cases h̄1 := 1−h1.
Definition 1 (Achievability under Rate-Constraints): Given
h1 ∈ {0, 1} and rates R1,R2 ≥ 0, an error-exponents pair
(θ1, θ2) is said achievable if for all blocklengths n there
exist functions φ1,n, φ2,n, ψ1,n and ψ2,n as in (3), (5), (6),
and (9) so that the following limits hold:

lim
n→∞

α1,n = 0, lim
n→∞

α2,n = 0, (15)

θ1 ≤ lim
n→∞
−

1
n

log β1,n, θ2≤ lim
n→∞
−

1
n

log β2,n, (16)

2Similarly to M1 we sometimes write M2 = (a, b) for convenience.
The meaning is the same as for M1 and is described in the preceeding
footnote.

and

lim
n→∞

1
n

log W1,n ≤ R1, lim
n→∞

1
n

log W2,n≤ R2. (17)

Definition 2 (Error-Exponents Region under Rate-
Constraints): For any h1 ∈ {0, 1} and rates R1,R2 ≥ 0
the closure of the set of all achievable exponent pairs
(θ1, θ2) is called the error-exponents region E(R1,R2).

When both rates are zero,

R1 = R2 = 0, (18)

we are also interested in finding the exponents region
with fixed communication alphabets of sizes:

W1,n = W1 ≥ 2, (19a)
W2,n = W2 ≥ 2. (19b)

Definition 3 (Achievability with Fixed Communication Al-
phabets): For any h1 ∈ {0, 1}, (ε1, ε2) ∈ (0, 1)2 and commu-
nication alphabet sizes W1,W2 ≥ 0, an error-exponents
pair (θ1, θ2) is said achievable if for all blocklengths n
there exist functions φ1,n, φ2,n, ψ1,n and ψ2,n as in (3), (5),
(6), and (9) so that

lim
n→∞

α1,n ≤ ε1, lim
n→∞

α2,n ≤ ε2, (20)

and (16) and (19) hold.
Definition 4 (Error-Exponents Region for Fixed Communi-
cation Alphabets): For fixed h1 ∈ {0, 1}, (ε1, ε2) ∈ (0, 1)2 and
communication alphabet sizes W1,W2 ≥ 0, the closure of
the set of all achievable exponent pairs (θ1, θ2) is called
the error-exponents region E0(W1,W2, ε1, ε2).
In the setup with rate-constraints we require that the
type-I error probabilities vanish asymptotically, whereas
in the setup with fixed communication alphabets their
limits only need to be bounded by the given positive
values ε1, ε2 > 0. All the achievability results in this
paper hold with vanishing type-I error probabilities. But
the converse results for the positive-rate setup are only
proved under the assumption of vanishing type-I error
probabilities, and are thus weak converses. In contrast,
the converse results for fixed communication alphabets
hold also when the type-I error probabilities tend to
the positive numbers ε1, ε2 ∈ (0, 1) and are thus strong
converses.
In this article we will pay particular attention to the
testing against independence scenario under coherent
detection, where h1 = 0 and

P̄XY1Y2 = PXPY1Y2 . (21)

Remark 1: In some special cases, the described setup
degenerates and the error-exponents region is the same
as in a setup without cooperation or in a setup with a
single detector.
For example, when the Markov chain X−
−Y2−
−Y1 holds
under both hypotheses with identical law PY1 |Y2 = P̄Y1 |Y2 :

PXY1Y2=PXY2 PY1 |Y2 , (22a)
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P̄XY1Y2=P̄XY2 PY1 |Y2 , (22b)

then the exponents regions E(R1,R2) and
E0(W1,W2, ε1, ε2) are the same as without cooperation.
On the other hand, when the Markov chain X−
−Y1−
−Y2
holds under both hypotheses with identical law
PY2 |Y1 = P̄Y2 |Y1 , i.e.,

PXY1Y2 = PXY1 PY2 |Y1 , (23a)
P̄XY1Y2 = P̄XY1 PY2 |Y1 , (23b)

the exponents regions E(R1,R2) and E0(W1,W2, ε1, ε2)
correspond to the exponents region of a centralized setup
where a single detector observes both Yn

1 and Yn
2 and

takes both decisions Ĥ1 and Ĥ2.
When the communication rates R1,R2 ≥ 0 are sufficiently
large, R1 ≥ H(X) and R2 ≥ H(Y1|X) where entropies are
meant according to the pmf PXY1 under H = 0, then the
exponents region E(R1,R2) coincides with the exponents
region of a fully centralized setup where a single detector
observes all Xn,Yn

1 , and Yn
2 and takes both decisions Ĥ1

and Ĥ2.

A. Related previous results
The model considered in this paper is closely related to
the models in [23] and [15]. The main difference of the
model studied here to [23] is that in [23] only Detector 2
guesses the binary hypothesis but not Detector 1. In
[23] there is thus in particular no distinction between
concurrent and coherent detection. The main difference
of the model studied here to [15] is that in [15] message
M1 is only observed at Detector 1 but not Detector 2.
Moreover, in [15] only coherent detection is considered
but not concurrent detection.
The projection of the region E(R1,R2) onto the θ1-axis
characterizes the set of all achievable exponents in a
point-to-point (P2P) hypothesis testing problem [2], [3]
consisting only of the Sensor and Detector 1. We will
denote this largest possible error exponent θ?P2P(R1) in
the case of coherent detection and θ?P2P,Ex(R1) in the case
of concurrent detection. So, if h1 = 0 we define

θ?P2P(R1) := max{θ1 : (θ1, θ2) ∈ E(R1,R2) for some θ2 ≥ 0}
(24)

and if h1 = 1 we define

θ?P2P,Ex(R1) := max{θ1 : (θ1, θ2) ∈ E(R1,R2) for some θ2 ≥ 0}.
(25)

The projection of the region E(R1,R2) onto the θ2-
axis characterizes the set of all achievable exponents in
the cascaded-encoders (CE) hypothesis testing problem
as considered in [23]. (This holds for both coherent
and concurrent detection.) We denote this exponent by
θ?CE(R1,R2):

θ?CE(R1,R2)
:= max{θ2 : (θ1, θ2) ∈ E(R1,R2) for some θ1 ≥ 0}. (26)

The exponents θ?P2P(R1), θ?P2P,Ex(R1), and θ?CE(R1,R2) are
known only in some special cases. The best known lower

bound to θ?P2P(R1) was proposed by Shimokawa-Han-
Amari [3]. By swapping PXY1 and P̄XY1 their result also
provides a lower bound to θ?P2P,Ex(R1), which we present
next.
Theorem 1 (Obtained from Theorem 1 in [3]):

θSHA,Ex(R1) ≤ θ?P2P,Ex(R1), (27)

where

θSHA,Ex(R1) := max
P̄U1 |X : R1≥IP̄(U1;X|Y1)

min{η1, η2}, (28)

and the mutual information IP̄(U1; X|Y1) is computed
according to the joint pmf P̄U1XY1 := P̄U1 |XP̄XY1 and where

η1 := min
P̃U1XY1 :

P̃U1X=P̄U1X

P̃U1Y1 =P̄U1Y1

D(P̃U1XY1‖P̄U1 |XPXY1 ), (29)

and if R1 ≥ IP̄(U1; X) then η2 := ∞ and otherwise

η2 := min
P̃U1XY1 :

P̃U1X=P̄U1X

P̃Y1 =P̄Y1
HP̄(U1 |Y1)≤HP̃(U1 |Y1)

D(P̃U1XY1‖P̄U1 |XPXY1 ) + R1 − IP̄(U1; X|Y1).

(30)

Zhao and Lai proposed [23] the following lower bound
θZL(R1,R2) for the optimal exponent θ?CE(R1,R2). It can be
improved with binning. This would however lead to an
expression with more than 10 competing exponents and
is omitted for simplicity. For given rates R1 ≥ 0 and R2 ≥

0, define the following set of auxiliary random variables:

S (R1,R2) :=

(U,V) :

U −
− X −
− (Y1,Y2)
V −
− (Y1,U) −
− (Y2,X)

I (U; X) ≤ R1
I (V; Y1|U) ≤ R2

 .
(31)

Further, define for each (U,V) ∈ S (R1,R2), the set

L2 (UV) :=

P̃UVXY1Y2 :
PŨX̃ = PUX

PŨṼỸ1
= PUVY1

PŨṼỸ2
= PUVY2

 , (32)

Theorem 2 (Obtained from Theorem 5 in [23]):

θZL(R1,R2) ≤ θ?CE(R1,R2), (33)

where

θZL(R1,R2)

:= max
(U,V)∈S(R1,R2)

min
P̃UVXY1Y2∈L2(UV)

D
(
P̃UVXY1Y2 ||PV|Y1UPU|XP̄XY1Y2

)
.

(34)

III. Results for positive rates R1 > 0

In this section, we assume that R1 >0, whereas the coop-
eration rate R2 is 0 or larger. Our results in this section
show that the Type-II error exponents is largest under
concurrent detection and when PX , P̄X, in which case
the exponents region is a rectangle and each detector
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can achieve the optimal exponent as if it was the only
detector in the system. The reason is that in this case,
the Sensor can determine with vanishing probability of
error whether H = 0 or H = 1, and as a consequence it
can adapt its coding scheme to the detected hypothesis
and to the detector that wishes to maximize its error
exponent under this hypothesis. This strategy is not
possible or not useful when PX = P̄X or under coherent
detection, and our achievable Type-II exponents regions
show a tradeoff between the two exponents, because
the common communication link from the Sensor has
to serve both detectors simultaneously.

A. Concurrent Detection
We first consider concurrent detection. We have the
following general result when PX , P̄X.
Theorem 3: If

h1 = 1 and PX , P̄X, (35)

then the exponents region E(R1,R2) is the set of all non-
negative pairs (θ1, θ2) that satisfy

θ1 ≤ θ
?
P2P,Ex(R1), (36)

θ2 ≤ θ
?
CE(R1,R2), (37)

where recall that θ?P2P,Ex(R1) is the optimal exponent
in the point-to-point hypothesis testing setup in [2],
[3] including only the Sensor and Detector 1 but with
exchanged roles for the two distributions PXY1 and P̄XY1

(or equivalently for the hypotheses H0 and H1), and
recall that θ?CE(R1,R2) is the optimal exponent in the CE
hypothesis testing setup introduced by Zhao and Lai
[23].
Proof: The converse follows because the exponent at a
given detector can only decrease if one imposes an ad-
ditional constraint on the decision performed by another
detector.
Achievability follows from the following scheme. Fix a
positive number µ > 0 sufficiently small such that the
sets T n

µ (PX) and T n
µ (P̄X) do not intersect. The Sensor

checks whether
Xn
∈ T

n
µ (P̄X). (38)

If this is the case, it applies an optimal encoding for
the P2P hypothesis testing problem that includes only
the Sensor and Detector 1 and minimizes Detector 1’s
error exponent under hypothesis H = 0. Letting M̃P2P
denote the message produced by this optimal encoding,
the Sensor sends the message M1 = [1, M̃P2P] to both
detectors. After receiving a message of this form, Detec-
tor 1 decides as in an optimal P2P scheme that minimizes
the error exponent under H = 0. It does not send any
message to Detector 2. Detector 2 produces Ĥ2 = 1.
If the test in (38) fails, the Sensor checks whether

Xn
∈ T

n
µ (PX). (39)

If this condition is fulfilled, all three terminals act as in an
optimal scheme for the Zhao-Lai CE hypothesis testing

problem [23]. (Recall that the Zhao-Lai setup includes
all three terminals and their communication links, but
Detector 1 does not produce a decision.) Letting M̃CE
denote the message produced by this optimal CE en-
coding, the Sensor sends the message M1 = [2, M̃CE],
where the “2” indicates to both detectors to act as in
the mentioned optimal CE hypothesis testing scheme.
Detector 1 produces the decision Ĥ1 = 0. Detector 2 takes
the same decisionH?

2 as the only detector in the optimal
CE scheme.
If both (38) and (39) are violated, the Sensor sends M1 = 0
and the two detectors produce Ĥ1 = 0 and Ĥ2 = 1.
We analyze the described coding scheme. The proba-
bility of Type-I error at Detector 2 (so under H = 0)
satisfies:

α2,n = Pr
[
Ĥ2 = 1

∣∣∣H = 0
]

= Pr
[
Ĥ

?
2 = 1 or Xn < Tµ(PX)

∣∣∣H = 0
]

≤ Pr
[
Ĥ

?
2 = 1

∣∣∣Ĥ2 = 0
]

+ Pr
[
Xn<Tµ(PX)

∣∣∣Ĥ2 = 0
]

= α?2,n + εn, (40)

where α?2,n denotes the Type-I error probability in the
optimal CE hypothesis testing scheme and εn → 0 when
n→∞. Since lim

n→∞
α?2,n = 0, we conclude that lim

n→∞
α2,n = 0.

The probability of Type-II error at Detector 2 satisfies:

β2,n = Pr
[
Ĥ2 = 0

∣∣∣H = 1
]

= Pr
[
Ĥ

?
2 = 0 and Xn

∈ Tµ(PX)
∣∣∣H = 1

]
≤ Pr

[
Ĥ

?
2 = 0

∣∣∣H = 1
]

= β?2,n, (41)

where β?2,n is the Type-II error probability of the optimal
CE scheme. This proves achievablity of all exponents
θ2 ≤ θ?CE(R1,R2).
Achievability of all exponents θ1 ≤ θ?P2P(R1) can be
proved in a similar way.
The exponents region in Theorem 3 is rectangular and
both exponents can be maximized simultaneously with-
out any tradeoff between the two exponents. As we will
see, this is different for the inner bounds we propose
for concurrent detection with PX = P̄X or for coherent
detection, see Propositions 5 and 6 that will follow.
Similarly to the proof of Theorem 3, it can be shown that
without cooperation, the optimal exponents region is the
set of all non-negative pairs (θ1, θ2) that satisfy

θ1 ≤ θ
?
P2P,Ex(R1), (42)

θ2 ≤ θ
?
P2P(R1). (43)

The benefit of cooperation under coherent detection and
when PX , P̄X is thus that the exponent θ2 is increased
by

θ?CE(R1,R2) − θ?P2P(R1). (44)

In spite of Theorem 3, determining the optimal ex-
ponents region E(R1,R2) explicitely remains a diffi-
cult problem because the exponents θ?P2P,Ex(R1) and
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θ?CE(R1,R2) are in general unknown. By Theorem 3 how-
ever all explicit lower bounds to these two exponents
directly lead to an explicit inner bound on the exponents
region E(R1,R2). In the following proposition we present
such an explicit inner bound using the lower bound
on θ?P2P,Ex(R1) in Theorem 1 and the lower bound on
θ?CE(R1,R2) obtained in [23, Theorem 5].
Corollary 4 (Concurrent Detection and PX , P̄X): If

h1 = 1 and PX , P̄X,

then the exponents region E(R1,R2) contains all nonnega-
tive pairs (θ1, θ2) that for some (U,V) ∈ S (R1,R2) satisfy:

θ1 ≤ θSHA,Ex(R1), (45)
θ2 ≤ θZL(R1,R2). (46)

We next consider concurrent detection but where PX =
P̄X. An inner bound on the achievable error exponent
region can be obtained by using a scheme similar to
the one described in [23, Section III-A] where Detector 1
uses the information sent by the encoder to produce a
typicality test under H = 1.
Proposition 5 (Concurrent Detection with PX = P̄X): If

h1 = 1 and PX = P̄X,

then the exponents region E(R1,R2) contains all nonnega-
tive pairs (θ1, θ2) that for some (U,V) ∈ S (R1,R2) satisfy:

θ1 ≤ min
P̃UXY1 :

P̃UX=P̄UX
P̃UY1 =P̄UY1

D
(
P̃UXY1 ||PUXY1

)
, (47a)

θ2 ≤ min
P̃UVXY1Y2∈L2(UV)

D
(
P̃UVXY1Y2 ||PV|Y1UPU|XP̄XY1Y2

)
, (47b)

where P̄UX and P̄UY1 are the marginals of the joint pmf
PU|XP̄XY1 .
Proof: Similar to the analysis in [23, Theorem 5] and
omitted.
In the proposition, U is a random variable that represents
a common description of the source Xn which is sent
by the Sensor to both detectors, and V is the random
variable related to the description of Yn

1 that is sent
by Detector 1 to Detector 2. This latter description is
superimposed on the common description U.
Notice that while in Corollary 4 each of the two expo-
nents θ1 and θ2 is optimized independently over the
auxiliary parameters (conditional pmfs and rates), this
is not the case in above Proposition 5. In this latter
proposition, generally a tradeoff occurs between the two
exponents.

B. Coherent Detection

We finally consider coherent detection h1 = 0. The
following achievable error exponents region is obtained
by modifying the scheme in [23, Section III-A] so that
Detector 1 uses the information sent by the Sensor to
guess the hypothesis. Specificallly, it declares H = 0 if

obtained codeword and its own source Yn
1 are jointly

typical according to PUY1 .
Proposition 6 (Coherent Detection): If

h1 = 0,

the exponents region E(R1,R2) contains all nonnegative
pairs (θ1, θ2) that satisfy:

θ1 ≤ min
P̃UXY1 :

P̃UX=PUX
P̃UY1 =PUY1

D(P̃UXY1‖PU|XP̄XY1 ), (48a)

θ2 ≤ min
P̃UVXY1Y2∈L2(UV)

D
(
P̃UVXY1Y2 ||PV|Y1UPU|XP̄XY1Y2

)
. (48b)

for some (U,V) ∈ S (R1,R2) (see (31) and (32)).
Proof: Similar to the analysis in [23] and omitted.
As in the previous Proposition 5, U and V relate to the
superpositioned compression codewords sent from the
Sensor to both detectors and from Detector 1 to Detector
2. The difference between the two propositions are the
constraints in the minimizations describing θ1, see (47a)
and (48a). The reason is that under concurrent detection,
Detector 1 aims to maximize the error exponent under
H = 0 and therefore checks typicality with respect to the
law under H = 1, whereas under coherent detection, it
aims to maximize the error exponent under H = 1 and
therefore checks typicality with respect to the law under
H = 0. If the checks fail, Detector 1 declares H = 0
under concurrent detection and H = 1 under coherent
detection.
We investigate the special case of “testing-against-
independence” scenario under coherent detection,
h1 = 0, where

PXY1Y2 = PX|Y1Y2 PY1 PY2 , (49)
P̄XY1Y2 = PXPY1 PY2 . (50)

This setup differs from the testing-against independence
scenario in [23] where PXY1 = P̄XY1 and Detector 1 cannot
obtain a positive error exponent.
We assume a cooperation rate R2 = 0, which means that
Detector 1 can send a message M2 to Detector 2 that is
described by a sublinear number of bits.
Theorem 7 (Testing Against Independence): Assume h1 = 0
and (49). Then, E(R1, 0) is the set of all nonnegative
exponent pairs (θ1, θ2) for which

θ1 ≤ I (U; Y1) , (51a)
θ2 ≤ I (U; Y1) + I (U; Y2) , (51b)

for some U satisfying the Markov chain U−
−X−
−(Y1,Y2)
and the rate constraint R1 ≥ I(U; X).
Proof: The achievability follows by specializing and eval-
uating Proposition 6 for this setup. In particular no bin-
ning is required. The converse is proved in Appendix A.

Lemma 8 (Cardinality bound): Theorem 7 remains valid if
we impose the cardinality bound |U| = |X| + 2.
Proof: Similar to the proof of [2, Theorem 3].



8

The performance in Theorem 7 is obtained by letting
the Sensor send a compression codeword Un to both
detectors and each detector checks whether the obtained
codeword and its own source observation Yn

1 or Yn
2 are

jointly typical with respect to the distribution under
H = 0. Moreover, Detector 1 sends the outcome of this
test to Detector 2. It thus sends only a single bit over the
cooperation link (even though by the definition of zero
rate it would be allowed to send a sublinear number
of bits). Detector 1 decides on H = 0 if and only if
its own test was successful, and Detector 2 decides on
H = 0 if and only if both tests were successful. Detector
1 thus achieves the exponent I(U; Y1) as in Han’s single-
detector point-to-point system, and Detector 2 achieves
the sum of the two mutual information terms I(U; Y1)
and I(U; Y2). Here, the former stems from the test at
Detector 1 (whose outcome is conveyed to Detector 2)
and the latter from the test at Detector 2.
Without cooperation, Detector 2 only achieves an ex-
ponent equal to I(U; Y2) [9]. Hence, the benefit of a
single cooperation bit from Detector 1 to Detector 2 is
quantified by I(U; Y1).
Remark 2: The problem of evaluating the rate-exponents
region in Theorem 7, and so the optimal test channel
P?U|X that exhausts this region, is generally non-convex.
In fact, even the single-detector version in which one
does not care about θ2 is non-convex. More precisely,
for that setting the problem is convex on each of the
distributions PU, PU|X and PY1 |U independently but is
not convex on the joint distribution PUXY1 . Iterative
Blahut-Arimoto type algorithms whose convergence is
guaranteed but not necessarily to the optimal solution
are possible - the reader may refer to [32] and [8] where
algorithms are developed for a similar setting. (The
results of those algorithms were observed numerically
to coincide with those of exhaustive search for all the
examples considered therein.)
In the following example 1, the source alphabets are
small. For this reason, and also accounting for the above,
we resorted to exhaustive search to obtain our numerical
results.
We illustrate the benefit of cooperation for testing against
independence at hand of the following example.
Example 1: Consider a setup with coherent detection,
h1 = 0, where X,Y1,Y2 are ternary and under H = 0:

PXY1Y2 (0, 0, 0) = 0.05 PXY1Y2 (0, 0, 1) = 0.05
PXY1Y2 (0, 1, 0) = 0.15 PXY1Y2 (0, 1, 1) = 0.083325
PXY1Y2 (1, 0, 0) = 0.05 PXY1Y2 (1, 0, 1) = 0.15
PXY1Y2 (1, 1, 0) = 0.05 PXY1Y2 (1, 1, 1) = 0.08335
PXY1Y2 (2, 0, 0) = 0.15 PXY1Y2 (2, 0, 1) = 0.05
PXY1Y2 (2, 1, 0) = 0.05 PXY1Y2 (2, 1, 1) = 0.083325

(52)

whereas under H = 1 they are independent with same
marginals as under H = 0.
Fig. 2 illustrates the error-exponents regions for vari-
ous cooperation scenarios when the communication rate
from the Sensor to the detectors is R1 = 0.1 bits. The

0.0 0.002 0.004 0.006
θ1

0.0

0.006

0.012

0.018

θ2

[15, Theorem 1] with R1 = 0.1.
Theorem 7 with (R1,R2) = (0.1, 0).
Proposition 6 with (R1,R2) = (0.1, 1).

Fig. 2. Comparison of error-exponents regions for different cooperation
rates as studied in Example 1.

dark blue curve shows the optimal exponents region if
there is no cooperation among the two detectors, see [15,
Theorem 1]. The light blue curve shows the optimal ex-
ponents region E(0.1, 0) under zero-rate cooperation, see
Theorem 7. As explained after Lemma 8, this exponent
can be achieved by sending only a single cooperation
bit indicating Detector 1’s decision. The observations of
the detectors and the sensor being independent under
the alternative hypothesis, the decision of Detector 1 is
complementary to that of Detector 2 and will strongly
enhance its decision. The light grey region shows the
achievable error-exponents region of Proposition 6 for
R2 = 1. All three regions show some trade-off between
the two exponents θ1 and θ2. Moreover, from the figure
we observe that even a single bit of cooperation can
enlarge the exponents region significantly.

IV. Results for fixed communication alphabets
We now present our results for the fixed-alphabets case,
so we assume (19) and are interested in the error-
exponents region E0(W1,W2, ε1, ε2). For simplicity, we
assume that PXY1 (x, y1) > 0 and P̄XY1Y2 (x, y1, y2) > 0 for
all (x, y1, y2) ∈ X1 ×Y2 ×Y2.3

A. Optimal Exponents Regions
The optimal exponents region E0(W1,W2, ε1, ε2) for co-

herent detection can be characterized given straight-
forward arguments developed in [27, Section IV]. We
state them here without proof. Our main finding in
this section is the exact characterization of the optimal
exponents region E0(W1,W2, ε1, ε2) under concurrent de-
tection. Examining the converse proofs, it can be verified

3These assumptions are technicalities and ensure that all terms used
in the following are finite. Similar conditions were also present in [27]
and subsequently relaxed in [33]. Our requirement ensures that all
expressions are finite. The condition that P̄XY1Y2 be positive is required
since (both under coherent and concurrent detection) Detector 2 aims
at maximizing the error exponent under hypothesis H = 1, and
the conditions that P̄XY1 and PXY1 be positive are required because
Detector 1 aims at maximizing the error exponent under any of the two
hypotheses, depending on whether we consider coherent or concurrent
detection.
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that our results remain valid when the alphabet sizes are
not fixed but grow sublinearly in the blocklength n, i.e.,

lim
n→∞

Wi,n

n
= 0, i ∈ {1, 2}. (53)

Consider first the case of concurrent detection with PX =
P̄X.
Proposition 9 (Concurrent Detection with PX = P̄X): Under
concurrent detection, i.e., h1 = 1, for all (ε1, ε2) ∈ (0, 1)2,
and when PX = P̄X, then for all values W1 ≥ 2 and W2 ≥

2, the exponents region E0(W1,W2, ε1, ε2) is the set of all
nonnegative rate pairs (θ1, θ2) satisfying

θ1 ≤ min
P̃XY1 : P̃X=PX

P̃Y1 =P̄Y1

D
(
P̃XY1‖PXY1

)
, (54)

θ2 ≤ min
P̃XY1Y2 : P̃X=PX

P̃Y1 =PY1 , P̃Y2 =PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
. (55)

Proof: The converse holds because (54) characterizes the
largest exponent that Detector 1 could achieve if it was
the only detector in the systems and (55) characterizes
the largest exponent that Detector 2 could achieve if it
was the only detector in the systems. (For this latter
setup, Detector 1 is still present but does not take a
decision.) Achievability follows by combining two in-
stances of the scheme described in [27]: one instance
aims at achieving exponent (54) at Detector 1 and one
instance aims at achieving exponent (55) at Detector 2.
(Two instances are necessary because the scheme in [27]
only considers coherent detection.) It can be shown that
with W1 = 2 and W2 = 2 it is possible to simultaneously
describe both schemes.

We now focus on the case where PX , P̄X. Here the opti-
mal exponents region depends on whether the alphabet
size W1 equals 2 or is larger. We first assume

W1 ≥ 3 and W2 ≥ 2. (56)

Proposition 10 (Concurrent Detection, PX , P̄X and W1 ≥

3): Under concurrent detection, for all (ε1, ε2) ∈ (0, 1)2 and
for all values W1 ≥ 3 and W2 ≥ 2, the exponents region
E0(W1,W2, ε1, ε2) is the set of all nonnegative rate pairs
(θ1, θ2) satisfying

θ1 ≤ min
P̃XY1 : P̃X=P̄X

P̃Y1 =P̄Y1

D
(
P̃XY1‖PXY1

)
, (57)

θ2 ≤ min
P̃XY1Y2 : P̃X=PX

P̃Y1 =PY1 , P̃Y2 =PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
. (58)

Proof: Similar to the proof of Proposition 9. The only
difference is that since PX , P̄X two different values are
required to indicate that a sequence is typical according
to PX or that it is typical according to P̄X. Therefore
W1 = 3 and W2 = 2 are required to simultaneously
describe the communication for both instances of the
scheme in [27] that target Detectors 1 and 2.

The exponents region E0(W1,W2, ε1, ε2) in these first two
Propositions 9–10 is rectangular, and each of the detec-
tors can simultaneously achieve the optimal exponent as
if it were the only detector in the system. As we see in
the following, this is not always the case.
For any real number r and function b : {0, 1} → {0, 1} that
is either

b(0) = b(1) = 0, (59)

or
b(0) = 0 and b(1) = 1, (60)

define the sets of pmfs Γb,r
0 ,Γ

b,r
1 ∈ P(X) as follows. If

b(0) = b(1) = 0, then the pmfs PX and P̄X are assigned to
Γb,r

0 and all other pmfs to Γb,r
1 . Otherwise, if b(0) = 0 and

b(1) = 1, then

π ∈ Γb,r
1

⇐⇒

min
PXY1 :
P̃X=π
P̃Y1 =P̄Y1

D
(
P̃XY1‖PXY1

)
+ r ≥ min

PXY1Y2 :
P̃X=π
P̃Y1 =PY1
P̃Y2 =PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
, (61)

and π ∈ Γb,r
0 otherwise. In particular, in this case PX ∈ Γb,r

0
and P̄X ∈ Γb,r

1 .
Theorem 11 (Concurrent Detection, PX , P̄X, and W1 = 2):
Under concurrent detection, for all (ε1, ε2) ∈ (0, 1)2 and
for all values W1 = 2 and W2 ≥ 2, the exponents region
E0(W1,W2, ε1, ε2) is the set of all non-negative rate pairs
(θ1, θ2) that satisfy

θ1 ≤ min
P̃XY1 :

P̃X∈Γ
b,r
b(1)

P̃Y1 =P̄Y1

D
(
P̃XY1‖PXY1

)
, (62)

θ2 ≤ min
P̃XY1Y2 :

P̃X∈Γ
b,r
b(0),

P̃Y1 =PY1 , P̃Y2 =PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
, (63)

for some real number r, a mapping b : {0, 1} → {0, 1} that
is either

b(0) = b(1) = 0 (64)

or
b(0) = 0 and b(1) = 1, (65)

and where the sets of pmfs Γb,r
b(0) and Γb,r

b(1) are defined
ahead of the theorem.
Proof: See Appendix B.

Notice that the coding scheme presented in Appendix B
differs from previous known schemes for fixed commu-
nication alphabets such as [2], [27], [34].
Consider now the case of coherent detection (both with
PX = P̄X and PX , P̄X)

Proposition 12 (Coherent Detection): Under coherent detec-
tion, h1 = 0, for all (ε1, ε2) ∈ (0, 1)2, and for all values W1 ≥ 2
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and W2 ≥ 2, the exponents region E0(W1,W2, ε1, ε2) is the set
of all nonnegative rate pairs (θ1, θ2) satisfying

θ1 ≤ min
P̃XY1 : P̃X=PX

P̃Y1 =PY1

D
(
P̃XY1‖P̄XY1

)
, (66)

θ2 ≤ min
P̃XY1Y2 : P̃X=PX

P̃Y1 =PY1 , P̃Y2 =PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
. (67)

Proof: Analogous to the proofs in [27]. Consider in particular
the extensions in [27, Section IV].

Remark 3 (Extension to many hypotheses): Most of the
results in this section can be extended in a straight-
forward manner to a scenario with more than two
hypotheses. For H = 2 hypotheses the exponents region
showed a tradeoff in the exponents under concurrent
detection only when W1 = W2 = 2. In contrast, for
H ≥ 3 hypotheses, a tradeoff arises for a variety of pairs
W1,W2. In general, the minimum required values for
W1 and W2 leading to a rectangular exponents region
coincides respectively with the number of hypotheses
which have distinct X-marginals and the number of
hypotheses which have distinct Y1-marginals.

B. Benefits of Cooperation

To discuss the benefits of cooperation, we quickly state
the optimal exponents region without cooperation deter-
mined in [16]. Assume thus:4

W2 = 0. (68)

Under coherent detection or under concurrent detec-
tion with PX = P̄X or W1 ≥ 3, the exponents regions
E0(W1,W2 = 0) are similar to Propositions 9–10 but with
a modified constraint on θ2. More precisely, Propositions
9–10 remain valid for W2 = 0 if the constraints on θ2, (55)
and (58), are replaced by

θ2 ≤ min
P̃XY2 :

P̃X=PX ,
P̃Y2 =PY2

D
(
P̃XY2‖P̄XY2

)
. (69)

So, in these scenarios, the exponents region is a rectangle
both in the case with and without cooperation, and when
cooperation is possible the θ2-side of the rectangle is
increased by the quantity

min
P̃XY1Y2 : P̃X=PX

P̃Y1 =PY1 , P̃Y2 =PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
− min

P̃XY1Y2 :
P̃X=PX ;

P̃Y2 =PY2

D
(
P̃XY2‖P̄XY2

)
.

(70)
Under concurrent detection when PX , P̄X and W1 = 2,
the exponents region is not a rectangle, but there is a
tradeoff between the two exponents. In this case, it seems
difficult to quantify the cooperation benefit in general.

4Equivalently, the no cooperation setup could be parametrized as
W2 = 1.

C. Numerical Example

We now present an example with PX , P̄X.
Example 2: Consider a setup where

PXY1Y2 (0, 0, 0) = 0.1 PXY1Y2 (0, 0, 1) = 0.1125
PXY1Y2 (0, 1, 0) = 0.0875 PXY1Y2 (0, 1, 1) = 0.0825
PXY1Y2 (1, 0, 0) = 0.1675 PXY1Y2 (1, 0, 1) = 0.1625
PXY1Y2 (1, 1, 0) = 0.1375 PXY1Y2 (1, 1, 1) = 0.15

(71)

and
P̄XY1Y2 (0, 0, 0) = 0.15 P̄XY1Y2 (0, 0, 1) = 0.1375

P̄XY1Y2 (0, 1, 0) = 0.1625 P̄XY1Y2 (0, 1, 1) = 0.1675
P̄XY1Y2 (1, 0, 0) = 0.0825 P̄XY1Y2 (1, 0, 1) = 0.0875
P̄XY1Y2 (1, 1, 0) = 0.1125 P̄XY1Y2 (1, 1, 1) = 0.1

(72)
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E0(2, 2, ε1, ε2).
E0(2, 0, ε1, ε2).

Fig. 3. Exponents regions of Example 2 under coherent detection,
without cooperation and with a single-bit cooperation message.
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E0(2, 0, ε1, ε2).

Fig. 4. Exponents regions of Example 2 under coherent detection,
without cooperation and with a single-bit cooperation message.

The exponents regions for this example are depicted in
Fig. 3 (for coherent detection) and Fig. 4 (for concurrent
detection) assuming that the Sensor sends a single bit to
the two detectors, i.e., W1 = 2. The figures illustrate the
exponents regions for the scenario without cooperation
and the scenario with a single-bit cooperation message.
From these figures one observes an almost-uniform co-
operation benefit over all achievable θ1-values. Under
concurrent detection one further observes a tradeoff
between the achievable exponents θ1 and θ2, both in the
case with and without cooperation.
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V. Summary and conclusion
In this paper we investigated the role of cooperation
under both coherent and concurrent detection in a
two-detector hypothesis testing system. For the general
positive-rate scenario, we proposed a simple scheme in
which Detector 1 uses the cooperation link to inform
Detector 2 about its guess and a compressed version
of its observations. Under concurrent detection with
unequal marginals PX , P̄X, in our scheme the Sensor
makes a tentative guess of whether H = 0 or H = 1.
Depending on the outcome of this test, it decides to
target its communication only for the decision taken at
Detector 1 or at Detector 2. This strategy at the sensor is
shown to be optimal and to lead to a rectangular expo-
nents region where each detector achieves the optimal
performance as if it was the only detector in the system.
We further present the optimal exponents region for
both coherent and concurrent detection when the com-
munication alphabets are fixed or of zero rate. In most
cases this optimal exponents region is rectangular and
no tradeoff arises between the two decisions. However,
when PX , P̄X and the sensor can communicate only
a single bit, then under concurrent detection there is a
tradeoff in the exponents achieved at the two detectors.

Appendix A
Converse to Theorem 7

Let R2 = 0. Fix a rate R1 ≥ 0 and a pair of expo-
nents (θ1, θ2) ∈ E0(R1, 0). Then, choose an ε ∈ (0, 1), a
sufficiently large blocklength n, encoding and decision
functions φ1,n, φ2,n, ψ1,n, and ψ2,n that satisfy

α1,n ≤ ε, (73)
α2,n ≤ ε, (74)

and

−
1
n

log β1,n ≥ θ1 − ε, (75)

−
1
n

log β2,n ≥ θ2 − ε. (76)

Notice first that for each i ∈ {1, 2} [11]:

D
(
P
Ĥi |H=0||PĤi |H=1

)
= −h2

(
αi,n

)
−

(
1 − αi,n

)
log

(
βi,n

)
− αi,n log

(
1 − βi,n

)
(77)

where h2
(
p
)

denotes the entropy of a Bernouilli-(p) mem-
oryless source. Since αi,n ≤ ε < 1, for each i ∈ {1, 2},
Inequality (77) yields:

−
1
n

log
(
βi,n

)
≤

1
n(1 − ε)

D
(
P
Ĥi |H=0||PĤi |H=1

)
+ µn (78)

with µn := 1
n(1−ε) h2 (ε). Notice that µn → 0 as n→∞.

Consider now:

θ1 − ε ≤ −
1
n

log
(
β1,n

)
≤

1
n(1 − ε)

D
(
P
Ĥ1 |H=0||PĤ1 |H=1

)
+ µn

(a)
≤

1
n(1 − ε)

D
(
PYn

1 M1 |H=0||PYn
1 M1 |H=1

)
+ µn

(b)
=

1
n(1 − ε)

I
(
Yn

1 ; M1

)
+ µn

(c)
=

1
n(1 − ε)

( n∑
k=1

H
(
Y1k

)
−H

(
Y1k|M1Y1

k−1
))

+ µn

(d)
≤

1
n(1 − ε)

( n∑
k=1

H
(
Y1k

)
−H

(
Y1k|M1Y1

k−1Xk−1
))

+ µn

(e)
=

1
n(1 − ε)

( n∑
k=1

H
(
Y1k

)
−H

(
Y1k|M1Xk−1

))
+ µn

( f )
=

1
n(1 − ε)

( n∑
k=1

I (Y1k; Uk)
)

+ µn

(g)
=

1
n(1 − ε)

I
(
Y1Q; UQ

∣∣∣Q)
+ µn

(h)
=

1
1 − ε

I (Y1(n); U(n)) + µn, (79)

where: (a) follows by the data processing inequality
for relative entropy; (b) holds since M1 and Yn

1 are
independent under the alternative hypothesis H = 1;
(c) is due to the chain rule for mutual information;
(d) follows since conditioning reduces entropy; (e) is
due to the Markov chain Y1

k−1
−
− (M1,Xk−1) −
− Y1k;

( f ) holds by defining Uk := (M1,Xk−1); (g) is obtained
by introducing a random variable Q that is uniform
over the set {1, · · · ,n} and independent of all previously
defined random variables; and (h) holds by defining
U(n) := (UQ,Q) and Y1(n) := Y1Q.
In a similar way, one obtains:

θ2 − ε

≤ −
1
n

log
(
β2,n

)
(i)
≤

1
n(1 − ε)

D
(
PYn

2 M1M2 |H=0||PYn
2 M1M2 |H=1

)
+ µn

( j)
=

1
n(1 − ε)

(
I
(
Yn

2 ; M1M2

)
+ D(PM1M2 |H=0||PM1M2 |H=1)

)
+ µn

(k)
≤

1
n(1 − ε)

(
I
(
Yn

2 ; M1

)
+ I

(
Yn

2 ; M2|M1

)
+ D(PYn

1 M1 |H=0||PYn
1 M1 |H=1)

)
+ µn

(`)
≤

1
n(1 − ε)

(
I(Yn

2 ; M1) + log W2,n + D(PYn
1 M1 |H=0||PYn

1 M1 |H=1)
)

+ µn

(m)
=

1
n(1 − ε)

(
I
(
Yn

2 ; M1

)
+ I (Yn

1; M1)
)

+ µ̃n

(o)
≤

1
1 − ε

(I (Y2(n); U(n)) + I (Y1(n); U(n))) + µ̃n, (80)

where (i) follows by the data processing inequality for
relative entropy; ( j) holds by the independence of the
pair (M,M2) with Yn

2 under the alternative hypothesis
H = 1; (k) by the data processing inequality for relative
entropy; (`) holds because I(Yn

2 ; M2|M1) ≤ H(M2) ≤
log W2,n; (o) follows by proceeding along the steps (b)
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to (h) above; and (m) holds by defining µ̃n := n−1(1 −
ε)−1 log W2,n + µn.
Notice that by the assumption R2 = 0, the term
1/n log W2,n → 0 as n→∞. Thus, also µ̃n → 0 as n→∞.
We next lower bound the rate R1:

nR1 ≥ H (M1)
= H (M1) −H (M|Xn)
= I (M1; Xn)

=

n∑
k=1

I
(
M1; Xk|Xk−1

)
=

n∑
k=1

I (Xk; Uk)

= nI
(
XQ; UQ|Q

)
= nI (U(n); X(n)) . (81)

For any blocklength n, the newly defined random vari-
ables satisfy X(n),Y1(n),Y2(n) ∼ PXY1Y2 and U(n)−
−X(n)−

− (Y1(n),Y2(n)). Notice that in the derived inequalities
(79), (80), and (81), only the probability masses matter
but not the specific values of U(n). By standard ap-
plications of Carathéodory’s theorem, it can therefore
be shown that there exists a finite set U and for each
blocklength n random variables Ũ(n), X̃(n), Ỹ1(n), Ỹ2(n)
over U × X × Y1 × Y2 satisfying the three inequalities
(79), (80), and (81) (when the tuple U(n),X(n),Y1(n),Y2(n)
is replaced by the new tuple Ũ(n), X̃(n), Ỹ1(n), Ỹ2(n))
and the properties Ũn −
− X̃(n) −
− (Ỹ1(n), Ỹ2(n)) and
X̃(n), Ỹ1(n), Ỹ2(n) ∼ PXY1Y2 . Since U is fixed, we can
employ the Bolzano-Weierstrass theorem to deduce that
there exists an increasing sequence of positive integers
n1,n2, . . . such that the subsequence of distributions
{PU(nk)X(nk)Y1(nk)Y2(nk)}

∞

k=1 converges to a limiting distribu-
tion P?UXY1Y2

. By standard continuity arguments, P?UXY1Y2
must satisfy the Markov chain U −
− X −
− (Y1,Y2) and
P?XY1Y2

= PXY1Y2 . Letting first k → ∞ and then ε → 0,
the desired converse result follows by the continuity of
mutual information and because µnk and µ̃nk vanish as
k→∞.

Appendix B
Proof of Theorem 11

A. Achievability
Pick a real number r, a small positive number µ > 0
satisfying

T
n
µ (PX) ∩ T n

µ (P̄X) = ∅, (82)

and a function b : {0, 1} → {0, 1} either as

b(0) = b(1) = 0 (83)

or as
b(0) = 0 and b(1) = 1. (84)

Further, depending on the parameter r and the chosen
function b, partition the set of types Pn(X) into the sets
Γ0 and Γ1 as follows. All types π satisfying

|π − PX| ≤ µ (85)

are assigned to Γ0 and all types π satisfying

|π − P̄X| ≤ µ (86)

are assigned to Γ1. If the function b was chosen as in
(83), then any other type π that neither satisfies (85) nor
(86) is assigned to Γ1. If the function b was chosen as in
(84), then a type π that neither satisfies (85) nor (86) is
assigned to Γ1 if

min
PXY1 :
P̃X=π
P̃Y1 =P̄Y1

D
(
P̃XY1‖PXY1

)
+ r ≥ min

PXY1Y2 :
P̃X=π
P̃Y1 =PY1
P̃Y2 =PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
,

(87)
and it is assigned to the set Γ0 otherwise.
Sensor: Given that it observes Xn = xn, it sends

M1 =

{
0 if tp(xn) ∈ Γ0
1 if tp(xn) ∈ Γ1.

(88)

Detector 1: Given that it observes Yn
1 = yn

1 and M1 = m1,
it decides

Ĥ1 =

{
1 if m1 = b(1) and yn

1 ∈ T
n
µ (P̄Y1 )

0 otherwise. (89)

It sends

M2 =

{
0 if m1 = b(0) and yn

1 ∈ T
n
µ (PY1 )

1 otherwise (90)

to Detector 2.
Detector 2: Given that it observes Yn

2 = yn
2 and messages

M1 = m1 and M2 = m2, it decides

Ĥ2 =

{
0 if m1 = b(0) and m2 = 0 and yn

2 ∈ T
n
µ (PY2 )

1 otherwise.
(91)

The described scheme achieves the optimal error-
exponents region. The analysis of the described scheme
follows from Sanov’s theorem, and by noting that Ĥ1 = 1
if, and only if,

tp(xn) ∈ Γb,r
b(1) and yn

1 ∈ T
n
µ (PY1 ) (92)

whereas Ĥ2 = 0, if, and only if,

tp(xn) ∈ Γb,r
b(0) and yn

1 ∈ T
n
µ (PY1 ) and yn

2 ∈ T
n
µ (PY2 ). (93)

The result then follows by letting n→∞ and µ→ 0.

B. Converse
This converse is inspired by [27]. Fix a real number
r, (ε1, ε2) ∈ (0, 1)2 and an exponent pair (θ1, θ2) ∈
E0(2, 2, ε1, ε2) satisfying

θ2 = θ1 + r. (94)

Then fix a small number ε > 0, a sufficiently large
blocklength n, and encoding and decision functions
φ1,n, φ2,n, ψ1,n, ψ2,n satisfying

α1,n ≤ ε1, (95)
α2,n ≤ ε2, (96)
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and

−
1
n

log β1,n ≥ θ1 − ε, (97)

−
1
n

log β2,n ≥ θ2 − ε. (98)

For the chosen encoding and decision functions, define
for each m1 ∈ {0, 1} and m2 ∈ {0, 1, . . . ,W2−1}, the subsets

Cm1 := {xn
∈ X

n : φ1,n(xn) = m1}, (99)
F

1
m1

:= {yn
1 ∈ Y

n
1 : ψ1,n(m1, yn

1) = 1}, (100)
Gm1,m2 := {yn

1 ∈ Y
n
1 : φ2,n(m1, yn

1) = m2}, (101)
F

2
m1,m2

:= {yn
2 ∈ Y

n
2 : ψ2,n(m1,m2, yn

2) = 0}. (102)

Notice that the sets C0 and C1 partition Xn and for
each m1 ∈ {0, 1} the sets Gm1,0, . . . ,Gm1,W2−1 partition
Y

n
1 . Moreover, the acceptance regions A1

n and A2
n at

Detectors 1 and 2, defined through the relations

(Xn,Yn
1) ∈ A1

n ⇐⇒ Ĥ1 = 1, (103)

(Xn,Yn
1 ,Y

n
2) ∈ A2

n ⇐⇒ Ĥ2 = 0, (104)

can be expressed as

A
1
n = C0 × F

1
0 ∪ C1 × F

1
1 (105a)

and

A
2
n =

W2−1⋃
m2=0

C0 × G0,m2 × F
2

0,m2
∪

W2−1⋃
m2=0

C1 × G1,m2 × F
2

1,m2
.

(105b)
Define now for each m1 ∈ {0, 1} the set

Γm1,n :=
{
P̃X ∈ P(X) : P̃⊗n

X

[
Xn
∈ Cm1

]
≥

1 − ε
2

}
, (106)

and for each pair (m1,m2) ∈ {0, 1} × {0, . . . ,W2 − 1} the set

∆m1,m2,n :=
{
P̃Y1 ∈ P(Y1) : P̃⊗n

Y1

[
Yn

1 ∈ Gm1,m2

]
≥

1 − ε
2W2

}
. (107)

Since the sets C0 and C1 cover Xn and since for each
P̃X ∈ P(X), it holds that P̃⊗n

X

[
Xn
∈ X

n
]

= 1, the subsets
Γ0,n and Γ1,n cover the set P(X). Similarly, since for each
m1 ∈ {0, 1} the sets Gm1,0, . . . ,Gm1,W2−1 cover Yn

1 , the sub-
sets ∆m1,0,n, . . . ,∆m1,W2−1,n cover the set P(Y1). Moreover,
by the constraints on the Type-I error probability at
Detectors 1 and 2, (95) and (96):

P̄⊗n
XY1

[(
Xn,Yn

1

)
∈

1⋃
m1=0

Cm1 × F
1

m1

]
≥ 1 − ε1 (108)

and

P⊗n
XY1Y2

[(
Xn,Yn

1 ,Y
n
2

)
∈

1⋃
m1=0

W2−1⋃
m2=0

Cm1 × Gm1,m2 × F
2

m1,m2

]
≥ 1 − ε2. (109)

By the union bound, there exist thus an index m̃1 ∈ {0, 1}
and an index pair (m∗1,m

∗

2) ∈ {0, 1} × {0, . . . ,W2 − 1} such
that:

P̄⊗n
X

[
Xn
∈ Cm̃1

]
≥

1 − ε1

2
, (110a)

P̄⊗n
Y1

[
Yn

1 ∈ F
1

m̃1

]
≥

1 − ε1

2
, (110b)

and

P⊗n
X

[
Xn
∈ Cm∗1

]
≥

1 − ε2

2
, (111a)

P⊗n
Y1

[
Yn

1 ∈ Gm∗1,m
∗

2

]
≥

1 − ε2

2W2
, (111b)

P⊗n
Y2

[
Yn

2 ∈ F
2

m∗1,m
∗

2

]
≥

1 − ε2

2W2
, (111c)

Combining (110) with the definition of Γm̃1,n in (106)
and with [27, Theorem 3] (recall that by assumption
PXY1 (x, y1) > 0, for all (x, y1) ∈ X × Y1) yields that for
sufficiently large n :

Pr[Ĥ1 = 1|H = 0] ≥ max
P̃XY1 :

P̃X∈Γm̃1 ,n,

P̃Y1 =P̄Y1

e−n(D(P̃XY1 ‖PXY1 )+ν1,n),

where ν1,n → 0 when n → ∞. In the same way,
combining (111) with (106) and (107), and extending [27,
Theorem 3] to three pmfs (recall that by assumption
PXY1Y2 (x, y1, y2) > 0, for all (x, y1, y2) ∈ X × Y1 × Y2), for
sufficiently large n:

Pr[Ĥ2 = 0|H = 1] ≥ max
P̃XY1Y2 :

P̃X∈Γm∗1 ,n
,

P̃Y1∈∆m∗1 ,m
∗

2 ,n
, P̃Y2 =PY2

e−n(D(P̃XY1Y2 ‖P̄XY1Y2 )+ν2,n),

where ν2,n → 0 when n→∞. Taking n→∞, by the con-
tinuity of the KL divergence, we can conclude that if the
exponent pair (θ1, θ2) is achievable, then there exist sub-
sets Γ0 and Γ1 that cover P(X), subsets ∆0,0, . . . ,∆0,W2−1
that cover P(Y1), and subsets ∆1,0, . . . ,∆1,W2−1 that cover
P(Y1) so that:

θ1 ≤ min
P̃XY1 :

P̃X∈Γa,
P̃Y1 =P̄Y1

D
(
P̃XY1‖PXY1

)
, (112a)

θ2 ≤ min
P̃XY1Y2 :
P̃X∈Γc,

P̃Y1∈∆c,c2 , P̃Y2 =PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
. (112b)

where the indices a, c ∈ {0, 1} and c2 ∈ {0, . . . ,W2 − 1} are
such that

P̄X ∈ Γa, (113)
PX ∈ Γc, (114)

PY1 ∈ ∆c,c2 . (115)

We continue to notice that the upper bounds in (112)
become looser when elements are removed from the sets
Γa, Γc, and ∆c,c2 . The converse statement thus remains
valid by imposing

∆c,c2 = {PY1 }. (116)

If a = c, we impose

Γa = Γc = {PX, P̄X}. (117)
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This concludes the proof for the function choice b(0) =
b(1) = 0, because we can associate Γa = Γc with Γb,r

0 in
the theorem.
If a , c, we impose that Γa and Γc form a partition and
obtain the intermediate result that

θ1 ≤ min
P̃XY1 :

P̃X∈Γa,
P̃Y1 =P̄Y1

D
(
P̃XY1‖PXY1

)
(118a)

θ2 ≤ min
P̃XY1Y2 :
P̃X∈Γc,

P̃Y1 =PY1 , P̃Y2 =PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
(118b)

for two sets Γa and Γc forming a partition of P(X) and
satisfying (113) and (114).
We now characterize the choice of the sets {Γa,Γc} that
yields the loosest bound in (118). To this end, notice first
that by assumption (94), constraints (118) are equivalent
to:

θ1 ≤ min
{

min
P̃XY1 :

P̃X∈Γa,
P̃Y1 =P̄Y1

D
(
P̃XY1‖PXY1

)
,

min
P̃XY1Y2 :
P̃X∈Γc,

P̃Y1 =PY1 ,P̃Y2 =PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
− r

}
. (119)

Moreover,

min
{

min
P̃XY1 :

P̃X∈Γa\{P̄X},
P̃Y1 =P̄Y1

D
(
P̃XY1‖PXY1

)
, min

P̃XY1Y2 :
P̃X∈Γc\{PX},

P̃Y1 =PY1 ,P̃Y2 =PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
− r

}

≤ min
πX∈P(X)\{PX ,P̄X}

max
{

min
P̃XY1 :

P̃X=πX ,
P̃Y1 =P̄Y1

D
(
P̃XY1‖PXY1

)
,

min
P̃XY1Y2 :
P̃X=πX ,

P̃Y1 =PY1 ,P̃Y2 =PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
− r

}
,

(120)

and the inequality holds with equality when any type
πX ∈ P(X)\{PX, P̄X} satisfies

(πX ∈ Γa)
⇐⇒

min
P̃XY1 :

P̃X=πX ,
P̃Y1 =P̄Y1

D
(
P̃XY1‖PXY1

)
≥ min

P̃XY1Y2 :
P̃X=πX ,

P̃Y1 =PY1 ,P̃Y2 =PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
− r.

(121)

If a , c, one can thus conclude that the bound in (119)
holds for sets Γa and Γc that partition P(X) and that
satisfy PX ∈ Γc and P̄X ∈ Γa, and for any other pmf
in P(X)\{PX, P̄X} above condition (121) is satisfied. This
concludes the proof for the case a , c, for the choice of

the function b(0) = 0 and b(1) = 1 by associating Γa with
Γb,r

1 and Γc with Γb,r
0 .
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