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I. ABSTRACT

This article reviews results from the literature regarding the bottlenecks and tradeoffs of integrated
sensing and communication (ISAC) through the lens of information theory, offering a distinct perspective
compared to recent works that focus on signal processing, wireless communications, or other related
overviews. Different models and scenarios are considered and compared. For example, scenarios where
radar sensing is performed at the communication and radar transmitter (mono-static ISAC) and scenarios
where the radar receiver differs from the radar transmitter (called bi-static radar). Similarly, we discuss
ISAC bottlenecks and tradeoffs both in slowly-varying environments where the main sensing target is
described by a single parameter and accordingly sensing performance is described by detection error
probabilities, as well as in fast-varying environments where the sensing targets are described by vectors
and thus vector-valued performance measures such as average distortions like mean-squared errors are
used to determine sensing performances. This overview article further also considers limitations and
oppornities in network ISAC environments, such as collaborative or interactive sensing, and the influence
of secrecy and privacy requirements on ISAC systems, a line of research that has obtained growing
interest over the last few years. For all these scenarios we provide and discuss precise models and their
limitations and provide either bounds or full characterizations of the fundamental information-theoretic
performance limits of these systems. Further extensions as well as important open research directions are
also discussed.

II. INTRODUCTION

Integrated Sensing and Communication (ISAC) represents a transformative paradigm that unifies
sensing and communication functionalities into a single system, leveraging shared spectral, hardware,
and computational resources. This integration is increasingly crucial in modern technological ecosystems,
where efficient resource utilization and enhanced system performance are paramount. ISAC offers notable
benefits in applications such as autonomous vehicles, industrial automation, smart cities, and wireless
networks.

By reducing latency, improving spectrum efficiency, and enhancing situational awareness, ISAC is
foundational to emerging technologies like 6G communication and the Internet of Things (IoT). Its dual-
purpose design minimizes infrastructure costs while enabling seamless interaction between sensing and
communication, paving the way for adaptive and intelligent systems.

As an example of a practical ISAC systems, we can consider the Wi-Fi technology. Based on the
IEEE 802.11 standards, it has delivered significant social and economic benefits. Recently, attention
has turned to WLAN sensing—also known as Wi-Fi sensing—which leverages the widespread Wi-Fi
infrastructure and ubiquitous signals in our environment to perform various sensing tasks. By employing
advanced signal processing techniques, received Wi-Fi signals can be used to detect obstructions, monitor
environmental changes, and interpret target movement. Despite these innovations and progress, several
challenges remain in current standardization efforts, as evidenced by ongoing work towards IEEE 802.11bf
for WLAN sensing and ISAC [1].

In general, designing effective ISAC systems involves achieving simultaneous high-performance sensing
and communication. Advanced configurations, such as bi-static radar or multi-terminal ISAC systems,
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require efficient exchange of sensing information between terminals to enhance collective sensing
capabilities rather than relying solely on local data. Furthermore, modern ISAC applications impose
additional constraints, such as privacy and security. Balancing these competing requirements necessitates
an understanding of the tradeoffs and fundamental performance limits across various system criteria.

Information theory has rich history and provides a robust framework to analyze such complex multi-
purpose systems and reveal the inherent tensions and tradeoffs in the fundamental limits of the various
performances of such systems. Fundamental results from information-theory literature for communication
(e.g., data rate, capacity) [2[|-[7]], detection and hypothesis testing [8]-[20], estimation [21[]-[24], and
compression [25]-[31]] indeed can form the foundation for analyzing ISAC systems. Prior studies have
explored tradeoffs between these performance measures in both distributed and non-distributed setups.
Some ISAC scenarios, though not explicitly named as such, have been studied within the information-
theoretic community under related contexts like “simultaneous data communication and state estimation.”
Other scenarios remain unexplored but can benefit from information-theoretic insights derived from
analogous setups.

This article aims to synthesize and present both established and emerging information-theoretic results
relevant to ISAC systems. Compared to many existing overview ISAC articles that tackle the problem more
from a communication and signal-processing angle [32]-[41]], here we focus on information-theoretic
results that are more closely aligned with [42], [43]]. Specifically, we focus on the inherent tradeoffs and
fundamental performance limits of ISAC systems, emphasizing coding techniques and proof strategies that
enable optimal sensing-communication tradeoffs. We would like to point out that the information-theoretic
models studied in this survey are very general, and can be specialized to different practical scenarios of
interest. Keeping the model and results general allows us to derive broadly based conclusions and also
cover a larger range of application scenarios.

Specifically, in this article, we start with a a brief historical perspective of ISAC (Section [[II)), followed
by a first technical section (Section that considers a canonical ISAC point-to-point setup with a single
Tx wishing to communicate to a single Rx and where the sensing task is to estimate a state-sequence
(such as the accelerations of an obstacle) up to a desired distortion. We will start discussing results
on simple memoryless channel models, and then move on to very general models with memory. All the
results discussed in this Section [[V]illustrate the inherent tradeoff between the sensing and communication
tasks encountered in such ISAC systems. While Section [[V| considers a mono-static radar setup, i.e., the
sensing task is performed at the Tx of the communication system, the subsequent Section [V| considers
bi-static radar models where sensing is performed at the Rx. Section further generalizes the setup
to multiple Txs or Rxs and sensing at multiple terminals. Not only the communication problem is of
formidable difficulty in these setups but also the sensing task is significantly more involved, as now
collaborative and interactive sensing strategies can be applied to provide remote terminals with sensing
information gathered at other terminals. As we shall see, in such scenarios, it does not just suffice to
exchange sensing information using standard communication schemes, but instead the code construction
previously only used for data communication now need to be adapted to also enable the collaborative
sensing tasks. Moreover, given the distributed sensing information that has to be conveyed from certain
terminals to others, network joint source-channel coding schemes become essential to attain good sensing
performances. The subsequent Section then describes how the above ISAC schemes and performance
limits need to be adapted so as to ensure secrecy of only messages or of states and sensing targets/states.
The last technical section (Section of this overview then takes a different approach to the sensing
task, assuming that the sensing task consists in detecting a single parameter (and not estimating a state-
vector as in the previous chapters) which determines the behaviour of the sensing target. This problem
seems to be slightly more challenging but first instructive results are presented, in particular when the Tx
restricts to non-adaptive coding schemes where the backscattered signals can only be used for the sensing
task but not to produce the subsequent inputs. The overview article is then concluded with conclusive



remarks.

There exists a large body of studies also on other aspects of ISAC systems, for example, the works in
[44]]—[57]] have studied ISAC from a more communication-theoretic perspective in environments where
Txs and Rxs are equipped with multiple antennas, in particular also in so called massive multi-input and
multi-output (MIMO) systems. Interesting research directions result in these MIMO systems regarding
whether smart selection of beamformers allow to reduce the tradeoff between communication and sensing
performances and how the tradeoff is influenced by the choice of the antenna distance. Recent initiatives
to improve understanding of ISAC systems of course also include learning-based studies. The tutorial in
[41]] provides a comprehensive overview of works using deep-learning based techniques and the summary
of the reviewed results are provided in Table [I|

A. Notation

In this survey we shall use class notation for our mathematical expressions. For example, upper-case
letters like X denote random quantities, while lower-case letters like = represent their deterministic

realizations. Sets are represented using calligraphic font (e.g., X). The n-tuples (Xi,...,X,) and
(x1,...,xy,) are abbreviated as X" and ", respectively. Similarly, the n — ¢-tuples (Xy41,...,Xp)
and (z¢41,...,%,) are written as X}, and x}, ;. Independent and identically distributed is abbreviated

as i.i.d., and probability mass function as pmf. The conditional probability is written as Pxy v (2, y|u, v),
and Py (-) represents the pmf of a finite random variable X. The expectation of a random variable X is
denoted by E[X]. R and R{ denote the sets of real numbers and nonnegative real numbers, respectively.
log typically represents the base-2 logarithm, accordingly information measures are measured in terms
of nats. The operator & typically indicates XOR (binary addition modulo 2).

The arg min represents the set of minimizers of a function. lim and lim denote the limit superior and
limit inferior as n — co. The operator f("™) represents a transformation or operation on n-letter sequences.
The term ess sup refers to the essential supremum in measure theory. Entropy, conditional entropy, and
mutual information are denoted by H(-), H(-|-), and I(-;-), respectively. When the probability mass
function (pmf) is not clear from the context, it is included as a subscript, e.g., Hp(-). The Kullback-
Leibler divergence between two pmfs is denoted by D(-||-).

III. PRE-ISAC: SENSING (RADAR) VS. COMMUNICATION
A. Radar Systems

Radar is a system that utilizes radio waves to learn about positions, motions, or the mere presence of
target objects in an environment through the analysis of backscattered signals. In fact, a radar terminal
radiates a waveform that propagates through space until it reaches a target, where it is reflected in a way
that depends on the properties of the target. The radar terminal collects and analyzes the backscattered
signals so as to gain information about these properties. In the radar system, if the presence and position
of a target are already known, the transmitter tries to steer all the energy of the transmitted waveform
towards the target, so as to obtain more information through the backscattered waveform. Radar thus
uses Line-of-Sight (LoS) techniques. Traditional radar systems mainly operate within the 24-79 GHz
frequency band.

Sensing tasks can be roughly classified into three categories, detection, estimation, and recognition,
which are all based on collecting signals/data concerning the sensed objects. Detection refers to making
decisions on an object’s state given some observations, such as the presence/absence of the target or other
events related to the target. The detection problem can be modeled as a binary or multi hypothesis testing
problem. In the binary hypothesis testing problem as an example, one selects from two hypotheses; the
alternative hypothesis H; and the null hypothesis H. Detection metrics are the probability that H; holds
but the detector chooses Hg (often denoted miss-detection probability), and the probability that H( holds
but the detector chooses H; (often denoted false-alarm probability).



TABLE I
A COMPREHENSIVE OVERVIEW OF THIS SURVEY

Category Result Description Reference(s)
Lemmam Optimal estimator for P2P and BC | [58]
Theorem I} Exact Capacity-Distortion for | [58]

Sensing as Memoryless P2P, asymptotic analysis
Monostatic Radar Strong converse Remark m [59]
Log-Loss distortion Theorem El_ [60]
Nonasymptotic P2P, Theorem@ [61]
Channel with memory, RL approach [3| 162]
: .. | C-D with No CSI at TX 4 [63]
Sensing as Bistatic

C-D with Strictly causal CSI at TX [3| [64]
C-D non-causal CSI, Gaussian channel at Tx | [65]]

Radar (P2P)

General BC outer Iﬂ and inner |T| bounds (661, [67]
Optimal symbolwise estimator -
Outerbounds for MAC Theorem @ [68] [69]]
NetworkISAC - Hinerbound MAC Theorem ) [681-[71]
Innerbound D2D M [71]
Secrecy-capacity-distortion Inner M and | [72]
Secrecy-ISAC outer [I2| Bounds
Secrecy of the mesage and the state |£| (73] -
ISAC with Non-adaptive rate-detection-exponents The- | [59], [74]-[77]
. orem
Detection-Error : -
Adaptive rate-detection-exponents | [76]
Exponents

Theorem

Sequential (Variable-Length) rate-detection- | [76]
exponents Theorem
Sequential (Variable-Length) ISAC with | [78]
Change-Point Detection Theorem

Estimation refers to extracting valuable parameters, typically with continuous alphabets, of the
sensed object from observations. For example, distance/velocity/angle/quantity/size of targets are possible
parameters a radar system desires to estimate. Various interesting performance metrics exist for estimation,
whose suitability depends on the application. Prominent examples are the mean squared error (MSE)
metric, which measures the expected squared-error of the estimated parameter to the ground truth
parameter. Notice that in the case of unbiased estimators, i.e., estimators S whose conditional expectation
is always equal to the true parameter S, E[S’ |S] = S, the Cramér-Rao bound (CRB) expresses an
interesting lower bound on the MSE that can be attained by any unbiased estimator.

B. Wireless Communication Systems

In a communication system, a transmitter (Tx) aims to transfer either data bits or source samples (such
as audio or video file samples) to a distant receiver (Rx). The data or source information is encoded
onto a transmitted waveform, which the receiver then collects and analyzes to estimate the transmitted
information. Performance metrics commonly considered for communication systems include energy or
spectral efficiency, which measure how many bits of information are communicated using a given energy
budget or bandwidth, respectively.



For data transmission, robustness of communication is typically measured by the bit-error rate (BER),
symbol-error rate (SER), or frame-error rate (FER), which indicate the likelihood of errors in the received
data due to channel disturbances. In source communication, robustness is either measured by the bit-error
rate or more often by distortion metrics such as the average mean-squared error. These performance
metrics are especially pertinent in traditional wireless communication systems, which predominantly
operate in the 2.4 GHz band. To outline the main differences between radar and communication systems,

glance at Table [l1I-B

Communication Sensing
2.4 GHz 24-79 GHz
Data/Source Transmission Estimation/Detection

Bit/Signal/Frame Error Rate | Minimum Mean Squared Error (MMSE), Cramer-Rao Bound (CRB)

Distortion Detection/False Alarm Probability

All Propagation Paths Line of Sight (LoS)

TABLE 1I
COMPARISON BETWEEN COMMUNICATION AND SENSING SYSTEMS.

C. Coexisting Communication and Radar Systems

The early work [79] modulates the communication bits on the missile range radar pulse interval.
Interference rejection and robustness in multipath fading environments, inherent properties of spread
spectrum systems, also make chirp signaling (used in radar application) very active for the expanding
wireless communications market.

Another approach in [[80] proposed as early as 1962 is based on chirp signals proposed for both analog
and digital communication [81] but are also commonly used in radar applications. These works can be
categorized as the first steps towards Integrated Sensing and Communication (ISAC).

Since then, significant evolution has lead to an entire set of pre-ISAC systems, see [32] where a
category of solutions is revisited. Some straightforward solutions are called Non-Overlapped Resource
Allocation. In subsequent information-theoretic models we will see later, such a system corresponds to
time- or resource-sharing between communication and sensing; we shall call this Basic time-sharing (TS),
and with a minor modification, we will introduce Improved time-sharing.

A common but naive approach to address sensing and communication is to separate the two tasks into
independent systems and split the available resources, such as bandwidth and power, between them so
that they do not interfere.

Time-division ISAC can be conveniently implemented into the existing commercial systems by splitting
the transmission duration into radar and radio cycles, for example [82]. For radar sensing, frequency-
modulated continuous waveform (FMCW) with up-and-down-chirp modulations is used, while various
different modulation schemes (e.g., BPSK, PPM) can be used for communication.

In an orthogonal frequency division multiplexing (OFDM) system, frequency-division ISAC can be
implemented by allocating different communication and sensing tasks to specific subcarriers, depending
on the channel conditions and power budget of the Tx [83]].

Similarly, the 3GPP/5G-NR standards were originally designed primarily for communication but have
evolved to accommodate additional functionalities, such as positioning and sensing. The 5G-NR standard



primarily uses OFDM due to its flexibility and efficiency, and its inherent structure can also be exploited
for sensing tasks such as radar-like functions and localization. In practice, enhancements (e.g., pilot
designs and advanced signal processing techniques) are introduced to extract sensing information from
these communication signals. Meanwhile, Orthogonal Time Frequency Space (OTFS) modulation [84],
[85] has attracted increasing interest as an alternative to OFDM, placing symbols in the delay-Doppler
domain to handle high-mobility channels more robustly. By directly leveraging delay and Doppler features,
OTFS can inherently support sensing-like operations, making it appealing for ISAC in future releases
of 5G and beyond. In information-theoretic studies, these models are often incorporated into resource-
splitting approaches. The ideal goal of ISAC is to further serve both tasks, as discussed in this work. For
details on the evolution of 3GPP, see [86].

ISAC with non-overlapped resources can also be implemented over orthogonal spatial resources e.g.,
different antenna groups [87]]. Thus, non-overlapping resource allocation can be performed in time,
frequency, or spatial domains, as illustrated also in Figure [I}

Frequency Frequency Frequency

Space Space Space
p: P pa P

Time Time

(a) Time-sharing (b) Frequency-sharing (c) Spatial-sharing

Fig. 1. The red cubes demonstrate the communication waveform, and the black cubes demonstrate the sensing waveform.

From an information-theoretic perspective, we examine pre-ISAC and non-overlapping schemes through
two baseline approaches: the Basic Time-Sharing (TS) scheme and the Improved Time-Sharing (TS)
scheme. The Basic TS scheme represents the non-overlapping resource allocation strategy, which divides
its resources (time, bandwidth, or spatial dimensions) between the following two modes:

o Sensing mode

The system aims to design a suitable waveform to attain the minimum possible distortion. In
this model, the waveform is translated into an input distribution; thus, the input probability mass
function (pmf) Py is chosen to minimize the distortion, and hence the minimum distortion is
achieved. The communication rate is zero.

o Communication mode
The system is designed to transfer as much reliable data as possible. Therefore, the input distribution
is chosen to maximize the rate and communicates rate equals channel capacity. The estimator is set
to a constant value regardless of the feedback and the input signals. The mode thus suffers from a
large distortion.

The improved time-sharing Improved TS scheme still performs a sort of non-overlapped resource
allocation, but resources are not exclusively dedicated to only sensing or only communication. It is
simply that one of these tasks is prioritized. The second baseline scheme is called Improved TS scheme
and can simultaneously perform the communication and sensing tasks. This scheme time-shares between
the following modes.

o Sensing mode with communication
The input pmf Py is chosen to achieve minimum distortion. At the same time, the transmitter is




also equipped with a communication encoder. It uses this input pmf to simultaneously transmit data
at the rate given by the input-output mutual information of the system.

o Communication mode with sensing
The input distribution is chosen to maximize the communication rate. i.e. achieve the capacity of
the channel. The transmitter is however also equipped with a radar estimation device that optimally
guesses the state-sequence based on the transmitted and backscattered signals.

D. Integrated Sensing and Communication (ISAC)

The concept originated from observations in communication systems where backscattered signals were
typically ignored and not utilized. Subsequent studies revealed that these backscattered signals, though
initially overlooked, could provide valuable information that can help the transmitter(s) (Tx) to improve
communication performance or simplify coding schemes. In fact, backscattered signals can help any
transmitting terminal to better estimate current and future channel conditions at the intended receivers
(Rx) or to identify the receivers’ uncertainty about the transmitted data. Accordingly, they can improve
transmission performance by adapting future transmissions to the uncertainties to resolve or to future
channel conditions. Such strategies allow to decrease error probabilities, simplify coding schemes, and
when channels vary only slowly in time, with high dependencies between channel conditions at different
time, adaptive scheme can even achieve higher reliable rates, i.e., improve capacity.

It is not hard to see that in typical ISAC scenarios, all non-extreme operating points of the Basic and
Improved TS schemes are highly suboptimal compared to optimal integrated schemes.

IV. MoONO-STATIC ISAC WITH SENSING DISTORTION

In this section, we introduce a first simple information-theoretic model of ISAC that allows to obtain a
convenient expression for the information-theoretic limits and tradeoffs for ISAC point-to-point channels
with a single Tx and a single Rx. Sensing performance is measured by an arbitrary distortion function, as is
typically used by information theorists in rate-distortion theory to formalize lossy compression systems or
joint source-channel coding. The model is powerful in the sense that it allows to include desired properties
both from a sensing and a communication perspective. For example, any arbitrary number of sensing
targets can be modeled, as well as a wide range of sensing metrics. On the other hand, depending on
the specific situation one wishes to analyze, this model can describe arbitrary communication and radar
channels, which may or may not depend on the sensing targets. Moreover, the model allows to include
arbitrary (perfect or imperfect) channel state-information (CSI) at the Rx and arbitrary instantaneous
but causal CSI at the Tx, which typically are obtained by transmission of independent pilot signals. To
state a note on the down-side of the proposed model, it can only model channels and targets that evolve
in a memoryless fashion. Moreover, certain sensing performances like detection probabilities cannot be
described using distortion conditions. To remedy this latter drawback, in Section ahead we introduce
a related problem where sensing performance is measured in terms of detection error probabilities.

Notice that a very related model was also considered in [55] for a multi-antenna Gaussian fading
channel. In this related work, sensing performance is however not measured in terms of distortion but
by an averaged inverse Fisher information, which is motivated by the well-known Cramér-Rao bound.
Particularly, in [55]], I-MMSE is introduced as a unifying relation between distortion-based sensing
(MMSE) and communications (mutual information) . It seems more difficult to determine the fundamental
limits of this basic ISAC model under this related sensing criterion; however [55] was able to determine
some extreme points of this tradeoff: the points of optimum communication performance or optimum
sensing performance.
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Fig. 2. The first information-theoretic ISAC model.

A. The Memoryless Model

The first information-theoretic model for a single-Tx single-Rx ISAC system was introduced by
Kobayashi, Caire, and Kramer in [58] and is depicted in Fig. [2] In this model, a single Tx wishes to
communicate a message W of nR independent and uniform data bits to the single Rx by communicating
over n uses of a state-dependent discrete memoryless channel. The state-sequence Si, ..., S, models
the parameters one wishes to estimate (e.g., the accelerations of a given target) and in this model are
assumed i.i.d. according to a given and known distribution Pg. At the same time, the Tx also aims to
estimate the state-sequence S} = (51, ...,.S,) from generalized feedback signals, which here model the
backscatterers observed at the Tx. The communication channel and the radar channel (i.e., the generation
of the backscatterers) are jointly modeled by a DMSC with stationary channel law Py 7 xs(y, 2|z, 5).
That means, if at a given time ¢ € {1,...,n} (more precisely for a given channel use i) the Tx feeds
input X; = z; to the channel and the state realization is .S; = s;, then the Rx’s time-i observed channel
output Y;, and the generalized feedback signal Z; backscattered to the Tx are generated according to the
conditional pmf Py 7 xs(, ‘|7, 8;), irrespective of the past inputs, outputs and state realizations.

The transmitter produces its (potentially random) channel inputs Xi,..., X, as a function of the
message W and the backscattered signals. So, it produces the time-i input as X; = ¢;(W, Z1, ..., Z;—1),
for + = 1,...,n. The receiver observes the channel outputs Y7, ...,Y, corresponding to these inputs and
based on the entire sequence produces a guess of the message W= g(Y1,....Y,).

Based on the backscattered sequence 71, ..., Z, and its produced inputs Xy, ..., X, the transmitter
also produces the state estimates (Sl, e Sn) = h(X1,...,Xn, Z1,...,Zy). The quality of these state
estimates is measured by the expected average per-block distortion

n
") . n gy - L &
Al = E[d(s", 5)] = ;E[d(&,&)} (1)

where d: S x S — Rf{ is a given bounded distortion function:

max d(s,§) < oo. )
(5,5)€SxS
Examples of commonly used distortion functions are the Hamming distortion d(s,$) = 1{s # 8§},

which measures the fraction of wrongly reconstructed symbols, or the mean-squared error distortion
d(s,3) = (s — 8)2, which measures the average squared distance between the reconstruction and source
sequences.

A last feature of this model is a cost constraint (such as a power constraint) on the input sequence, as



imposed by many practical communication systems. These cost constraints can often be expressed as
1 n
BBOC) = - D EbCK) G
1=

for some given cost functions b: X RaL. In case of an input power constraint, the cost function
b(z) = x? is implied for radio channels where the power is proportional to the square of the emitted
signal (which represents the electromagnetic field).

B. The Capacity-Distortion-Cost Tradeoff

The goal of information-theoretic studies is to identify the optimal performance that can be achieved
by choosing the best system implementation under given modeling assumptions. In the present case,
we consider the memoryless model introduced in the previous section and wish to determine the
performance of the optimal data encoders and decoders, and state estimators. We will limit the study to
encoders/decoders that have arbitrarily small error probabilities when the blocklength n grows without
bounds.

Definition 1. A rate-distortion-cost tuple (R, D, B) is said achievable if there exists a sequence (in n) of

encoding, decoding, and estimation functions ($1,. .., ¢on, g, h) that simultaneously satisfy
lim Pr[WW # W] =0, (4a)
n—oo
m A™ <D, (4b)
n—oo
1<
i — O < B.
Jim ~ Z;E[b(Xz)] <B (4¢)
1=

The capacity-distortion-cost tradeoff C(D, B) is the largest rate R such that the rate-distortion-cost
triple (R, D, B) is achievable.

The main result of Kobayashi et al. in [58], see Theorem [1] ahead '] provides an exact characterization
of C(D,B). A first step to obtain this result is to describe the optimal estimator, which in the present
memoryless model is pleasingly simple, because it operates on a symbol-by-symbol basis. That means,
estimate S“Z- of the ¢-th state symbol S; is solely based on the i-th input X; and feedback signal Z;.

Lemma 1 (Lemma 1, [58]]). Define the function
<§*(.I‘,Z) = argmiI}ZPSD(Z(SanZ)d(svsl)a (5)
s'€ seS

where ties can be broken arbitrarily, and

Ps(s)Pysx(2]s, )
Pg\x7(slz, 2) = - —- (6)
| Yses Ps(3)Pyisx (215, 2)
Irrespective of the choice of encoding and decoding functions, distortion A™ in #@Db) is minimized by
the estimator

R*(z™, 2") = (§%(x1, 21), 8% (22, 22), . . ., 8" (X, 20))- (7)

'The work in [58] assumes that the receiver has perfect state information at the receiver. Here, we give the more general
result that also includes the case without receiver state-information. Notice that this model is more general because any kind
(even imperfect) of receiver side-information can be provided to the receiver as part of the output Y, in which case the original
results of [58|] are recovered. For a more detailed discussions on this, see [66]].
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Notice that the function 3* (-, -) only depends on the SDMC channel law Py z\sx and the state distribution
Pg.

To be used later, define the following sets of input distributions:

Pg = {PX > Px(a)b(z) < B}, (8a)
TeEX
Pp = {PX > Px(2)E[d(S,§(X, 2))|X = 2] < D}. (8b)

reX

Then, the minimum distortion for a given cost B is given by

Dinin (B) := Pgei%sm;(PX(z)E[d(S, (X, 2))|X =a]. 9)

The main result in [S8], [|66]] is the following theorem:
Theorem 1. The capacity-distortion-cost tradeoff of a SDMC Py z5x with state-distribution Ps is:

C(D,B)= max I(X;Y), D>Dmin B>0. 10)
Px e(PsPb)

Remark 1. Notice that above result also remains valid if the expected distortion constraint is replaced
by an excess distortion constraint where the probability that the sequences exceed average distortion D
is required to vanish asymptotically in the blocklength n. The work in [59|] considered such an excess
distortion criterion but imposed weaker constraints where both the excess distortion probability and the
decoding error probability do not necessarily need to vanish asymptotically but simply be bounded by
given positive constants d,¢ € (0,1). The analysis in [59] showed that the fundamental limits remain
unchanged when the sum of both allowed error probabilities § + € < 1. If maximum error probabilities
are considered instead of average error probabilities (over messages), then the results remain for all
€,0 € (0,1), and the so called strong converse holds. Notice that the similar non-zero error probability
behaviours apply also to with only communication but no sensing, because communication takes place
over a compound channel, see [20)].

It has been shown in [67] that the rate-distortion tradeoff function C(D,B) is non-decreasing and
concave in D > Dy, and B > 0, and for any B > 0 saturates at the channel capacity without distortion
constraints Cnopist(B). For many channels, given B > 0, the tradeoff C(D, B) is strictly increasing in D
until it reaches Cnopist(B). However, for SDMBCs and costs B > 0 where the capacity-achieving input
distribution Py, := argmaxp _cp, I(X;Y | S) also achieves minimum distortion D,in(B) in (@), the
capacity-distortion tradeoff is constant, irrespective of the allowed distortion D. This is in particular the
case, when the expected distortion E[d(S, $*(X, Z))] does not depend on the input distribution Px.

To understand the result in Theorem (1}, consider the example of a real Gaussian channel with Rayleigh
fading and noisy feedback. (For more examples, see [58]|, [[67].) The channel output is thus given by:

Y = 5iXi + N, Y

where X; is the channel input satisfying lim,,_,o, = >, E[|X;|?] < B = 10dB, and both sequences {N;}
and {S;} are independent of each other and i.i.d. Gaussian with zero mean and unit variance. The Tx
observes the noisy feedback

Z; = Y; + Np s, (12)

where {Np,;} are i.i.d. zero-mean Gaussian of variance o2 > 0. We consider the quadratic distortion
measure d(s,5) = (s — 5)2.
The capacity of this channel is achieved with a Gaussian input X, ~ AN(0,B), and thus the
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Fig. 3. Capacity-distortion tradeoff of fading AWGN channel with B = 10 dB and o2 = 1. (Rate is measured in nats.)

communication mode with sensing achieves the rate-distortion pair

1
Croks(B) = SE [In(1 + 1S|?B)] = 1.213, (13)

(1+02)

Dmax(B) = E
( ) 1+|Xmax|2+0'f2b

= 0.367, (14)

where the numerical values correspond to 03 = 1 and P = 10dB and the logarithm here is with respect
to the natural unit and thus messured in nats.

Minimum distortion Dy, is achieved by 2-ary pulse amplitude modulation (PAM), and thus the sensing
mode with communication achieves rate-distortion pair (Rmin(B), Dmin(B)) = (0.733, ﬁ = 0.166)
where the numerical value again corresponds to og, = 1 and B = 10 dB. Next, they characterize the
performance of the basic TS baseline scheme. The best constant estimator for this channel is § = 0, and
the communication mode without sensing achieves rate-distortion pair (Cnopist(B), Duiviai(B) = 1). The
sensing mode without communication achieves rate-distortion pair (0, Dpin(B)).

In Fig. [3] the rate-distortion tradeoff achieved by these two TS baseline schemes is compared with a
numerical approximation of the capacity-distortion-cost tradeoff C(D, B) of this channel. As previously
explained, C(D, B) also passes through the two end points (Ruin(B), Dmin(B)) and (Cnogst(B), Dimax(B))
of the Improved TS scheme. To obtain a numerical approximation of the points on C(D, B) in between
these two operating points an alternating optimization method similar to the Blahut-Arimoto algorithm

is used in [58].

C. Log-Loss Distortion

The work in [60] considered a related setup, where distortion is measured in terms of log-loss distortion.
The goal of sensing is thus rather to obtain a soft estimate, i.e., probability distribution () Gn| X zn (-|a™, 2™)

for the state estimate, instead of a state-sequence S™. The model described in the previous section can
be adapted to account for a log-loss distortion constraint simply, where in particular the achievability
criterion (@b)) has to be replaced by the following requirement:

n

— 1 1
lim — E |log <D. (15)
nﬁoon; QS"|X"Z"(SH|XH’ZH)
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In analogy to Lemma El, it can be argued that the optimal log-loss estimator Qg is in product
®n
S|1xXz

| X7z

form and given by the posterior probability in (6]

Ps(s)Pzisx(2]s, )
Q% s|lz, z) = Pgxz(s|z,2z) = = —, (16)
sz 2) = Poaol02) = o P @) Py el )
which is solely determined by the channel law and the state distribution but not by the utilized coding
scheme.

We can thus conclude that the equivalent of the capacity-distortion-cost tradeoff for log-loss distortion

1s:
Theorem 2.
CLogLoss(D7 B) = P;Ié%);: I<X7Y)7 (17)
H(S|XZ)<D

where the entropy and the mutual information are calculated according to the joint law Psxyyz; =
PsPx Py 7 xs-

Notice again, that any kind of receiver side-information can be incorporated in the received signal
Y, and thus can be treated within the exposed framework. Notice further that [60] considers a slightly
different approach where the distortion constraint needs to be satisfied for any realization of the message
W = w. Interestingly, the two models lead to the same capacity-distortion-cost tradeoff and under both
models the optimal estimator is the posterior estimator.

D. Finite Block Length Results

A similar model as introduced in [58] is considered in [61]. Definition [I] needs to be adapted for the
nonasymptotic regime as follows:

Definition 2. Given a blocklength n, the rate-distortion-error triple (R, D, €) is said to be achievable if
there exist encoding, decoding, and estimation functions { f ) g, h(”)} satisfying

1
Elogz(W) > R, (18)
™ < (19)
A <D, (20)

The main results of [[61]] include the derivation of achievability and converse bounds on the rate-
distortion-error tradeoff in the finite blocklength regime.

Theorem 3. Given a blocklength n, the rate-distortion-error tradeoff (R, D, €) is achievable if there
exists a Px and a constant K > 0 such that the following conditions are satisﬁed.ﬂ

RSI(X;Y)—\/ZQl(G—ﬂu)—KlOf(m, 21

D> Z Z Z d(s, 8" (v, 2)) Px (v) Ps(s) Pz xs (2|7, 5), (22)

TEX sES z€Z

where

1 0.7975T

TR

i

Notice that here distortion is measured as an expected distortion over all messages. For small number of messages, i.e., small
blocklengths n, the encoder and decoder might need additional randomness to construct the desired distribution. A different
approach was taken in [88]], where sensing performance is measured with an excess distortion criteria.
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Fig. 4. Achievability and converse bounds on the rate-distortion-error trade-off for ¢ = 1073, ¢ = 0.4, K = 0.5 and different
values of the blocklength n.

and the mutual information 1(X;Y') and the central moments V and T are defined based on the joint
pmf Pxy(x,y) = Px(x)Py|x(y|x). On the other hand any rate-distortion-error triple (R, D, €) is not
achievable if for all 6 > 0 and pmfs Px satisfying the distortion condition the following lower bound

holds:
log(n) logd

)

2n n

R> 1067 - L e )+

where
_0.7975T n i
VnV3 Vn

Example 1. Consider the binary channel with multiplicative Bernoulli state:

B :

Y = SX, (23)

where all alphabets are binary X = S =) € {0,1}, the state is Bernoulli-q with g € (0,1) and the
feedback is perfect, i.e., Z =Y. We consider the Hamming distortion measure d(s,§) = s @ 8.

Fig. W illustrates the achievability and converse bounds in above theorem for ¢ = 1073, ¢ = 0.4,
K = 0.5. As can be seen from this figure the bounds are tight for large values of n. Notice that for
q = 0.4 the capacity of the channel is C = 0.246 and the achieved distortion is Deomm = 0.2432.

E. Channels with Memory

The previous sections assumed a memoryless stationary model both for the channel and the distribution
of the target/state that the transmitter wishes to estimate. The work [62] relaxed both assumptions and
considered a general model, where the state process {.S;} follows an arbitrary joint distribution and the
channel is characterized by a general sequence of transition laws Py, 7, xigizi-1yi-1, for ¢ = 1,2,....
The distortion constraint is also generalized beyond average block distortion constraints, by requiring
that 1

p— lim —d(S",S") <D, (24)

n—oo n

for a general non-negative distortion function d(-,-).
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Using Han and Verdu’s information-spectrum method, [62]] characterized the capacity-distortion
tradeof for this setup with memory. It is given by [62]

C(D) := sup p— lim li(X"; ") (25)
{Pxn}n n—oo T
where the supremum is over all input distributions {Px~} and estimators {S"(Z™ X")} satisfying
limy, 00 2d(S™, S™(X", Z")) < D. Here, i(X™;Y") is the previously defined information density
between sequences X" and Y.

A slightly different model was considered in [89], where the transmitter has to estimate the state-
sequence in an online manner, i.e., state-estimate S; has to be produced after having produced the time-i
channel input X; and having observed the time-: feedback signal Z;. The capacity-distortion tradeoff
was derived for this related model, but limiting to the class of ergodic channels where the sequences of
information-densities are sure to converge.

While the generality of the presented “arbitrary/ergodic non-i.i.d.” models is appealing, the complexity
of the expressions (both from an analytical perspective as well as in view of numerical evaluations) limits
the utility of the results. An interesting approach is to consider larger (not only i.i.d.) classes of channels
and source sequences for which the capacity-distortion tradeoff still has a relatively simple form.

In this spirit, the work in [[89]] characterized the capacity-distortion tradeoff of a class of channels that
have previously been introduced and studied in the context of pure capacity calculations. This class of
channels is also particularly interesting because the numerical calculation of capacity [90] as well as of
the capacity-distortion tradeoff can be cast into the framework of Markov decision processes and thus
solved using reinforcement learning (RL) as well as its many more advanced alternatives that have been
introduced in recent years such as Q-learning etc.

An RL approach has been followed in [89] to evaluate the capacity-distortion tradeoff for a specific
class of binary channels. Interestingly, the authors in [89] also analyzed the influence of the size of
the state-space considered in the RL approach, which corresponds to the memory in the coding strategy
employed at the transmitter. Figure [5| plots a weighted sum between the information rate and the distortion
in function of the weight factor 5. It shows the performances achieved by four versions of the RL approach
allowing for different sizes of the state-spaces: a full state-space; a highly-reduced state-space that only
allows to implement memoryless policies; and intermediate state-spaces with sizes equal to 10% or 40%
of the full state-space and thus allowing to implement coding strategies with a limited amount of memory.

S
IS

=)
©

Average reward

S
N

——Degenerate
——Limited with k = 0.1

Limited with k = 0.4
— Unbounded

0 0.2 0.4 3 06 0.8 1

Fig. 5. RL-Average Reward composed of (3 times the information rate and (1 — 3) times the negative sensing distortion.

V. SENSING AT THE RX (RX-ISAC) WITH SENSING DISTORTION

In certain practical systems, sensing is performed at a device that differs from the radar-emitting device.
Such situations are often referred to as bi-static radar. Information-theory literature has considered various

3 Additional cost constraints can be included in the model and the results in a standard way.
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bi-static ISAC scenarios [[63[|-[65]], [91]], [92]]. In this section, we focus on bi-static ISAC where the sensing
task is performed at the communication Rx, and the sensing task is to estimate the target (state) up to a
given distortion constraint.

Si—l/Sn
key
\4 ¥
i Integrated Decod, .
W —> Encoder > PY|XS > ntegrated Decoder -
& Estimator — g
Si

Fig. 6. ISAC with Rx sensing

The presented model captures one of the major challenges in bi-static ISAC, which is that the sensing
terminal is a priori not aware of the channel input sequence and thus due to the memory in the channel
input sequence symbol-by-symbol estimators based solely on the observations are suboptimal. We shall
see that when the sensing is performed at the communication Rx this difficulty is easily solved by first
decoding the data and reconstructing the input sequence which contains all the memory in the system. In
this case, a symbol-wise estimator based on this reconstructed input sequence and the observed sequence
of channel outputs achieves minimum distortion. (As we shall see in the section on Network ISAC, it
is more complicated to characterize the optimal estimation strategy when the sensing terminal is not a
priori required to decode all the transmitted data and codewords.)

A. A Memoryless Model

We consider a similar memoryless model as in the previous section. A single Tx wishes to communicate
a message IV to a single-receiver over a state-dependent channel and the Rx aims to decode this message
and at the same time also estimate the channel state-sequence up to the allowed distortion, see Figure [6]
In other words, the Rx applies a decoding function ¢(-) to its outputs to produce a message guess
W = g(Y™) and also a estimation function h(-) to produce the estimates 5™ = h(Y™). To allow for
a general model, we also include the models where the Tx knows the state-sequence S™ in one of the
following ways:

o the Tx has no information about S™;

o the Tx knows the entire sequence S™ non-causally, i.e., already before the entire transmission starts;

o the Tx knows S™ in a strictly causal way, i.e., it learns S; only after channel use ¢ and prior to

channel use 7 + 1;
« the Tx knows S™ in a causal way, i.e., it learns .S; just before channel use ¢.

Depending on the available state-information, the Tx produces its time-i channel input either as a function
of only the message W and the previous generalized feedack Z*~!, or also in function of the entire state-
sequence S™ (for the non-causal case), of the previous and the current state S (for the causal case), or
of the previous states S*~! only (for the strictly causal case).

The definition of the capacity-distortion function is analogous to Definition |1} but where encoding,
decoding, and state-estimation functions are as described above. Moreover, here we do not consider cost
constraints (which however could easily be included).
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B. Capacity-Distortion Tradeoffs

We start with the model without state-information at the Tx. In this case, the optimal estimator at
the Rx is a symbol-by-symbol estimator based on the observed sequence of outputs and the decoded
codeword, and the capacity-distortion tradeoff was characterized in [63]].

Theorem 4. When the Tx has no knowledge about the state-sequence S™, the capacity-distortion function
is given by

CNo-cst := Joax I(X;Y), (26)
where
Po = {PX > Px(x)E[d(S, 5*(X,Y))] < D}, (27)
reX

and §* (-, -) is the optimal estimator introduced in with the feedback output Z replaced by the decoder
output Y.

This capacity-distortion tradeoff for the setup where the Tx is not informed about the state-sequence
was also extended to a multi-access setup with multiple transmitter, see [91] and to a two-hop setup
[93]]. In the latter work it is shown that a decode-(indirectly)-compress-and-forward strategy achieves the
capacity-distortion function.

Consider next the scenarios where the Tx does learn the state-sequence S™ either causally or strictly
causally, see [64]], [92]]. In these cases, the Tx wishes to assist the Rx in the sensing task by conveying
information about the state-sequence to the receiver, in the same spirit as it sends data. In other words, the
Tx will compress the observed state-sequence and send the compression information to the Rx which then
reconstructs the compressed version of the state. The Rx finally applies an optimal symbol-by-symbol
estimator to this compressed sequence as well as to the decoded input codewords and the observed
channel outputs.

In case the Tx observes the state-sequence only causally or even strictly-causally, it has to employ
a block-Markov coding scheme, where in each block it sends compression information about the state-
sequence from the previous block. Transmission of this compression information and of the data is
performed using an optimal data-communication scheme. Specifically, in the setup with strictly-causal
state-information, a standard channel code is used that ignores the state-information completely. For the
setup with causal state information the Tx has to resort to Shannon strategies which have been shown to
achieve capacity in these setups. Notice that under Shannon strategies the channel inputs are generated
symbolwise from an auxiliary codeword and the state-sequence. The Rx thus does not have access to
the channel inputs even when it decodes the codewords correctly. Nevertheless, it can be shown that
the symbolwise estimator based on the decoded codewords and the observed channel output sequence
achieves the optimal Rx sensing performance.

Theorem 5 (Theorem 2, [64]). The capacity—distortion function for strictly causal state communication
is

CSr_r—caus.(D) = P;IIID%‘}.(XS <I(U,X,Y) - I(U7X75)>7 (28)

where the maximum is over all laws Px Py xg such that E[d(S,5*(U, X,Y))] < D, where (U, S, X,Y)
are distributed according to PsPx Py xsPy|xs and

§(u,x,y) = argmin > _ Pojyxy (slu, z,y)d(s, s"). (29)
s'eS ses
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The capacity-distortion function for causal state-communication is
Ccaus.(D) = max (I(U,V;Y) — I(U,V; S)) (30)

where the maximum is over all laws Py Py|y,s and functions x(v, s) such that E[d(S, $*(U,V,Y))] <D,
for (U,V, S, X,Y) distributed according to Py PsPyysI{X = z(V,S)}Py|xg and here

§*(u,v,y) = argmin Y Pgjyryy (slu, z, y)d(s, s). 31
§'€S g8

In above expressions, the U- and V -auxliaries stand for the auxiliary codewords. The subtracted mutual
information terms arise because the Tx transmits compression information together with the data, and
thus the rate of the compression information needs to be deduced from the total rate of communication
that can be sustained from the Tx to the Rx.

When the Tx observes the state-sequence non-causally, no block-Markov strategies are necessary.
Gel’fand-Pinsker (GP) coding [94], which achieves capacity for channels with non-causal state-
information at the Tx, is used to transmit the data and the compression information to the Rx. In
GP coding, again the channel inputs are obtained as a function of auxiliary codewords and the state-
sequence. The Rx thus again cannot reconstruct the sequence of channel inputs, even after decoding the
messages correctly. However, again, a symbol-by-symbol estimator based on the decoded codewords and
the observed sequences achieves the optimal Rx sensing perfomance.

For this setup, with non-causal state-information at the Tx, the exact capacity-distortion tradeoff is
generally still an open problem, only upper and lower bounds are known [92]. The work in [[65]] has
caracterized the exact capacity-distortion tradeoff in case of a Gaussian model with mean squared-error
(MSE) distortion. This is, for a scenario where the time-¢ channel output is given by Y; = X; + 5; + NV,
for X; the channel input, S; a Gaussian state of variance (J); and /Ny a Gaussian noise of variance N,
and d(s,3) = (s — §)2. In this case, the capacity-distortion tradeoff was derived in [65].

Theorem 6. The capacity-distortion tradeoff with non-causal state-information at the Tx in the Gaussian
case is given by:

1 rP

CGaus.(D) = -1 1+ — 32

Gaus. (D) Jmax 3 og( + N>, (32)
where the maximum is over all values of r satisfying

D>Q rP+ N .

VQ@+A—1)P2+rP+N

In above theorem, the parameter € [0, 1] indicates the fraction of the transmit power that the Tx uses

for data transmission, i.e., to encode the message. The rest of the power, i.e., a fraction 1 —r of the total
power, is used to send channel state-information (in an uncoded manner) to the Rx.

(33)

VI. NETWORK ISAC WITH SENSING DISTORTION

Modern communication systems are often multi-user and network-oriented, meaning that multiple Txs
wish to simultaneously transmit data to multiple Rxs and some of these terminals have to accomplish
sensing tasks. Characterizing the information-theoretic fundamental limits of multi-user network systems
has been an active area of research for decades [93]], and a vast majority of the systems still lack complete
and computable characterizations of the fundamental performance limits, even when only data has to be
transmitted, i.e., for systems without sensing tasks. Nevertheless, different interesting and insightful code
constructions have been proposed for network communication systems and it has been shown that they
perform reasonably close to the fundamental limits. In recent studies, people have introduced sensing tasks
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into these code constructions, so as to obtain information-theoretic network ISAC schemes. Information-
theoretic converse (infeasibility) results have also been derived for certain network ISAC scenarios. In this
section, we shall review both network ISAC coding schemes and converse results. Notice that network
ISAC has also received significant attention in the signal-processing and communication theory literature.
We refer to [33]], [96] for these results.

We will start by reviewing a broadcast ISAC where communication is from a single Tx to multiple
Rxs and the sensing is performed at the Tx. As we shall see, the sensing problem is the same as in the
point-to-point communication scenario, and thus the simple symbol-wise estimator in (3)) is optimal, so
that the sensing problem and the communication problem “decouple” similarly to the point-to-point case.
The second scenario that we consider in this section is the multi-access ISAC problem with Tx sensing.
Since the sensing task is accomplished at multiple distributed terminals with heterogeneous sensing
information, this sensing problem is fundamentally different and allows for more complicated strategies,
e.g. collaborative sensing strategies and interactive exchange of sensing information between the different
terminals. We shall present different ISAC coding schemes that perform the required communication
tasks, and at the same time also exchange sensing information, thus allowing to implement collaborative
sensing strategies. Similar strategies have been proposed also for device-to-device (D2D) communication
(the two-way channel) and the interference channel (IC).

A. One-to-Many Communication (Broadcast Channels) with Tx-Sensing

1) The Memoryless Model: Consider the single-Tx two-Rx broadcast ISAC system, which is
depicted in Figure Extensions to multiple Rxs follow standard techniques. The setup is similar

Zi1

Tx——  ————
. Yii . .
S Est. | Rx1 Wy, W,

x4
X; —
Wo, Wi, Wi P Enc. >  Pyysx

A

Sl' Y2_> Rx 2 "WO?Q,VAVQ

Pg

Fig. 7. State-dependent broadcast channel with generalized feedback and state-estimator at the Tx.

to the single-user setup in Subsection however communication is to two distinct Rxs 1 and
2. Specifically, the Tx wishes to communicate the rate-R; message Wy to both Rxs, the rate-R;
message Wi to Rx 1, and the rate-Rs message Wy to Rx 2. The Tx thus produces inputs of the form
X; = oi(Wo, W1, Wo, Z3,...,Z;—1), for i = 1,...,n. The communication channel and the generalized
feedback channel are governed by a state-sequence S™ that is i.i.d. according to Pg and is jointly modelled
by a stationary memoryless channel of transition probabilities Py,y, 7 xs(¥1, Y2, 2|7, s) determining the
outputs {Y7;} at Rx 1, the outputs {Y2;} at Rx 2, and the generalized feedback signals {Z;} at the Tx.

Based on its observed channel outputs Y} 1,...,Y} ,, each Rx k € {1, 2} produces the guesses W} ;, and
W}, of the messages Wy and W}, using appropriate decoding functions (Wo 1, Wi) = gk (Y1, -+, Yin),
and the Tx estimates the state-sequences as (S1,...,S5,) = h(X1,...,Xn, Z1,...,2Zy). As before,

communication performance is measured in terms of decoding error probabilities and sensing performance
in terms of expected average per-block distortion.
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Accordingly, we have the following achievability definition, for a given bounded and non-negative
distortion function d(-, -).

Definition 3. A rate-distortion tuple (Ry,R1,Rq2,D) is achievable if there exists a sequence (in n) of
encoding, decoding, and state estimation functions such that

lim Pr(Wk £ Wi or Wy # Wo) —0, kel{1,2), (34a)
nl;rl;o ZE (Si, S (34b)

The closure of the set of all achievable rate-distortion tuples (Ro,Ri,Re,D) is called the capacity-
distortion region CD.

Remark 2. Above model was considered in [66|]. The authors in [|67]] considered a slightly different
model where the state is composed of two components S = (Sy,S2), where each Sy, is revealed to the
corresponding Rx and has to be estimated at the Tx up to a maximum allowed distortion Dy. As already
mentioned for the point-to-point setup, receiver state-information is included in above model as a special
case, by including the state informations as part of the channel outputs. Similarly, since the state-alphabet
can be arbitrary but finite, in above model S can also be a pair of finite states (S1,S2). To be able to
fully capture the setup and the results in [67]] as special cases, it thus suffices to extend above model
from [|66]] to multiple distortion constraints, which can easily be done. The advantage of the model in
[66]] is that it is more general and allows to model all kinds perfect or imperfect state-information at
the Rxs.

2) Results: The optimal estimator is again given by Lemma (I} That means, the optimal estimator is
(irrespective of the choice of the encoding and decoding functions)

hp(a”, 2") = (85 (21, 21), 83 (2, 22), -+, 8 (@0, 20))- (35)

where §*(z,2) = argming ¢ s Psixz(s|r,2)d(s,s") was defined in (3) and the conditional
PS(S)PZ|SX( Is,x)

probability distribution Pg|xz(s|z,2) = S Ps () Pryox (215)

the state distribution.

Identification of this optimal estimator immediately allows to reduce the problem of characterizing the
capacity-distortion tradeoft region CD of the broadcast channel (BC) to the problem of identifying the
set of communication rates that are achievable under a given constraint on the statistics of the channel
input symbols. In this sense, we again notice a decoupling of the sensing problem and the communication
problem for the BC as for the point-to-point channel. The communication problem needs to be solved
under a constraint on the channel input statistics, but otherwise the sensing part does not interfere.

The pure communication problem over a memoryless BC with feedback is still open, and only inner and
outer bounds are known for general channels. Notable exceptions are the classes of physically degraded
BCs [97]] (where feedback does not increase capacity) and other classes of BCs with states [7]. For
these classes, with help of the optimal estimator in (35) one can immediately characterize the capacity
distortion region CD, see [67]]. For all other classes, the optimal estimator can be combined with the
proposed coding schemes for BCs with feedback [2]-[6] the known infeasibility proofs (converses) to
obtain inner and outer bounds on CD for general ISAC BCs.

The following inner and outer bounds on CD were reported in [[66]], see also [67]].

again only depends on the channel and

Theorem 7 (Outer Bound). If (Ro, R1,Re, D) lies in CD, then there exist pmfs Px, Py, x, Py, x such
that the random tuple (Uy, X, S,Y1,Y2, Z) ~ Py, x Px PsPy,y, 715x satisfies the rate constraints

Ro+Re < I(UiY2), k=12, (36a)
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RO + Rl S I(U07U15Y17‘/1) - I(U05U17U27Z;‘/b7‘/1 ‘ }/1) (383)
RO + R2 S I(U07U2;Y2>VY2) - I(U()aUlaUQaZ;Vba‘/Q ‘ }/2) (38b)
Ro + Ri + Re < I(U1; Y1, Vi|Up) + I(Ua; Yz, Va | Up) + kg{lilnz}f(Uo;Yka) — I(Uy; Us | Up)

_I(U07U17U27Z;‘/1 | ‘/anl) - I(UO,Ul,UQ,Z;‘/QH/b,YVQ)

— max I(Uy,Uy,Us, Z; Vy | Yi) (38¢)
ke{1,2}
2Ro + Ry + Re < I(Uop, U1 Y1, Vi) 4+ I(Ug, Us; Yo, Vo) — I(Uy; Us | Up)
_I<U07U17U27Z;‘/07V1 ’ Yl) - I(U07U17U27Z; VOa‘/Q ‘ }/2) (38d)
Ro+ Ri + Ry < I(X; Y7, Y3), (36b)

and the average distortion constraints
E[d(S, 5" (X, Z))] < D. (37)

Proposition 1 (Inner Bound). The capacity-distortion region CD includes all tuples
(Ro,R1,Re,D) that for some choice of the auxiliaries (Uy,Uy,Us, X,S,Y1,Ys, Z, Vo, V1,Va) ~
Pu,v,v,x PsPy,y, z15x Pvyvivi|uou, U,z Satisfy inequalities on top of this page and the distortion

constraint (37).

Block: 1 b b+1 B
- Comp. Info. || Comp. Info Comp. Info.
New Data New Data New Data -

Fig. 8. Block Markov coding structure.

The outer bound is obtained by considering a genie-aided system where Rx 2 observes not only the Y3
outputs but also the Y7 outputs, and by using the optimal estimator in (33). The inner bound is obtained
by combining again this optimal estimator with the scheme in [5]] for broadcast communication with
generalized feedback. The scheme in [5]] is based on a block-Markov strategy (see Figure |) where the
Tx uses the generalized feedback signals in a block and its own transmitted signal in the same block to
identify correlated compression information for both Rxs to improve their decodings. It then sends this
update (compression) information in the following block, where the correlation allows the Tx to send
part of the compression information as common information that is simultaneously useful for both Rxs,
which is more efficient than sending individual information to the Rxs and thus improves over no-feedback
communication. Technically speaking, the common information is created using distributed compression
techniques a la Gray-Wyner [29]. Decoding is performed backward, starts from the last block, where first
the refinement information is decoded and then used to facilitate decoding of the previous block.
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Both the inner bounds and the outer bounds are expressed with the help of auxiliary random variables.
Examining the details of the proof of the inner bound in [67], the auxiliary random variables Uy, Uy, Uy
are easily identified with the different types of codewords used in the code construction. The auxiliary
random variables Vy, V1, V5 are identified with codewords compressing the feedback signals and the
auxiliary codewords corresponding to Uy, Uy, Us. The Uy auxiliary random variables however again
point to a superposition structure given the Markov chains U, — X — Y.

More from a technical perspective, the auxiliary random variables allow to obtain inner and outer
bounds that can be expressed as single-letter optimization problems. On the negative side, these
optimization problems often still have high computational complexities.

3) Example: Consider the physically degraded broadcast channel with binary input and output
alphabets X = Y; = ), = {0,1} and two-bit state alphabet S = {0,1}?, i.e., the state S can be
written as S = (51, S2) with binary S; and S,. To describe the channel, let Y, = S, - X for each Rx
k € {1,2}, where the joint state pmf is:

1—gq, if (81,52) = (0’0)

)0, if (s1,s2) = (0,1)
Pl T ) = () >

q(l - /7) if (81,52) = (1’O)a

for a real number v, g € [0,1]. The generalized feedback signals are Z = (Y{,Y;) and the Rx outputs
Yi = (Y], Sk), which means that each Rx is informed of its corresponding state. Distortion is measured
in terms of Hamming distortion between S} and an optimal estimator of S; based on (X, 7).

Notice that S5 is a degraded version of .S, which together with the transition law ensures the Markov
chain X ——(S1,Y])—o—(S2,Yy) and the physically degradedness of the BC. For physically degraded BCs
the presented inner and outer bounds coincide [67] and thus we can obtain the exact characterization of
the capacity-distortion tradeoff of this example, which is shown numerically in Figure [0

0.2 0.3

0.4 -
R 05 060

0.05

Fig. 9. Capacity-distortion region for proposed example.

We observe a tradeoff between the two rates R; and Ro and the permissible distortion D. Moreover,
resource-sharing strategies are highly suboptimal as for the point-to-point case.

B. Multi-Access ISAC: Collaborative Sensing and Suboptimality of Symbol-Wise Estimators

This section reviews information-theoretic models for ISAC over multi-access channels (MAC). The
first information-theoretic ISAC MAC scheme was proposed in [[68]] based on Willems’ coding scheme
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for data communication [98]]. Willem’s scheme is again based on a block-Markov strategy where in each
block the Txs not only send fresh data but also update information pertaining to the previous block.
Again, the update information can be sent in a collaborative way, which renders the communication
more efficient.

In [70], [71]] an improved collaborative ISAC scheme has been proposed where the two Txs not only
cooperate for the purpose of data transmission but also for the purpose of exchanging sensing information
from one Tx to the other, so as to allow it to improve its sensing performance. More specifically, in [[70],
[71]] the two Txs exchange sensing information and data in each block, where the exchanged data is
then retransmitted in the next block to improve the decoding performance at the Rx. Recently, in [69]],
proposed a further improvement where the common update information sent by the two Txs not only
consists of data but also includes sensing information, allowing the Rx to obtain better state-information
and thus improve its decoding performance. (In the discussed models, the Rx has no sensing task, which
however could easily be included.)

1) The memoryless model: The model is similar to before, however now we have two Txs and a
single Rx, see Fig. Each Tx k € {1,2} wishes to send a rate-Rj message to the Rx and estimate
a memoryless state-sequence {Sy;}. The sequence of pairs {(S7;,S2,;)}i>1 are ii.d. according to a
given joint pmf Pg,g,. The channel input-output relation is specified by the memoryless and stationary
channel transition law Py 7 7.5, 5, x, x,- Based on the two messages 1, and W, and the past generalized
feedback signals Zj1,...,Zk;—1, each Tx k € {1,2} generates its time-i channel input as X ; =
&k i(Wk, Zi1,...,Zi—1) and at the end of the communication it estimates the state-sequence as 5‘,? =
hi (X}, Z}'). The estimated sequence S‘,? should match the state-sequence \S;! up to distortion level Dy,
when measured by a given per-symbol distortion function di(-,-). The receiver decodes both messages
W, and W, based on its observed channel outputs as (Wi, Wa) = g(Y™).

S Est. 1
i T 421,1'71
Wy Enc. 1
Xl,i ) Y; Wi
Pyz 7, x,X25.5, —»| Rx |
Xo Wo
Wy Enc. 2
Z2i—1
3, Est. 2 Ps,s;

Fig. 10. State-dependent discrete memoryless multiaccess channel with sensing at the transmitters.

Definition 4. A rate-distortion tuple (R1,R2,D1,Dz2) is called achievable in the setup above if there
exists a sequence (in n) of encoding, decoding, and estimation functions such that

lim Pr(Wl AWy or Wa # WQ) ~0 (40a)

_ 1 & .
lim — > E[dy(Sk,i, Ski)] < D, for k € {1,2}. (40b)
=1

n—o0 1 4
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In this multi-access ISAC setup, the closure of the set of all achievable tuples (R1,Ra,D1,D2) is called
the ISAC-MAC capacity-distortion region CD.

Like the previous point-to-point and broadcast ISAC models, also above MAC model includes scenarios
with (perfect or imperfect) Rx channel state information as special cases. (The state-information can
simply be added as part of the output.) Notice further that above model also includes scenarios where the
channel is governed by an internal i.i.d. state-sequence S™ of pmf Pg and the states ST, S5 are obtained
from S™ over an independent memoryless channel Pg, g, s-

2) Results: Determining the set of all achievable rates for the MAC with feedback is even open for
only data communication, without the sensing task. Only a non-computable multi-letter expression is
known in the general case [99]]. Exceptions are the Gaussian MAC with perfect feedback [100]] and a
class of semi-deterministic MACs with one- or two-sided perfect feedback [[101]]. Various coding schemes
[98]], [[102]-[104] have been proposed, as well as an outer bound on the feedback capacity based on the
dependence balance bound [[105]. A recurrent theme in the presented coding schemes is that the feedback
links to the two Txs allow to build up cooperation between the Txs. In fact, the feedback links establish
a communication path from one Tx to the other, and the two Txs can thus (either implicitly as in [[100]
or explicitly as in [98]], [102]-[[104]) align future channel inputs through cooperation, which amplifies
the signals compared to the noise and allows for a better decoding performance at the Rx. As we shall
see, the same idea is also key for proposing good MAC ISAC schemes.

There is a second fundamental idea that is required to achieve good ISAC MAC schemes, as we shall
see in the following. It is inspired from and closely related to the works on multi-access communication
over state-dependent channels where the Txs both have state-information, see for example, [106]-[110]

We first present infeasibility results for the ISAC multi-access problem. A first outer bound on the
capacity distortion region CD was established in [68]] and then improved in [[69]. The outer bound in
[69] is:

Theorem 8 (Outer Bound). The capacity-distortion region of the ISAC MAC CD is included in the set
of all tuples (R1, Ry, D1, D) that for some pomf Poq, Px, x,10q, satisfy:

Ry < I(X1;Y Z1 25| X2QQ7), (41)
Ry < I(X2;Y Z1 25| X1QQz), (42)
R1+ Ry < I(X1X2;Y Z125|QQ7), (43)
Ri+ Ry < I(X1X2;Y), (44)

with the dependence balance constraint:
I(X1; X2|QQz) < I(X1; X2|Z122QQz), (45)

and the sensing constraints:

Dy > E[d(skaé*(zlaZQaleXQ))]7 ke {172}7 (46)
fr.r-p(Dr) < I(SkXp; 211 X3Q), K, ke {1,2}, K #Fk, (47)
fe.r—D(Dr) < I(Sk; Z1221X1X2Q), k€ {1,2}, (48)

where fi r—p(Dy) is the standard rate-distortion function of source Sy.
It suffices to consider QQ and Q) z whose alphabets Q and Qz have cardinalities satisfying |Q|-|Qz| <
][] + 3

The outer bound is obtained by combining standard information-theoretic bounding steps with the
following three key ideas: 1) providing Tx k also with Tx &’ inputs and outputs (X}, Z}), for k, k" €
{1,2} and k # K/, during the sensing task can only improve sensing performance and leads to constraint
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#6); 2) applying dependence balance considerations a la Hekstra and Willems [1035] based on the pair
of generalized feedback outputs (Z1, Z3) yields a valid constraint, see (43)); and 3) the sensing distortion
at Tx k cannot be smaller than the minimum sensing distortion in a joint-source channel coding problem
where the source S} is transmitted from Tx £’ to k, see constraints and (48). The former two key
ideas were already exploited to derive the outer bound in [68]. Idea 3) was proposed in [69] and allows
to obtain a strictly improved bound.

A first coding scheme (and thus achievability result) for the ISAC MAC was proposed in [68] based
on Willems’ scheme for multi-access communication with feedback in [[101]]. The scheme is again based
on a block-Markov strategy where in each block the two Txs send new independent data as well as
common update information that will decoded at the Rx. More specifically, the scheme is illustrated in
Figure and each block consists of three layers, where the top-most layer is most difficult to decode
and the lowest-layer easiest. Both Txs send the same lowest-layer which thus can be transmitted in a

Standard Standard Standard
Decoded at Rx Comm. Comm. Comm.
Decoded at Collabor. Collabor. .. Collabor.
other Tx Comm. Comm. Comm.
Collabor. Collabor. Collabor.
Decoded at Rx Comm. Comm. Comm.
block 1 block 2 block B block B +1

Fig. 11. Block-Markov strategy of Willems’ multi-access scheme with generalized feedback.

cooperative manner, while the upper two layers are independent across the two transmitters. The details
of the three layers are as follows:

« In the top layer, each Tx independently sends new data in each block. This data is decoded at the
Rx only, following the backward decoding algorithm described later.

¢ In the medium layer, each Tx independently sends new data in each block. This data is decoded
at the other Tx at the end of the block and at the Rx following the backward decoding algorithm
described later.

o In the lowest layer, the two Txs cooperate and jointly resend the data sent by the two Txs in the
medium layer of the previous block. (Recall that the medium layer data of the previous block has
been decoded by the other Tx at the end of the previous block.) This data is decoded at the Rx
following the backward decoding algorithm described next.

The receiver decodes all transmitted data using a backward decoding procedure, starting from the last
block. Specifically, for each block it decodes the data in the top and lowest layer, while it already is
informed of the data sent in the middle layer, because it has decoded it in the previous step..

Each Tx k produces its state estimates S'Zf by using an optimal symbolwise estimator based on its
own inputs X7, its own observed generalized feedback signals Z7', and also the middle-layer codeword
symbols U}, decoded from the other Tx k' # k. It is clearly suboptimal for Tx k to estimate its state-
sequence S}’ simply based on its inputs X' and its feedback signals Z;', and an improved performance
can be obtained by attempting to decode also the codewords transmitted by the other Tx k’.

In [68] the sensing tasks and data communication tasks are thus still considered individually. A first joint
approach was considered in [70], [[71], where sensing information was introduced to the coding scheme
so as to allow for collaborative sensing, in other words to allow each Tx to exploit sensing information
available at the other Tx. On a technical level, this was enabled by having each Tx k£ compress the signals
U ,?,7 , X ,JCV ,and Z ,f:V of a given block and send the compression information (described in bits) as additional
information in the medium-layer of the next codeword, see Figure This way, any of the two Txs can
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convey sensing information to the other Tx over the Tx-to-Tx path, because the information in the medium
layer is decoded at the other Tx. The compression information is also decoded at the Rx, and used to
improve decoding of the transmitted data. For the compression of the sensing information, the scheme
in [70]], [71]] uses implicit binning, i.e., the Tx as well as the Rx use their side-information about the
compressed sequences from their own inputs and observations to reconstruct the sensing information. This
allows the scheme to occupy less rate in the medium-layer codewords and thus improve communication
efficiency.

The other encoding and decoding steps are as in the scheme in [[68]] and described previously. Each
Tx k now performs the sensing task by producing symbol-wise estimates based on the triples U, é\f , X év ,
and Z ]i\/ and of the compression information obtained from the other Tx %'.

Standard Standard Standard
Decoded at Rx Comm. Comm. Comm.
Decoded at Collabor. Collabor. |Collabor. .. Collabor. | Collabor. Collabor.
other Tx Comm. Sensing | Comm. Sensing | Comm. Sensing
Collabor. Collabor. Collabor.
Decoded at Rx Comm. Comm. Comm.
block 1 block 2 block B block B +1

Fig. 12. Block-Markov strategy of the ISAC multi-access scheme in [71].

Above coding schemes establish the following inner bound to the capacity-distortion tradeoff region
CD [70], [71].

Theorem 9. The capacity-distortion region CD of an ISAC MAC system includes any rate-
distortion tuple (R1, Ry, D1, D2) that for some choice of pmfs Py,, Pu, v, Pu,|ues Px,[vs0: > PXa U Us s
Py vav,x. 2,5 Pva|u,U, X, 2, Satisfies Inequalities (49) on top of the next page (where U := (Uy, U1, Us))
as well as the distortion constraints

Dk 2 E[dk(Sk,QbZ(Xk,Zk7Uk/,Vk/)], (50)
for

O (ks 2k, wpy, Vi) 1= arg ml;} > Pouxazu0vi (SklTk, 2 i, i) di (s, ).
§'€5k 5, €8,

(51

In above theorem, the Uy random variable stands for the common lowest-layer codeword of both Txs,
U1 and Uj stand for the medium-layer codewords of the two Txs, and X; and X5 for the top codewords
sent by the two Txs. The random variables V; and V5 stand for the compression informations produced
at Tx 1 and 2, respectively. Accordingly, the previous achievable region in [[68] is obtained as a special
case from above theorem by setting V), = V5 = constants.

A further improvement has been obtained in [69] by adding sensing information also to the lowest and
the top codewords, see Figure In other words, the two Txs jointly resend the two parts of exchanged
compression informations in a block in the next following block as part of the lowest codeword, and in
each block they individually add compression information to the top layer, which is not decoded at other
Tx but only at the Rx. Indeed, as already mentioned, the Rx can be interested in receiving compression
information so as to improve its observations and thus decoding performance of the transmitted data.

It is rather straightforward to identify further ways of obtaining improved multi-access ISAC schemes.
For example, one could add additional coding layers as in Marton coding in a way that the Rx is not
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—l—min{I(Xk;Y | U()Xk/) + I(Vk;XlXQY ‘ Q) —i—I(Vk/;XlXQYVk ‘ Q) — I(Vk;Xka |Q),

I( X1 XY | UgUg) + I(Vie; X XoY | U) + I(Vi; Xa XoY Vi | U) — I(Vier; Xiw Zye | U),

I(XlXQ;Y ’ Uo) —i—I(Vk,XlXQY ‘ Q) + I(Vk/;XlXQYVk ’Q)
I (Vi X3 Zi |U) = I(Vi; X Zy | U), I(Xg; YVIV, | UXkr)}

K. ke {1,2}, k#k, (49a)

Ri+ Ry < I(U2; X171 | UgUn) + I(V; X1 Z1 | U) — I(Vo; XoZ5 | U)
+I(Uy; XoZs | UgUs) + 1(V1; X2Zo | U) — I(Vi; X121 | U)

+min{I(X;X2;Y | UpgUs2) + [(Vi; X0 XoY | U) + I(Vo; X0 XoY V1 | U) — I(Vi; X121 | U),

I(X1X2;Y | UgUr) + I(V1; X XoY | U) + I(Va; X1 XoY'V1 | U) — I(Va; X225 | U),

I(X1 X0, Y | Up) + I(Vi; XnXoY | U) + 1(Va; X1 XoY'V) | U)
—I(V1; X021 | U) — I(Va; XoZo | U),

I(X1Xo; Y1V, | U)} (49b)

Ri+ Ry < I(X1 Xy V) +I(Vi; XnXoY |U) —I(V1; X021 |U) + I(Vo; X XoY V1 | U) — 1(Va; XoZo | U)
(49¢)

and for k', k € {1,2} and k' # k, the following satisfies

I(Uk; X Zyr | UoUps) + 1(Vies Xpo Zyr | U) > I(Vigs X Zy, | U), (49d)
I(Xng; Y | Uo) + I(Vl; X1 XY ] Q) + I(Vg; X1 XYV | Q) > I(V1; X127 | Q) + I(VQ; XoZo Q@é)
I(Xy Y | UpXp) + I(Vi; Xa XoY | U) + 1(Vo; Xa XoYV1 [ U) = 1(Vis XiZi | U). (491)
Sensi Standard [Sensing Sensing
Decoded at Rx Stgg?naéf Stgg;inar;(.i [7;;5;2931 ggnii nfo to Rx Info to Rx
Decoded at Collabor. Collabor.|Collabor. L. Collabor. Collabor. Collabor.
other Tx Comm. Sensing | Comm. Sensing | Comm. Sensing
Collabor. Collabor.
Decoed at B R Colior R e . e
block 1 block 2 block B block B +1

Fig. 13. Block-Markov strategy of the improved ISAC multi-access scheme in [69].

required to decode all sensing information. In fact, in certain scenarios sensing information is useless
at the Rx, and moreover the Rx has worse decoding capabilities than the Txs. Moreover, joint source-
channel coding methods could be applied for the transmission of sensing information. In fact, the sensing
informations sent at the two Txs are correlated and it is well known that in such a scenario a joint
source-channel coding approach can achieve improved performances. In an upcoming section, we briefly
discuss a joint source-channel coding approach for the two-way channel, i.e., for device-to-device (D2D)
communication.

3) Example: The following example shows the improvement of Theorem [9] over the previous scheme
in [68]]. As mentioned, a further improvement is achieved by the scheme in [69].
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Example 2. Consider binary noise, states and channel inputs By, By, Sk, Xi € {0,1}. The noise to the
Rx By is Bernoulli-ty, and By, the noise on the feedback link to Tx k, is Bernoulli-ty. All noises are
independent and also independent of the states S1,So, which are i.i.d. Bernoulli-ps. We can then describe
the channel as

Y' = $1X1 + S2Xs + Bo, Y = (Y, 51, 52), (52)
Z1 = 51Xy + 52 X2 + By, Zy = 51X1 + S2 X2 + Bs. (53)

In this example the Rx has perfect channel state-information Hamming distance is considered as a
distortion measure: d(s,8) = s @ 8.

Figure [I4] shows the maximum sum-rate Ry + Ry in function of distortion Dy achieved by Theorem [9]
(with collaborative sensing) and the region in [68|] without collaborative sensing where Vi = Vo =
constants. Both curves are strictly concave and thus improve over classic time- and resource sharing
strategies. The minimum distortions achieved are D3 ynin, = 0.035 with collaborative sensing and D2 yin =
0.04 without.

1.2

0.6 -

Ri+R,

0.4

=== collab. sensing
== non-collab. sensing

0.2}

Fig. 14. Sum-rate distortion tradeoff in Example 2] achieved without and with collaborative sensing, for given channel parameters
ps = 0.9, to = 0.3, t1 = 0.1 and t2 = 0.1.

Similar ISAC coding ideas were also proposed for the interference channel (IC) where two Txs
communicate to two Rxs [[111]. The idea is to use a block-Markov coding as for the MAC and that
the two Txs compress and convey sensing information in addition to the cooperative data communication
in previous blocks. The corresponding set of achievable rate-distortion tuples can be found in [111].

C. Device-to-Device (D2D) Communication (Two-Way Channel)

Besides ISAC multi-access systems, [71]] also studied the related two-way channel, i.e., device-to-
device (D2D) communication. The D2D setup is illustrated in Fig. and is similarly defined to the
MAC, except that message W; has to be decoded at Tx 2 and message Wy at Tx 1. There is thus no
receiver terminal. The capacity-distortion region CD is defined in analogy to the MAC setup.

The capacity region for D2D data communication (without sensing task), and thus the optimal coding
scheme, is still open in general. Various inner and outer bounds on the capacity region have been proposed.
Han [112] and Kramer [[113]] proposed schemes that correlate the inputs of the two terminals in a block-
fashion. While for Han’s coding scheme the correlation ensures a stationary distribution of the inputs
and outputs across the blocks and thus still allows for single-letter rate-expressions, Kramer has to resort
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Transmitter 1 Transmitter 2
S{L Estimator |< r Estimator Sg‘
A Z1i-1 Z2,i-1 .
Wy En/Decoder Py, 7,1x1 X251 5 En/Decoder Wi
X1, Xo
W Psys, W,

Fig. 15. State-dependent discrete memoryless two-way channel with sensing at the terminals.

! /
Puivs 7, 2, %, X000, (U1, Us, 21, 22, 21, 2)

- Z PU”XlZlUleZl(uHul’1‘1’Zl’al’i‘l’21)PU$|X222&2X222(U/2‘x2)Z?)u2)a2752722)
U1,U2,Z1,%2,21,22
Py, 7,1x,x, (21, 22|m1, 22) {71 = f1(wa, U1, %1, 21) } 1{w2 = fo(uz, g, T2, 22)}

-Puyvy 2, 2, x, X000, (U1, U2, 21, 22, T1, T2, Uy, U), (54)

to multi-letter rate-expressions based on directed mutual informations. An interesting outer bound on
the capacity region was proposed by Hekstra and Willems [[105] again based on the dependence-balance
idea, similar to the MAC with feedback.

The work in [71] proposed two coding schemes for the ISAC D2D problem. The idea of the first
scheme is to extend Han’s D2D coding scheme in a similar way as [71] extended Willems’ scheme
for the MAC. That means, the two terminals generate compression information, which they convey to
the other Tx as part of the indices sent in the data communication scheme. A second, more advanced
coding scheme based on joint source-channel coding, was also propose in [[71]. In this second scheme, the
compression information is not just transmitted by means of indices sent instead of data, but by correlating
the channel inputs with the sensing information (i.e., the compression codewords), as is typically done
in hybrid coding [28]]. This allows the two terminals to directly transfer the correlation of the sensing
information to the channel inputs, which often allows for improved decoding performances at the two
Txs.

Theorem 10 (Inner Bound via Joint Source-Channel Coding). The capacity-distortion region of the D2D
ISAC problem CD contains all rate-distortion quadruples (R, Ra, D1, D) for which there exists a choice
of the pmf Pyiu;z, 7,x, x,0,0, and functions fi and fo satisfying the stationarity condition (54) on top
of this page and so that the following two rate-constraints

Ry < I(Uy; Xy, Zyo, Upe, X, Zir) — I(U; X, Zoy Uny Xy Zie| Xrs Zie, Uy Xy Zie ),
kK e {1,2), K £k, (55)

and the two distortion constraints in
E[de(Sks 634(Us Xy Zio, Uk, Xy Zis O K Zs U)) | < Dis K € {12}, K A K, (560)
hold.
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VII. SECRECY OF ISAC SYSTEMS

Secrecy is a major concern in ISAC systems, both for the communication and the sensing tasks.
Depending on the applications, adversaries should not be able to learn the transmitted data and/or infer
information about the sensing targets. The information-theoretic literature has mostly studied the problem
of ensuring secrecy of messages [72], [88], [[114], [[115]], but first results also exist to ensure secrecy of
sensing information [73[]. The model is important because ISAC systems enable the surveillance of the
environment, and in many scenarios, it is crucial to prevent unauthorized access to user or channel
information. In this section we review both these lines of work.

A. Secrecy of the Message: The Memoryless Model

Based on the memoryless ISAC model in [|58]], a wiretap equivalent was introduced in [[72], see Fig @
In this model, communication needs to be such that the eavesdropper cannot learn part of the message,
which is formalized by the requirement that the equivocation between this specific message part and Eve’s
observations should vanish for large blocklengths. (This requirement is also known as strong secrecy in
the information-theoretic literature.)

. Zi—1
S, <4—| Est. |«
32 Eve
A A
X A(YZ,'ia Sa.i)
i \ 4
{/I‘;l_» Enc. X'i=Pylyzz\slszx
2
}Y i»S1i
A (Yii: S1)
Rx —»W,
S W;
Ps, s,

Fig. 16. ISAC model under partial secrecy, where only W> should be kept secret from Eve.

Formally, the problem is defined with a Tx, a legitimate Rx, and an eavesdropper (Eve). The Tx aims
to communicate a pair of messages (W1, Ws) of rates R; and Rj to the legitimate receiver, in a way that
Eve cannot learn any information about the message W;. (There is no constraint on how much Eve learns
about the other message W5. Communication is over a memoryless stationary state-dependent channel
Py y, 715X where X is the channel input, S; and .S, are the states, Y7 the outputs at the legitimate receiver,
Y5 the outputs at the eavesdropper and Z The generalized feedback. The state-sequences {(S7 4, S2,;)} are
assumed i.i.d. according to the given law Pg,g,, and the transmitter creates the time-i channel inputs as
X; = ¢;(W1,Ws, Z;_1) using some appropriate encoding function ¢;. At the end of the communication,
the Tx estimates the state-sequence as (51, S5)" = h(X", Z™). The receiver decodes the two messages
as (W1, Ws) = g(Y{*,57) using an appropriate encoding function. The goal of the communication is
that decoding error probability vanish asymptotically, that the reconstructed state-sequence matches the
correct state up to a given distortion constraints )1 and Dy under given per-symbol distortion measures
di(-,-) and da(-,-), and that Eve learns nothing about message W5 from her observations Y3 and S%.

Definition 5. A secrecy-rate-distortion tuple (Ry, Ry, D1, D) is achievable if it is possible to find a
sequence (in the blocklength n) of encoding, decoding, and estimation functions satisfying

lim Pr[Wj, # W]=0, ke{1,2}, (57)
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lim E[d(Sg,57)] < Dy, ke {1,2}. (59)

n—o0

The closure of the set of all achievable secrecy-rate-distortion tuple (Ry, Ra, D1, D) is called the secrecy-
capacity-distortion region SCD.

Here we chose to present the slightly restricted model where the Rxs learn the two state-sequences,
thus not allowing for no or only imperfect state information. A more general model can however easily
be obtained similar to the models presented in the previous sections. The reason for considering this
special case is that in the following we will limit to the special case where the Tx observes perfect
output feedback, i.e., Z = (Y1, Y2) without the two states, which does not allow to incorporate arbitrary
channel state-information distributions at the Tx and the Rx/Eve.

B. Secrecy of Messages: Results

Most of the results have been derived under the assumption of perfect feedback from both the Rx and
Eve, ie., Z = (Y7,Y32) [72]. Only the outer bounds in [72] apply for a slightly more general scenario
where Z is a noisy version of (Y7,Y3).

Notice that the optimal estimator at the Tx is the same as in the setup without secrecy constraint, see
(). In the case of perfect output feedback Z = (Y7,Y>) and two states, these optimal estimators are:

54(x,y1,92) = arg min > P ixviva (sl yi,p2)di(s, s'), k€ {1,2}. (60)
S/E kSESk

Combined with these optimal estimators, the output statistics of random binning (OSRB) proof
technique [[116] allows to achieve the following result [72].

Theorem 11 (Inner Bound). The secrecy-capacity-distortion region SCD contains all secrecy-rate-
distortion tuples (Ry1, Ra, D1, D2) that satisfy the following inequalities for some pmf Pyy x:

R1 S I(U; YlSl) (61)
Ry < min{[I(V;Y1|S1U) — I(V; Y| S2U)|T + HV151|Y2SV),  (I(V;Y1]S1) — R} (62)
Dy, > E[dg(Sk, 53(X, Y1, Y2))], k€ {1,2}. (63)

Theorem 12 (Outer Bound). The secrecy-capacity-distortion region SCD is included in the union over
all joint distributions Pyyx = Pyy Pxy of all rate tuples (R, Rz, D1, D2) satisfyingﬂ

R1+ Ry < I(V;Y1151), (64)
Ry < I(V; 181|Y2S5), (65)

One can limit V to |V| < min{|X|, |V1||S1], |V2]|S2|} + 1.

The above results assume that only a part of the message (namely W3) has to be kept secure from Eve.
Corresponding results where all messages have to be kept secure are easily obtained by setting Ry = 0
and interpreting Ry as the total rate of all communicated messages.

Above inner and outer bounds do not coincide in the general case. They do in the case of degraded chan-
nels where Py, g, xs,v;, = Py,s,|v;5, and reversely degraded channels where Py, s, xs,v, = Py, 5,(v,5.-
They have also been specialized to several interesting and practical channels. In particular the results for
the Gaussian fading examples are worth being mentioned for binary states [114] as well as for Rayleigh
fading states [115].

“The bounds are slightly simpler and stronger than the bounds in [[72] and can be proved using similar steps.
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Finally, notice that a finite blocklength analysis for ISAC with security constraints has been performed
in [88].

C. Secrecy of Data and Sensing Information

In [73]] not only the message (data) has to be kept secure from an external eavesdropper, but also the
channel state-sequence S™. Depending on the channel, Eve will always learn about the channel state,
however it is required that this knowledge stays beyond a given threshold. In other words, the Tx has to
choose transmission strategies in a way that not too much information is leaked about the sensing target.
In a practical application this could mean that the Tx has to restrict to beamforming strategies where it
points its beam towards a given direction.

(1]
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Fig. 17. ISAC model with state-information at the Tx and secrecy constraints on messages and states .

To make the problem more interesting from a technical point of view, the authors in [73]] focused on
the setup in Figure where the Tx learns the state-sequence S™ in a non-causal manner (i.e., before
transmission starts) and the sensing is performed at the Rx. An external eavesdropper is not allowed to
learn any information about the message nor the sequence =™ which is obtained by passing the state-
sequence S™ through a memoryless channel Pz|g independent of the message and the communication
channel. Notice that the channel P=|s needs to be carefully chosen in the model to reflect the desired
security constraint. For example, it could select a part of the state if S is bipartite S = (S51,S2) and
only one of these states needs to be kept secret, or it could implement a function = = v(S) when only
certain characteristics of the target have to be kept secret. In general, the setup in [73]] allows to model
any stochastic relationship between the state .S and and the part that needs to be kept secret =.

In the setup of this section there is only one message W of rate R and the Tx produces its channel
inputs as X; = ¢;(W,S™), for S™ the i.i.d. state-sequence following a given pmf Pg. The channel
outputs Y" observed at the legitimate Rx and Z™ observed at the eavesdropper are produced from inputs
and states according to a given stationary and memoryless channel law Py 7 xg. Based on the observed
outputs Y", the Rx decodes the message as W = g(Y™) and produces an estimate of the state-sequence
an = h(Y™). The goal of the Tx is to find an encoding strategy for which the Rx can decode with
arbitrary small probabilities of error and reconstruct the state-sequence with desired distortion D but
such that the eavesdropper does not learn about the related sequence =™ nor the message W. This leads
to the following definition of achievability.

Definition 6. A rate-distortion pair (R, D) is called securely-achievable if there exists a sequence (in n)
of encoding, decoding, and estimation functions such that

lim Pr[W # W] =0 (67a)
lim I(W,="2"). =0 (67b)

T ]- = A
Jim_ ~ > E[d(S;, Si)] < D. (67¢)
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The following inner bound was proved in [73]].

Theorem 13. For any pmf Pyyx|s so that for the associated tuple (S,=Z,U,V,X,YZ) ~

PsPzsPyv x|sPyz|xs, the random variable = is independent of the pair (U, Z) and any function
g(+) on appropriate domains, all pairs (Ryy, D) satisfying the following inequalities

R<I(UV;Y)—-I(UV;S) (68)
R<IV;Y|U)-I(V;2Z | U)+min{0, I(U;Y) — I(U;S)} (69)

and
D < E[d(S,g9(U,V,Y))] (70)

are securely achievable.

Above achievability result is based on the following coding scheme. A two-level superposition code
with cloud-center codewords U™ and satellite codewords V™ is considered. The Tx uses the U™-codewords
to describe information about the state-sequence S™ to the receiver, where this cloud-center codeword can
also be decoded by the eavesdropper. It further uses the V"-codewords to send more refined information
about S™ as well as the message W to the Rx. The Rx decodes both the U™ and V" codewords so as
to recover the transmitted message W. It also reconstructs the state-sequence based on the two decoded
codewords and its own observed sequence of channel outputs. Security of the scheme against the external
eavesdropper is obtained by choosing the U™-codewords so that the decoded does not reveal information
about the ="-sequence (because the U™-codeword is also decoded by the eavesdropper). In fact, in the
construction, only the V"-codeword can contain information about =" and W, and they are chosen of
sufficiently high rate so that the eavesdropper cannot decode them.

The theorem includes several interesting special cases. When Z is independent of the input-state
pair (X, S), the setup reduces to the setup without secrecy constraint studied in [[I17], in which case
Theorem [13] can be simplified by choosing U =const. On a different note, when the entire state .S has
to be kept secret, = = S, then U has to be chosen independently of S and thus I(U;S) = 0 and the
minimum in the right-hand side of (69) evaluates to 0. Moreover, for = = S the right-hand side of
(68) is larger than the right-hand side of (69) because I(V;SZ|U) > I(V;S|U). Thus, for 2 = S,
Constraint is less stringent than Constraint where U only plays the role of a convexification
random variable.

Comparing the results where both message and state have to be kept secret with the results with no
secrecy constraint is applied, the price for the double state-and-message secrecy in the proposed scheme
seems to be independence of S with Z and the rate-reduction of I(V;Z|S) = I(SV;Z), see [73,
Corollaries 1-3].

Example 3. From [73|]. Consider the interesting examples with Gaussian channels

Y, =X;+S; + N, (71)
Z; = aX; +bS; + Ne g, (72)

for some given parameters a,b and {N;} and {N.;} memoryless standard Gaussian noise sequences.
Let further
E=5+4A4, (73)

for A ~ N (0,0124 > 0) independent of all other rvs. This setup covers the scenario where the entire
state-sequence has to be kept secret, with the choice 0124 = 0, and (with a slight abuse of notation) the
scenario where the state does not have to be kept secret at all, with the choice 0124 — 00. The following
Figure [18| shows an achievable set of rate-distortion pairs according to above Theorem [I3] for a = 0.7
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and b = 0.3 and S ~ N (0, 3) and with a input block-power constraint of P = 30. The set of achievable
rate-distortion pairs is provided without any secrecy constraints neither on messages nor state, with full
secrecy constraints on both (£ = S), and with security constraints only on the message but not on the
state (2 const). As shown at hand of this example, the additional secrecy constraint on the state is clearly
harmful and significantly reduces the set of achievable rates and distortions.
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Fig. 18. Comparison of the achievable rate-distortion tradeoffs under different secrecy constraints.

VIII. ISAC WITH DETECTION-ERROR EXPONENTS

Radar is not only used to estimate parameters such as vehicle velocities, arrival angles, etc., but is
also extensively employed to detect obstacles, or more generally, other terminals. In this context, the
sensing problem must be framed as a detection or hypothesis testing problem. This framework allows
us to incorporate memory into the channel transition law, analogous to slow-fading channels, thereby
making the model more reflective of realistic scenarios. This involves considering multiple hypotheses
(e.g., the presence or absence of one or more obstacles), and to ensure the model is fully general, we allow
the communication channel to depend on the chosen hypothesis. Such a scenario arises, for example,
when an obstacle obstructs the line of sight between the Tx and Rx, thereby significantly altering the
communication channel characteristics. Of course, the general model also accommodates simpler cases
where the communication channel remains independent of the hypothesis.

In this section, the sensing performance is quantified by detection error probabilities under the different
hypotheses. Since these error probabilities can be made to vanish asymptotically with infinite observation
lengths, the focus here will be on the exponential decay rate of these error probabilities. Much of the
existing literature on the fundamental limits of ISAC with detection error exponents has focused on
monostatic radar, where sensing (detection) is performed at the communication Tx [S9], [[74]-[77], [118].
A notable exception is [[118]], where detection is carried out at the communication receiver.

From an information-theoretic perspective, the detection-error ISAC problem is considerably more
challenging than the previously presented distortion-based ISAC setup. The primary difficulty stems from
the sensing aspect, as the optimal performance of hypothesis testing systems is not well understood, even
without the additional communication component present in ISAC systems. In particular, the simple
estimation and communication strategies employed in the distortion-ISAC setup are suboptimal. Instead,
the Tx can improve its detection performance by generating inputs according to a smart, sequential
strategy that adapts based on previously observed outputs. Specifically, in a multi-hypothesis testing
problem, the Tx might initially produce inputs based on a particular distribution, and once the observed
signals provide sufficient evidence to discriminate one hypothesis with high confidence, it can switch to
a different input distribution that better discriminates among the remaining hypotheses.

Adaptive systems are complex to implement, which motivates the practical interest in excluding them
from certain considerations. When restricting attention to non-adaptive strategies, similar closed-form
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expressions for the fundamental ISAC performance limits and trade-offs can be derived, as in the distortion
ISAC setup.

The next subsection explains the model both for the adaptive and non-adaptive coding scenarios, and
is followed by a section presenting the existing information-theoretic results on ISAC with detection
exponents. The last subsection has a slightly different flavour for the sensing task and the goal is to
detect a change point.

A. The Memoryless Block-Model

N Zz'—l
5 <4—| Est. |«
A )Zi—l
key
X; +
X; Yi
W—| Enc. ‘p|  Pyzisx »| Rx —»1)

A

S

Pg

Fig. 19. ISAC with a detection sensing problem.

Consider the model in Figure where the Tx wishes to communicate a message to a Rx over a
channel that depends on a single parameter § € O, for © a finite set, and at the same time aims to
determine this parameter based on the backscattered (generalized-feedback) signals. The parameter is
assumed to take value in a discrete and finite set, transforming the sensing problem into a hypothesis
testing/detection problem. For a given parameter # in a finite set O, the communication channel to the
Rx as well as the generalized feedback to the Tx are assumed to be stationary and memoryless, and are
described by a joint transition law Pf, Z|x In the information-theory literature, such a communication
channel with a fixed but a prior unknown parameter 6 is known as a compound channel [20], [119]

The switch indicates whether the Tx can employ adaptive/closed-loop coding or non-adaptive/open-
loop coding. More precisely, if the switch is closed, the i-th channel input X; can depend on the previous

generalized feedback signals Z1, ..., Z;_1, and if the switch is open then all inputs only depend on the
message W.
Formally, the Tx produces the channel inputs either as (in case of non-adaptive coding)
X" =¢M(W) (74)
or as (in case of adaptive coding)

XiZQSi(VV?le'-,Zifl), 7::17""”7 (75)
where ¢ and ¢, ..., ¢, are encoding functions on appropriate domains. The Tx further guesses the
parameter 6 as X

0=h(X1,...,Xn,Z1,...,Zn), (76)

using some appropriate detection function A(-). As before, the Rx decodes the transmitted message using
an appropriate decoding function: W = ¢(V1,...,Y,).

Communication performance is measured as before in terms of rate R of message W, where the Tx and
Rx have to be designed in a way that the decoding error probability Pr[W # W|0] vanishes asymptotically
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when the blocklength n increases under any of the hypothesis 6. In this sense, the communication rate
is defined in the same way as for the compound channel [20], [119].
Sensing performance is measured in terms of the asymptotic detection-error exponents

By 2 _% log Pr[h(Z", X™) £ 6| 0], 6€®, 77

where the conditioning on # simply indicates that the Z" sequence is generated from X" according to
the memoryless law P§| x-

Different requirements on the detection-error exponents have been considered in the literature [59],
[74]-[77]. We summarize the requirements in the following definition.

Definition 7. Ler © = {0,1}. Then we say that a rate-detection-error exponent (R,D) is achievable
in the Stein setup if there exists a sequence (in the blocklength n) of encoding, decoding and detection
functions so that the following three conditions are satisfied simultaneously:

lim Pr[W # W] =0 (78)
lim Pr(h(Z", X") #0|0=01=0 (79)
E; >D. (80)

Similarly, the triple (R, Do, D1) is achievable in a exponents-region sense, if above sequences exist so
that holds, as well as

Ey>Dy, 0€0. (81)

Let now © be arbitrary. Then, the rate-detection-exponent pair (R,D) is called achievable in the
symmetric setup if encoding, decoding and detection functions exist so that holds and

in Ey > D. 82

min Fy > (82)

To distinguish between the adaptive and non-adaptive case we will add the superscripts * and " to
the exponents and write D* and D™,

In contrast to the model described here, the works in [[74]-[76] imposed maximum error probability
conditions over the messages both for the decoding error probabilities as well for the detection error
probabilities. It turns out that the setup of achievable rate-detection-exponent(s) is the same under both
average and maximum error probabilities as long as one requires that all error probabilities vanish
asymptotically.

B. Results on the Block-Model

We first focus on the model where coding at the Tx is restricted to be non-adaptive. Combining the
results in [59], [74[]-[77], we obtain the following theorem:

Theorem 14. Under non-adaptive coding we have the following information-theoretic results for the
rate-detection-exponents regions in the Stein setup, the symmetric setup, and in the exponents region
sense.

1) In the Stein setup, a nonnegative rate-detection-error pair (R,D") is achievable if, and only if,

R < minlps
fco ~YIX

D™ < 3 Py(@)D (P (1) Pk () (84)

(X;Y), (83)
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2) In the exponents region sense, a nonnegative rate-detection-error pair (R,D"Y) is achievable if,
and only if, for some input distribution Px:

R < m@infpg‘X(X;Y) (85)
DI < Juin Er, | D (Pr | Phx)] (86)

Epy [D(Pzx || PY 5 )] <D3

3) In the symmetric setup, a nonnegative rate-detection-exponent pair (R, D") is achievable if, and
only if, for some input distribution Px:

R < min Ipe (X;Y), (87)
fce ~YIX

! 1-1
D™ < min min max — %:Px(x) log (Z (Phixs(zl2)) (Pgxstzla)) ) . (88)

As already mentioned, exactly characterizing the fundamental limits under adaptive coding seems a
very challenging problem and for the moment only achievability results are known [76], which however
prove the superiority of adaptive coding over non-adaptive coding. Notice that it has been known for a
long time that for the compound channel adaptive coding increases communication rate, because it allows
the Tx to learn the hypothesis with high probability and then adapt the input distribution (and thus the
code construction) to the actual transition law of the communication channel. This idea allows to obtain
the following result 76, Theorem 5].

Theorem 15. Under adaptive coding, a rate-detection-exponent pair (R,D%) is achievable in the
symmetric setup if for any 6 € © there exists an input distribution Px so that

R<Ips (X;Y), (39)
D* < min max — EP (z)log Z <P9 (z|a:)>l (Pa (z|x)) - (90)
T a#0 1€[0,1] - X . 21X 21X .

As mentioned in [[76[], a further improved region can be achieved by using adaptive strategies also to
improve the sensing parts, not only the communication parts. For a more detailed discussion, see [76].

C. Sequential (Variable-Length) ISAC with Detection-Exponents

In [120], a variable-length version of the ISAC setup with detection-error exponents in the symmetric
setup is considered. In this variable-length version, the transmission duration is not fixed from the
beginning, but varies in function of the generalized feedback signals, which in this case has to coincide
with the Rx’s channel outputs to ensure synchronization of the communication. After each time ¢, the
Tx will decide based on the past channel outputs Y7,...,Y; whether to stop or whether to continue
communication. Let 7' be the random time where transmission stops. The model in [120] imposes that
T be smaller than a given threshold n with high probability.

Given that the communication duration is random, also the number of transmitted message bits, and
thus the rate of communication, are allowed to be random. In fact, the message bits are supposed to
consist of a stream of i.i.d. Bernoulli-1/2 bits {U;}5°,, and an increasing sequence of numbers {M;},
which indicates at each time ¢ how many information bits have been transmitted until then and have to
be decoded at the Rx if transmission stops at time ¢. Since transmission stops at time 7', the Rx has to
decode W information bits. The rate is defined as

Rr = %, oD

n
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where recall that T is the stopping time of the communication and n is the given constraint (upper bound)
on this stopping time.
Formally, encoder, decoder, and state detector are described as follows:
o At each time t = 1,2, ..., the Tx forms the channel input as X; = f;(Uy,...,Upw,, Z'~1), for an
appropriate encoding function f;
o At the end of the transmission, the Tx guesses the state as 0 = h(XT,ZT), for an appropriate
guessing function h;
o At the end of transmission, the Rx decodes the transmitted message bits as gWr = g(Y1,...,Yr)
for an appropriate decoding function g.

Definition 8. A rate-detection-exponent (R, Dyy) is achievable in this variable-length setup if there exists
a sequence (in the blocklength constraint n) of stopping rules, encoding functions, decoding functions,
and state guessing functions, as defined above, such that:

lim maxmaxPr[T >n] =0 (92)
n—oo e u
lim min min Pr [R(") > R] =1 (93)
n—oo e u
lim max max Pr [(7WT =+ UWT‘G,UWT = u] =0, (94)
n—oo e u
1 .
lim —- log max max P [9 £0]0,U"r = u] > Dyr. (95)
n—oo N /cO® u

A set of achievable rate-detection-exponent pairs (R, Eyy,) for the described setup was presented in
[120]:

Theorem 16. All rate-detection-exponents (R, Dyy) that for each 6 € O satisfy the following two
conditions for some choice of Px (which can depend on )

R <I(Px, P x) (96)
. 0’ 0
Dyr < g&%EPX {D (PZ|XHP2\XH O7)

are achievable.

This result looks similar to the achiebability result in Theorem where however the variable-length
coding allows to improve the detection-error exponent from Chernoff information in (90) to the Kullback-
Leibler divergence in (97). An example in [120] illustrates well this benefit of variable-length coding by
means of a numerical plot.

D. Sequential (Variable-Length) ISAC with Change-Point Detection

A related model has also been considered in [78]. Communication again takes place over a fixed block
of n channel uses. However, the channel starts in the state # = 0 and at a random time v it will change
to a state # = 1. The goal of the state-estimator is to detect this change-point v with smallest delay. So,
detection is variable-length as in the previous subsection, however data communication is fixed-length
over n channel uses. Inputs have to be generated in an non-adaptive fashion.

Formally, the Tx generates its inputs as X" = f(”)(W), where W is a uniform message of rate R
and ¢ an encoding function of appropriate domain. The Rx guesses the message W as W = g(Y™)
using a guessing function g. We again assume perfect feedback Z = Y and the Tx thus estimates the
change-point using a stopping rule based on all inputs X" and the past outputs Y7, ..., Y;. We denote
the estimate of the change point by the random variable N € {1,...,n+ 1}, where n + 1 indicates that
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the channel did not change state. Notice that [V being a stopping rule based on the inputs and previous
outputs, formally means that each event N = i is measurable with respect to Y and X".

As usual, decoding error probability Pr[W # W] is required to tend to O as the blocklength n — oc.
Typical performance measures for the change-point detection problem are the false alarm rate (FAR),
which in the present setup should be defined as

— 1
FAR = i —_—.
oo Bog [N (w))] o9

and the worst-case average detection delay (WADD), which here is defined as:

WADD = sup lim max ess supy. B, [(N — v+ l)ﬂxn(w),Y”_l] . (99)

y>1n—o0 w
Here, defined E,[-] as the expectation operator assuming that the change point is at time v. Similarly,
E[] denotes the expectation when the state of the channel never changes and remains 6 = 0 throughout.

Definition 9. The pair (R,A) is called achievable in this quickest change point detection problem, if
for arbitrary small o > 0 there exists a sequence (in the blocklength n) of stopping rules N, encoding
functions ") and decoding functions g, such that the following conditions are satisfied:

FAR < « (100)
(6%

ADD < — 101

W, <X (101)

li_)m Pr[W # W] =0. (102)

In above definition, A describes the ratio between the FAR and the WADD.

The work in [[78] establishes a set of achievable (R, A) pairs by using subblock-composition codes
[121], which not only ensure a given empirical statistics (type) across any given codeword z"(w) but
also within each subblock.

Theorem 17. For any choice of Py, all pairs of (R, A) are achievable that satisfy
R<I(X;Y) (103)
A < Ep, [D (P}lXHP%X)} . (104)

IX. CONCLUSION AND FUTURE RESEARCH DIRECTION

In this work, we revisited several models of Integrated Sensing and Communication (ISAC) and
information-theoretic results on their fundamental performance limits and the tradeoffs between sensing
and communication. These results emphasize the dual role of signals in estimating channel characteristics
and enabling communication. We began by analyzing a point-to-point communication setup, where a
simple modification of the traditional telecommunication framework allows for integrated sensing at
the transmitter or receiver. We then reviewed the extended models for network scenarios such as the
broadcast channel, multiple-access channels, interference channels and device-to-device communication.
As we have seen, in these network scenarios, the backscattered feedback signals not only enable sensing
at the Txs but can also be leveraged for collaborative transmissions of sensing and communication data
in future blocks. This improves both the communication and sensing performance metrics and allows
for new improved tradeoffs and improved overall efficiency. To fully exploit the concept of collaborative
communication and sensing in these network ISAC scenarios, advanced coding schemes involving joint
source-channel coding schemes are needed. While a large amount of results has already been obtained
on ISAC systems with distortion constraints, important problems remain open in particular single-letter
or numerical solutions for channels with memory as well as improved coding schemes and matching
converse results for network ISAC systems.
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Emerging ISAC systems often face security constraints and the transmitted data or properties of the
sensing targets have to be kept secure from external or internal eavesdroppers. Information-theorists
have studied such ISAC systems with secrecy constraints and determined bounds on the fundamental
performance limits, with a focus on secure ISAC coding schemes. We presented these secure ISAC
coding schemes and the corresponding securely achievable rate-distortion tuples. Results for different
setups were reported: the first setup only requires that part of the data be kept secret, while the second
setup imposes the more stringent constraint that besides the data also part of the sensing information
should remain unknown to an external eavesdropper. Various future research directions are still open on
the information-theoretic framework of secure ISAC, starting with improved achievability and converse
results, channels with memory, multi-user systems, and other security constraints regarding the information
the eavesdropper obtains about the state-sequence.

Besides the mentioned ISAC scenarios where sensing performance is measured in distortion, this
overview article has also considered a fundamentally different ISAC model where the sensing task consists
in a detection/hypothesis testing problem. In this setup the relevant property of the sensing target is
characterized by a single finite-valued parameter and the goal of the sensing task is to correctly guess
this parameter. The main focus here was on the tradeoff between the achievable data rates and the
exponential decay rate of the detection-error exponents. Full characterizations of the set of achievable
rate-exponents tuples were obtained under the assumption that the Tx produces its channel inputs in a
non-adaptive way. Only preliminary results are available under adaptive coding, thus leaving an interesting
field of future research directions. Additional possible directions for future research include also network
scenarios or setups with memory.

Furthermore, key research topics include the role of Reconfigurable Intelligent Surfaces (RIS), high-
frequency systems (Terahertz and beyond), computational paradigms, and holographic technologies in
ISAC systems. Additionally, practical wireless propagation aspects, such as near-field effects, require
focused attention. Relevant recent works addressing these challenges include [[122]]—[|128]].

In conclusion, the convergence of sensing and communication in ISAC systems promises significant
advancements in both fields, but it also presents new technical challenges. As highlighted in [[129],
these challenges span multiple domains and require a comprehensive and interdisciplinary approach.
Addressing these challenges will require innovative adaptations of existing models and the development of
new schemes that harmonize communication, sensing, and security requirements in increasingly complex
environments. One notable direction is the combination of Artificial Intelligence (Al) and ISAC, which has
been extensively discussed in [[130] and [131]]. This integration demands not only algorithmic innovation
but also a rigorous theoretical foundation. Information-theoretic literature has proved extremely successful
in tackling first standard ISAC models, and one can hope that it will also provide a fertile background
obtaining these advanced theoretical foundations.
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