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†LTCI, Télécom Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France, Email: michele.wigger@telecom-paris.fr

Abstract—This paper identifies the Stein exponent of two dis-
tributed detection (binary hypothesis testing) setups with limited
communication over a discrete memoryless channel (DMC). In
the first setup, the DMC can only be used k(n) times, where
k(n) grows sublinearly in the length of the observations n. In
the second setup, the DMC can be used n times, however a block-
input cost constraint Cn is imposed and Cn grows sublinearly
in n. The optimal Stein exponent coincides for both setups and
depends on whether the DMC is partially-connected, i.e., one
of the output symbols can only be induced by a strict subset
of the input symbols, or fully-connected. For partially-connected
DMCs, the optimal Stein exponent of our setups coincides with
the optimal Stein exponent (identified by Han and by Shalaby and
Papamarcou) for the scenario where the sensor can communicate
a sublinear (in n) number of bits to the decision center and
communication is over a noiseless link. In contrast, for fully-
connected DMCs the optimal Stein exponent collapses and is
given by the optimal Stein exponent of the local test at the
decision center. In this case, the sensor and the DMC do not
help in improving the Stein exponent. Our results hold for general
independent and identically distributed sources.

Index Terms—Hypothesis testing, Stein exponents, DMC, sub-
linear cost constraint.

I. INTRODUCTION

Distributed binary hypothesis testing has been extensively
studied in information theory, with a key focus on the setup
involving a single sensor and a single decision center. In this
framework, both terminals observe correlated sources, whose
joint distribution depends on an underlying binary hypothesis.
The sensor transmits information to the decision center over
either a perfect communication link or a noisy channel. Based
on the received symbols and its local observations, the decision
center then makes a guess of the underlying hypothesis.

For certain classes of source distributions, Ahlswede and
Csiszàr [1], and later Rahman and Wagner [2], established the
optimal Stein exponent when communication occurs over a
noise-free but rate-limited channel. The Stein exponent quanti-
fies the best achievable exponential decay rate of the probabil-
ity of error under the alternative hypothesis, given a constraint
on the probability of error under the null hypothesis. This
type of asymmetric constraint is particularly relevant in alert
systems, where keeping the false alarm rate below a certain
threshold is sufficient, but minimizing the missed detection
probability is critical. Despite these early breakthroughs, the

optimal Stein exponent remains unknown for general source
distributions in this noise-less link setup. A prominent line
of works has established interesting lower bounds [3]–[8].
Similar results have also been obtained when communication
takes place over a discrete memoryless channel (DMC) [9],
[10] or when security constraints are imposed [11]–[16].

A somehow separate line of work [4], [17], [18] considered
the distributed hypothesis testing problem where the sensor
can send only a sublinear (in the observation blocklength)
number of bits over a noise-free link to the decision center,
which we call zero-rate. In this case, the sensor’s optimal
strategy [4], [17] is to send a single bit indicating whether
its observed source sequence is typical according to the
distribution under the null hypothesis. The decision center then
declares this null hypothesis if also its own observation is
typical according to the distribution under the null hypothesis,
and it declares the alternative hypothesis in all other cases.

Our contributions: In this work, we reexamine the results in
[4], but now in the realm of noisy communication channels.
More precisely, we assume that communication takes place
over a DMC and while the sensor and the decision centers
observe sequences of given blocklength n, the DMC can only
be used k(n) times, for k(n) a sequence that grows only
sublinearly in n. Our results reveal a dichotomy of the Stein
exponent for this setup. When the DMC has an output symbol
that can only be induced by some of the inputs but not all of
them, then it is possible to achieve the same Stein exponent
as reported in [4] for noiseless channels. In contrast, when
the channel is fully-connected, the optimal Stein exponent
collapses. In this case, it is reduced to the optimal exponent of
a local test at the decision center only; the sensor and the DMC
thus become completely useless in this case, in the sense that
they do not improve the Stein exponent. Notice that our results
hold for generally correlated but independent and identically
distributed (i.i.d.) observations. Results for a finite number of
channel uses are also discussed.

In the second part of the paper, we extend our results to a
setup where the DMC can be used n times but a stringent cost
constraint is imposed on the channel inputs. Specifically, we
assume that the DMC contains a designate zero cost symbol,
while all other symbols have positive costs and that the sum
of all input costs over a blocklength n is bounded by a block
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Fig. 1: System Setup

constraint Cn which grows sublinearly in n. As our results
show, the optimal Stein exponent for this relaxed setup is the
same as for our original setup where the DMC could only be
used a sublinear number of times.

Notation: We mostly follow standard notation. In particular,
random variables are denoted by upper case letters (e.g., X),
while their realizations are denoted by lowercase (e.g. x).
We abbreviate (x1, . . . , xn) by xn. To indicate the Hamming
weight, we use wH(·). We further abbreviate independent and
identically distributed as i.i.d. and probability mass function as
pmf. We denote by πunvn the joint type of sequences (un, vn):

πunvn(a, b) ,
nunvn(a, b)

n
, (a, b) ∈ U × V, (1)

and πun(a) the type of un. The set of all types of n-length
sequences over U is denoted Pn(U). The jointly strongly-
typical set of all un such that πun(a) = 0 if PU (a) = 0

and |πun(a)− PU (a)| ≤ µ otherwise, is denoted T (n)
µ (PU ).

II. A SUBLINEAR NUMBER OF CHANNEL USES

A. Problem Setup

Consider the distributed hypothesis testing problem in Fig-
ure 1 where for a given blocklength n, a sensor observes a
sequence Un and communicates to a decision center with
local observations V n. The distribution of the observations
(Un, V n) depends on a binary hypothesis H ∈ {0, 1}:

if H = 0: (Un, V n) i.i.d. ∼ PUV ; (2a)
if H = 1: (Un, V n) i.i.d. ∼ QUV , (2b)

for given pmfs PUV and QUV over the product alphabet U×V ,
where we assume that QUV (u, v) > 0 for all (u, v) ∈ U ×V .
Let PU and PV denote the marginal pmfs of PUV . Similarly
to the results in [4], we assume that the support of PUV is
included in the support of QUV .

Communication from sensor to decision center takes place
over k(n) uses of a discrete memoryless channel DMC with
finite input and output alphabets X and Y and transition law
ΓY |X . The number of channel uses grows sublinearly in n:

lim
n→∞

k(n) =∞ (3a)

lim
n→∞

k(n)

n
= 0. (3b)

For ease of notation we will also write k instead of k(n).
The encoder and decoder are thus formalized by two

functions f (n) and g(n) on appropriate domains, where f (n)

describes how observations Un are mapped to channel inputs:

Xk = f (n)(Un) ∈ X k, (4)

and g(n) describes how channel outputs Y k and observations
V n are used to generate the decision Ĥ:

Ĥ = g(n)(V n, Y k) ∈ {0, 1}. (5)

Definition 1: Given ε ∈ [0, 1), a miss-detection error expo-
nent θ > 0 is called ε-achievable if there exists a sequence of
encoding and decision functions {(f (n), g(n))}∞n=1 satisfying

lim
n→∞

Pr
[
Ĥ = 1|H = 0

]
≤ ε (6a)

lim
n→∞

− 1

n
log Pr

[
Ĥ = 0|H = 1

]
≥ θ. (6b)

The supremum over all ε-achievable miss-detection error ex-
ponents θ is denoted θ?sublin(ε).

B. Results

The following theorem determines the largest miss-detection
error exponent θsublin(ε), which depends on the source distri-
butions PUV and QUV as well as on the DMC transition law
ΓY |X , however not on ε ∈ [0, 1). In particular, the theorem
illustrates a dichotomy of this largest exponent with respect
to the transition law ΓY |X , depending on whether the DMC
allows to transmit a symbol with zero error probability. (I.e.,
there is no detection error when this symbol transmitted, but
there can be an error when a different symbol is transmitted.)

Theorem 1: Fix ε ∈ [0, 1).
1) If the DMC is such that there exist two inputs x0, x1 ∈
X and an output y∗ ∈ Y satisfying the two conditions:

ΓY |X(y∗|x0) > 0 (7a)
ΓY |X(y∗|x1) = 0, (7b)

the largest miss-detection error probability is given by:

θ?sublin(ε) = min
πUV :
πU=PU
πV =PV

D(πUV ‖QUV ). (8)

2) Otherwise, it is given by

θ?sublin(ε) = D(PV ‖QV ). (9)

Notice that the largest miss-detection error exponent for case
1) coincides with the largest exponent that is achievable when
communication takes place over a noise-free channel that can
be used k(n) times, while the largest exponent for case 2) is
obtained by a simple test at the decision center without any
communication. In this sense, the channels satisfying condition
(7) are equally-good for distributed detection as noiseless links
in the regime where the number of channel uses k(n) is
sublinear in n, while all other channels are completely useless.

Remark 1 (Finite Values of k): Above theorem holds under
the assumption that k → ∞. Most of the results however
remain valid also for fixed and finite k ≥ 1. Specifically,
the theorem remains valid for all DMCs violating Condition
(7) for all triples (x0, x1, y

∗). For DMCs satisfying (7) for
at least one triple (x0, x1, y

∗), the converse proof trivially
remains valid. By inspecting the proof in Subsection II-C, we



see that achievability continues to hold for all allowed type-I
error probabilities ε ≥ (1− ΓY |X(y∗|x0))k.

Remark 2: Result (9) holds also when the support of PUV
is not included in the support of QUV .

C. Proof of Theorem 1

Case 1): The converse follows from the result in [4],
which proves that the largest exponent over a noise-less link
cannot exceed the exponent on the right-hand side of (8). To
prove achievability, consider the following scheme. Fix a small
number µ > 0 and let x0, x1, y∗ be as in the theorem. Define

γx0 , ΓY |X(y∗|x0), (10)

which by our assumptions is strictly positive.
Sensor: If Un ∈ Tµ(PU ), send Xk = xk0 . Else, send Xk = xk1 .
Decision Center: If at least one of the channel outputs is y∗

and if V n ∈ Tµ(PV ), declare Ĥ = 0. Otherwise, Ĥ = 1.
Denote by αn and βn the probability of false alarm and the

probability of missed detection, respectively.
Analysis of αn:

1− αn (11)

= Pr
[
Ĥ = 0|H = 0

]
(12)

= Pr [∃i ∈ {1, . . . , k} : Yi = y∗ and V n ∈ Tµ(PV )|H = 0]

(13)
(a)
= Pr

[
∃i ∈ {1, . . . , k} : Yi = y∗ and V n ∈ Tµ(PV )

and Xk = xk0
∣∣H = 0

]
(14)

(b)
= Pr

[
∃i ∈ {1, . . . , k} : Yi = y∗ and V n ∈ Tµ(PV )

and Xk = xk0 , U
n ∈ Tµ(PU )

∣∣H = 0
]

(15)
= Pr

[
V n ∈ Tµ(PV ) and Un ∈ Tµ(PU )|H = 0

]
·Pr

[
Xk = xk0 |Un ∈ Tµ(PU )

]
·Pr

[
∃i ∈ {1, . . . , k} : Yi = y∗|Xk = xk0 ,H = 0

]
(16)

= Pr
[
V n ∈ Tµ(PV ) and Un ∈ Tµ(PU )|H = 0

]
·(1− (1− γx0

)k), (17)

where (a) holds because the output symbol y∗ can occur from
input x0 but not from input x1 and (b) holds because input
Xk = xk0 is sent only if Un ∈ Tµ(PU ).

Since γx0
lies in the half-open interval (0, 1], we have (1−

γx0
)k(n) that tends to 0 as n → ∞. Moreover, by the weak

law of large numbers, irrespective of µ > 0:

lim
n→∞

Pr
[
V n ∈ Tµ(PV ) and Un ∈ Tµ(PU )

∣∣H = 0
]

= 1 (18)

Plugging these limits into (17), we can conclude that the type-I
error probability of our scheme vanishes:

lim
n→∞

αn = 0. (19)

Analysis of βn and θ: Similarly to above, we have:

βn = Pr
[
Ĥ = 0|H = 1

]
(20)

= Pr
[
∃i ∈ {1, . . . , k} : Yi = y∗ and V n ∈ Tµ(PV )

Xk = xk0 and Un ∈ Tµ(PU )|H = 1
]

(21)

= Pr
[
V n ∈ Tµ(PV ) and Un ∈ Tµ(PU )|H = 1

]
·Pr

[
Xk = xk0 |Un ∈ Tµ(PU )

]
·Pr

[
∃i ∈ {1, . . . , k} : Yi = y∗|Xk = xk0

]
(22)

≤ Pr
[
V n ∈ Tµ(PV ) and Un ∈ Tµ(PU )|H = 1

]
(23)

≤ (n+ 1)|U||V|2−nminD(πUV ‖QUV ) (24)

where the minimum is over types πUV ∈ Pn(U × V) whose
marginals satisfy |πU (u)−PU (u)| ≤ µ and |πV (u)−PV (u)| ≤
µ.

We can conclude that

lim
n→∞

− 1

n
log βn = minD(πUV ‖QUV ), (25)

where the minimum is now over all pmfs πUV ∈ P(U × V)
with marginals satisfying |πU (u)−PU (u)| ≤ µ and |πV (u)−
PV (u)| ≤ µ. Picking µ > 0 sufficiently small, all type-II error
exponents smaller than the right-hand side of (8) can be shown
to be achievable.

Case 2): We now turn to case 2). Achievability of θ?sublin(ε)
is trivial, because it is achieved by a local test at the decision
center, without any communication.

To prove the converse, we fix a sequence of encoding and
decision functions {f (n), g(n)}∞n=1 such that limn→∞ αn ≤ ε.
To analyze the type-II error probability of such a scheme, we
introduce the notions of acceptance regions:

AV (yk) , {vn ∈ Vn : g(n)(vn, yk) = 0}, yk ∈ Yk, (26)

and
AV ,

⋃
yk∈Yk

AV (yk). (27)

We can then write the miss-detection error probability as:

βn = Pr
[
Ĥ = 0|H = 1

]
(28)

=
∑
yk

Pr
[
Y k = yk, V n ∈ AV (yk)|H = 1

]
(29)

=
∑
yk

∑
vn∈AV (yk)∑
un

Pr
[
Y k = yk, V n = vn, Un = un|H = 1

]
(30)

=
∑
yk

∑
vn∈AV (yk)

∑
un

Pr [V n = vn, Un = un|H = 1]

·Pr
[
Y k = yk|Un = un

]
. (31)

We continue to bound the second probability, by noticing that

Pr
[
Y k = yk|Un = un

]
≥ γkmin, (32)

where we define

γmin , min
x,y

ΓY |X(y|x), (33)

which is strictly positive by assumption. Thus:

βn ≥ γkmin

∑
yk

∑
vn∈AV (yk)

∑
un

Pr [V n = vn, Un = un|H = 1]

(34)



= γkmin

∑
yk

∑
vn∈AV (yk)

Pr [V n = vn|H = 1] (35)

≥ γkmin · Pr[V n ∈ AV |H = 1]. (36)

Since k grows sublinearly in n, the type-II error probability
of the chosen encoding and decision functions is bounded by

lim
n→∞

− 1

n
log βn ≤ lim

n→∞
− 1

n
log Pr[V n ∈ AV |H = 1], (37)

and thus is bounded by the type-II error exponent of a local
test at the decision center with acceptance region AV .

Notice next that under H = 0, the V n sequence falls in AV
with probability at least

Pr[V n ∈ AV |H = 0] ≥ Pr[V n ∈ AV (Y k)|H = 0] = 1− αn,
(38)

and thus, by assumption, the type-I error probability of the
local test on V n with acceptance region AV satisfies

lim
n→∞

Pr[V n /∈ AV |H = 0] ≤ ε < 1. (39)

We can now invoke the standard Stein lemma, which states
that the type-II error probability of any local test on V n with
type-I error probability bounded away from 1 satisfies

lim
n→∞

− 1

n
log Pr[V n ∈ AV |H = 1] ≤ D(PV ‖QV ), (40)

which concludes the proof.

III. SUBLINEAR RESOURCES

We reconsider almost the same setup, but now communica-
tion takes place over n channel uses and a stringent, sublinear
block-power constraint is imposed. Encoder and decoder are
formalized by functions f (n) and g(n):

Xn = f (n)(Un) ∈ Xn (41)
Ĥ = g(n)(V n, Y n) ∈ {0, 1}. (42)

The encoding function is required to produce inputs satis-
fying a stringent resource constraint, described by a bounded
and nonnegative cost function c(·) : X → R+

0 , for which we
assume that there exists a unique zero-symbol. We assume:

0 ∈ X (43)
c(x) = 0 if, and only if, x = 0. (44)

The stringent resource constraint is described by condition
n∑
i=1

c(Xi) ≤ Cn, with prob. 1, (45)

for a given sequence {Cn} that grows sublinearly in n:

lim
n→∞

Cn =∞ (46a)

lim
n→∞

Cn
n

= 0. (46b)

Definition 2: Given ε ∈ [0, 1), a miss-detection error
exponent θ > 0 is called ε-achievable under stringent
resource constraints {Cn} if there exists a sequence of

encoding and decision functions {(f (n), g(n))}∞n=1 satisfying
(45) and (6). The supremum over all miss-detection error
exponents θ that are ε-achievable under stringent resource
constraints {Cn} is denoted θ?str-cost(ε, {Cn}).

Theorem 2: For any DMC ΓY |X , and sequence of cost-
constraints {Cn} satisfying (46), we have

θ?str-cost(ε, {Cn}) = θ?sublin(ε), ∀ε ∈ [0, 1). (47)

Proof: Let x0, x1, y∗ be as in (7) and choose a sequence
of increasing blocklengths k(n) satisfying

max{c(x0), c(x1)} · k(n) ≤ Cn (48)

Notice that k(n) grows sublinearly in n by (46). Achievability
of (8) can thus be proved by employing the achievability proof
of (8) to the first k(n) channel uses of the DMC.

Achievability of (9) is trivial as it requires no communica-
tion and is thus not affected by the resource constraint.

To prove the two converses to (8) and (9), define

k′(n) ,
Cn
cmin

, (49)

where cmin , minx6=0 c(x) > 0. Notice that k′(n) bounds the
number of non-zero symbols in each possible input sequence
xn. The channel input sequence Xn thus lies with probabil-
ity 1 in the set of all low-weight inputs

X̃n := {xn ∈ Xn : wH(xn) ≤ k′(n)}. (50)

We shall show that the cardinality of X̃n grows sublinearly
in n, which immediately establishes the converse result to (8)
because the type-II error exponent in this setup cannot exceed
the type-II error exponent in the setup of [4], where the sensor
noiselessly sends a sublinear number of bits to the detector.

To see that the cardinality of X̃n grows sublinearly in n,
notice that this set can be described as the union over all type-
classes (i.e., sets of sequences with same type) for types that
assign frequency larger or equal to 1− k′(n)

n to the 0 symbol.
Since the type-class for type π is of size at most 2nH(π) and
the number of type-classes is bounded by (n+1)|X |, we have:∣∣X̃n∣∣ ≤ (n+ 1)|X |2nmaxπ H(π), (51)

where the maximum is over types satisfying π(0) ≥ 1− k′(n)
n .

Since k′(n) grows sublinearly in n, by continuity of entropy:

lim
n→∞

1

n
log
∣∣X̃n∣∣

≤ lim
n→∞

 |X |
n

log(n+ 1) + max
π :

π(0)≥1− k′(n)
n

H(π)

 = 0. (52)

To prove the converse to (9), we notice that for any two
input sequences xn1 , x

n
2 ∈ X̃n and output sequence yn ∈ Yn:

γ
2k′(n)
Q ≤ Pr [Y n = yn|Xn = xn1 ]

Pr [Y n = yn|Xn = xn2 ]
≤ γ−2k

′(n)
Q , (53)



where

γQ , min
x1,x2,y :
x1 6=x2

ΓY |X(y|x1)

ΓY |X(y|x2)
∈ (0, 1]. (54)

Trivially, this implies also the bounds:

γ
2k′(n)
Q ≤ Pr [Y n = yn|Un = un1 ]

Pr [Y n = yn|Un = un2 ]
≤ γ−2k

′(n)
Q , (55)

for any input and output sequences un1 , u
n
2 ∈ Un and yn ∈ Yn.

Noting that the conditional law of Y n given Un is the same
under both hypotheses and also that the Markov chain Y n →
Xn = f (n)(Un)→ V n holds under both hypotheses, we can
conclude that:

Pr [Y n = yn|Un = un,H = 1]

= Pr [Y n = yn|Un = un,H = 0] (56)

=
∑
ũn

Pr[Un = ũn|V n = vn,H = 0]

·Pr [Y n = yn|Un = un,H = 0] (57)
(a)

≥
∑
ũn

Pr[Un = ũn|V n = vn,H = 0]

·Pr [Y n = yn|Un = ũn,H = 0] · γ2k
′(n)

Q (58)
(b)
=
∑
ũn

Pr[Un = ũn|V n = vn,H = 0]

·Pr [Y n = yn|Un = ũn, V n = vn,H = 0] · γ2k
′(n)

Q (59)

= Pr [Y n = yn|V n = vn,H = 0] γ
2k′(n)
Q , (60)

where Inequality (a) holds by (55) and Equality (b) because
V n → Un → Y n forms a Markov chain.

Define the acceptance regions

AV (yn) , {vn ∈ Vn : g(n)(vn, yn) = 0}, yn ∈ Yn. (61)

Similarly to the converse proof to (9)—but where yk needs to
be replaced by yn—we have:

βn =
∑
yn

∑
vn∈AV (yn)

∑
un

Pr [V n = vn, Un = un|H = 1]

·Pr [Y n = yn|Un = un,H = 1] (62)

(a)

≥
∑
yn

∑
vn∈AV (yn)

∑
un

Pr [V n = vn, Un = un|H = 1]

·Pr [Y n = yn|V n = vn,H = 0] γ
2k′(n)
Q (63)

≥
∑
yn

∑
vn∈AV (yn)

Pr [V n = vn|H = 1]

·Pr [Y n = yn|V n = vn,H = 0] γ
2k′(n)
Q . (64)

where Inequality (a) holds by (60).
By assumption, γ2k

′(n)
Q is subexponential in n, and thus

lim
n→∞

− 1

n
log βn

≤ lim
n→∞

− 1

n
log
∑
yn

∑
vn∈AV (yn)

Pr [V n = vn|H = 1]

Y n
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Channel
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Fig. 2: Derived binary hypothesis test with channel
PY n|V n,H=0 used under both hypotheses.

·Pr [Y n = yn|V n = vn,H = 0] . (65)

The right-hand side of above equation corresponds to the
miss-detection error exponent of a local detection problem of
the form in Figure 2, where the decision center observes V n,
which is i.i.d. PV or QV depending on the two hypotheses, and
the outcome Ỹ n, which is generated from V n according to the
same law Pr [Y n = yn|V n = vn,H = 0], irrespective of the
hypothesis. So, we encounter a randomized binary hypothesis
test with observation V n and acceptance region AV (Y n). We
notice that the probability of correct detection under H = 0
of the randomized test satisfies∑

yn

∑
vn∈AV (yn)

Pr [V n = vn|H = 0]

·Pr [Y n = yn|V n = vn,H = 0] ≥ 1− ε. (66)

By standard Stein exponent arguments, the limit on the right-
hand side of (65) is thus upper bounded by D(PV ‖QV ).

IV. CONCLUSION AND OUTLOOK

We derived the optimal Stein exponent for two distributed
hypothesis testing problems where communication resources
are scarce in the sense that either the channel can be used
only a much smaller number of times than the length of
the observations or in the sense that the transmitted signal
is subject to a stringent block-power constraint that grows
sublinearly in the observation length. Our results revealed
a dichotomy with respect to the DMC ΓY |X over which
communication takes place. If the DMC is fully-connected
then the optimal Stein exponent is no better than the exponent
of a local test at the decision center. The sensor and the
communication over the DMC thus do not lead to a larger
exponent in this case. If in contrast the DMC is only partially-
connected, then the optimal Stein exponent coincides with the
exponent that is achievable when the DMC is noise-free.

An interesting research direction is to consider in the future
concerns more relaxed resource constraints such as expected
resource constraints. In this case we expect larger exponents
to be achievable when the DMC is fully-connected. Proving
matching converses however seems to require additional tools.
Extensions to multiple sensors are also of practical interest. It
might be possible to obtain them with the presented tools.
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[14] S. Sreekumar and D. Gündüz, “Testing against conditional independence
under security constraints,” in 2018 IEEE International Symposium on
Information Theory (ISIT), pp. 181–185, 2018.

[15] S. Faour, M. Hamad, M. Sarkiss, and M. Wigger, “Testing against
independence with an eavesdropper,” in 2023 IEEE Information Theory
Workshop (ITW), pp. 277–282, 2023.

[16] A. Bounhar, M. Sarkiss, and M. Wigger, “Covert distributed detection
over discrete memoryless channels,” in 2024 IEEE International Sym-
posium on Information Theory (ISIT), pp. 172–177, 2024.

[17] T. Han and K. Kobayashi, “Exponential-type error probabilities for
multiterminal hypothesis testing,” IEEE Trans. Inf. Theory, vol. 35, no. 1,
pp. 2–14, 1989.

[18] P. Escamilla, M. Wigger, and A. Zaidi, “Distributed hypothesis testing:
cooperation and concurrent detection,” IEEE Transactions on Informa-
tion Theory, vol. 66, no. 12, pp. 7550–7564, 2020.


