Information-Theoretic Results on D2D Networks

Michèle Wigger (michele.wigger@telecom-paristech.fr)

joint work with S. Bross, G. Kramer, A. Lapidoth, S. Shamai, R. Timo

Indo-French Workshop on D2D, Paris, 21 June 2016

Capacity Region of D2D Networks?

- lacktriangle Block transmission with messages $M_\ell \in \{1,\dots,2^{nR_\ell}\}$
- ▶ $p(\mathsf{error}) \to 0$ as $n \to \infty$

Which rates (R_1, \ldots, R_L) achievable over a network? Which are not?

- ▶ 2 or 3 user multi-access (uplink)
- 2 user broadcast (downlink)
- ▶ simple (large) interference networks

Willems's MAC with D2D Transmitters (Willems'83)

- ▶ Interactive communication pipes between transmitters
- ▶ Can send $nC_{1,2}$ or $nC_{2,1}$ bits over pipes

Optimal scheme for 2-user MAC with D2D (Willems'83)

▶ Tx i conveys last $nC_{i,j}$ bits of its message M_i to Tx j

► Send one common message and two individual messages over MAC

Converse can be established

Capacity region for 2-user MAC with D2D (Willems'83)

▶ Capacity region: all (R_1, R_2) s.t. for some $P_U \cdot P_{X_1|U} \cdot P_{X_2|U} \cdot P_{Y|X_1X_2}$:

$$R_{1} \leq I(X_{1}; Y|U, X_{2}) + C_{1,2}$$

$$R_{2} \leq I(X_{2}; Y|U, X_{1}) + C_{2,1}$$

$$R_{1} + R_{1} \leq I(X_{1}, X_{2}; Y|U) + C_{1,2} + C_{2,1}$$

$$R_{1} + R_{2} \leq I(X_{1}, X_{2}; Y)$$

Explicit characterization in Gaussian case (Bross, Lapidoth, W'08)

▶ Capacity region: all (R_1, R_2) s.t. for some $\rho \in [0, 1]$:

$$\begin{split} R_1 & \leq 1/2 \log(1 + P_1(1-\rho)) + C_{1,2} \\ R_2 & \leq 1/2 \log(1 + P_2(1-\rho)) + C_{2,1} + C_{2,1} \\ R_1 + R_1 & \leq 1/2 \log(1 + P_1(1-\rho) + P_2(1-\rho)) C_{1,2} + C_{2,1} \\ R_1 + R_2 & \leq 1/2 \log(1 + P_1 + P_2 + 2\rho \sqrt{P_1 P_2}) \end{split}$$

D2D for 3-user MAC?

D2D comm. overheard by all txs

- Optimal scheme:
 - share message parts
 - communicate individual and common information
- ► [Wigger/Kramer'09]

Private D2D comm.

- Previous D2D strategy creates pair-wise and full common messages
- ► [Simeone/Somekh/Kramer /Poor/Shamai'08]
- Suboptimal!

3-user MAC example: new D2D strategy

- From Tx2 to Tx 3: say whether S=1 or not! → Tx 3 can precancel its interference!
- ▶ Not possible if Tx2 reroutes messages!

Two-User BC with D2D Receivers (Dabora&Servetto'06)

- ▶ Interactive communication pipes between receivers
- ▶ Can send $nC_{1,2}$ or $nC_{2,1}$ bits over pipes

DF-Strategy for BC with D2D Receivers

- Stronger receiver decodes weaker receiver's message and forwards a description of it
- Achieves capacity when BC degraded or semideterministic

CF-Strategy for BC with D2D Receivers

- Each Rx relays a compressed version of its received signal
- D2D interaction improves performance!
 - ▶ Rx 2 decodes M_2 based on Y_2^n, \hat{Y}_1^n
 - "cancels effect of M_2 on $Y_2^n o$ improved \hat{Y}_2^{*n} more useful for $M_1!$

D2D communication in large interference networks

Simplified cellular model (Wyner's soft-handoff model)

- $Y_{k,t} = X_{k,t} + \alpha_k X_{k-1,t} + Z_{k,t}$
- i.i.d Gaussian noises of variance σ^2 ;

equal power constraints P

▶ D2D between Txs or between Rxs (or both)

D2D communication in large interference networks

Simplified cellular model (Wyner's soft-handoff model)

- $Y_{k,t} = X_{k,t} + \alpha_k X_{k-1,t} + Z_{k,t}$
- i.i.d Gaussian noises of variance σ^2 ;

equal power constraints P

▶ D2D between Txs or between Rxs (or both)

Complexity constraint: max number of D2D rounds κ

ightharpoonup at most $\kappa > 0$ D2D rounds allowed

Goal

Find sum-capacity in function of D2D rounds $\kappa!$

Complexity constraint: max number of D2D rounds κ

ightharpoonup at most $\kappa > 0$ D2D rounds allowed

Goal

Find sum-capacity in function of D2D rounds $\kappa!$

Complexity constraint: max number of D2D rounds κ

 \blacktriangleright at most $\kappa > 0$ D2D rounds allowed

Goal

Find sum-capacity in function of D2D rounds $\kappa!$

 \blacktriangleright κ also limits how many hops a message can propagate

High-SNR performance: per-user Degrees of Freedom

- ▶ Sum-capacity: maximum $R_1 + R_2 + \cdots + R_K$ s.t. $p(\mathsf{error}) \to 0$
- ▶ Per-user DoF S:

Sum-capacity
$$pprox \mathcal{S} \cdot \frac{K}{2} \log(1 + P/\sigma^2), \qquad P/\sigma^2 \gg 1$$

▶ Rate-constraint on D2D links: $C_{\text{D2D}} = \mu \cdot \frac{1}{2} \log(1 + P/\sigma^2)$

Without D2D, Downlink

▶ Silence every second $Tx \rightarrow S = 1/2$

With D2D and $\kappa = \infty$

▶ Can have S = 1: need $\mu = 1/2$

- Scheme requires $\hat{M}_k = g_k(Y_1^n, \dots, Y_k^n)$
- → Interference mitigation propagates interference!

 $[\]cdot$ V. Ntranos, M. A. Maddah-Ali and G. Caire, "Cellular interference alignment," IEEE Trans. Inform. Theory, Mar. 2015

With D2D and $\kappa = \infty$

▶ Can have S = 1: need $\mu = 1/2$

- Scheme requires $\hat{M}_k = g_k(Y_{k+1}^n, \dots, Y_K^n)$
- → Interference mitigation propagates interference!

 $[\]cdot$ V. Ntranos, M. A. Maddah-Ali and G. Caire, "Cellular interference alignment," $\it IEEE\ Trans.\ Inform.\ Theory,\ Mar.\ 2015$

With D2D and $\kappa = 1$

- Stop interference propagation by silencing every 4th Tx
- ho $\mu=1/4$: time-share 4 schemes that each can kill 3 interferences out of 4
- $\triangleright \implies \mathcal{S} = 3/4$

Achievable also when codebooks oblivious during conferencing

[·] M. Wigger, R. Timo, S. Shamai, "Conferencing in Wyner's asymmetric interference network: effect of number of rounds," ArXiv: 1603.05540.

Degrees of Freedom ${\mathcal S}$ (Wigger, Timo, Shamai'15)

Theorem For D2D uplink or D2D downlink:

$$\mathcal{S} = \begin{cases} \frac{2\mu+1}{2} & \text{if} \quad \mu \leq \frac{\kappa}{2(1+\kappa)} \\ \\ \frac{2\kappa+1}{2\kappa+2} & \text{otherwise}. \end{cases}$$

Summary

- Message-sharing or signal sharing on uplink D2D
- Decode-and-forward or compress-and-forward on downlink D2D
- D2D allows to communicate over alternative paths
 - → interference avoidance (besides diversity)!
- ► Tradeoff between interference mitigation and complexity of D2D (because interference mitigation techniques propagate interference)
- Duality between D2D on uplink and downlink