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Covert Capacity-Key Tradeoff over Discrete
Memoryless Networks

Abdelaziz Bounhar, Mireille Sarkiss, Michèle Wigger

Abstract

This paper characterizes the covert capacity-secret key tradeoffs of discrete memoryless channels (DMC) and
discrete memoryless multiple-access channels (DMMAC). The focus is on channels where communication rates are
measured as the number of transmitted bits divided by the square-root of the blocklength and by the square-root of
the covertness constraint. Previous results had determined the largest achievable covert rates for these channels, as
well as the minimum key rates required to achieve these largest covert rates. In this work, we additionally determine
the minimum key rates required at reduced covert rates. Stated differently, we determine the set of all covert rates
that are achievable for a given set of key rates. This is termed the covert capacity-key tradeoff.

Our results on the covert capacity-key tradeoffs over DMCs and DMMACs show that for small key rates and
when the adversary observes the inputs through a better channel than the legitimate receiver, binary signalling at
all transmitters is optimal even for larger input alphabets and the capacity-key tradeoff grows linearly. Moreover,
in this regime the covert capacity-key tradeoff of DMMACs is square implying that each of the transmitters can
simultaneously achieve its own largest covert rate depending only on its own available key rate, irrespective of the
other transmitter. For larger key rates or when the adversary is not uniformly stronger than the legitimate receiver
over all inputs, the covert capacity-key tradeoff region of DMMACs is non-square and a tradeoff arises between the
rates of the various transmitters.

Index Terms

Covert communication, capacity-key tradeoff, discrete memoryless channel, multiple-access channels.

I. INTRODUCTION

As cyber threats continue to evolve, research into advanced mechanisms for securing communication
links remains essential. One important area of secure communication is physical layer security. While
traditional cryptographic approaches rely on computational complexity to protect information, physical
layer security leverages the inherent noise and distortions in communication channels to prevent adversaries
from intercepting or decoding transmissions.

An interesting subfield of physical-layer security is covert communication, where the goal is not to
protect the content of a message but to ensure that the very act of transmission remains undetectable. This
is crucial in cybersecurity, military applications, and other secure communication scenarios, where traditional
encryption may still expose the presence of non-authorized communication. In covert communication instead,
sophisticated coding techniques and sparse codewords are employed to ensure that the transmission is hidden
in the noise of the channel, rendering detection of the transmission difficult for any adversary.

Covert communication is also relevant for securing communications in the Internet of Things (IoT) and
wireless sensor networks. Indeed, many IoT applications are subject to stringent energy-limitations and can
only use sparse codewords. This exactly the operating regime of covert communication, making this latter
a natural candidate for securing communication in the IoT.

Though the maximum number of bits that can be sent reliably and covertly over a channel is inherently
limited because codewords need to be sparse, determining the maximum amount of data bits that can be
sent in covert communication is still an important question. The first characterization of this maximum
number of data bits was presented for Gaussian channels in [1]. Specifically, in this work the covertness
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constraint was formalized by requiring that the warden’s output distribution under a given coding scheme
is close in Kullback-Leibler (KL) divergence to the output distribution in the absence of communication.
Under these assumptions, [1] showed that the number of reliably and covertly transmitted bits cannot scale
faster than the square root of the number of channel uses times the covertness constraint. This contrasts
conventional communication, where transmission rates typically scale linearly with the number of channel
uses. The square-root law has since been established as a fundamental principle for covert communication
across a variety of channel models, including general Gaussian channels and discrete memoryless channels
(DMCs) [2]–[5]. Beyond the square-root law, these results also determine the highest square-root prefactor
that can be achieved while ensuring reliable and covert communication. This prefactor is often called the
covert capacity of the channel. Notice that rates beyond the square-root regime are possible when the
warden has uncertainty about the channel statistics [6]–[9], in the presence of a jammer [10]–[12], or with
entanglement-assistance in quantum channels [13]–[16].

Covert communication has also been studied in networked environments with multiple transmitters and
receivers. For example, [17], [18] determined the covert capacities of discrete multi-access channels (MAC)
and interference channels (IC) where multiple transmitters communicate with a one or multiple receivers and
where communication needs to remain undetectable to an external warden.F urther extensions have explored
hybrid models that integrate covert and non-covert transmissions, revealing how the presence of non-covert
users impacts covert communication rates [19]. And finally, [20], [21] examined broadcast channels (BC),
where a transmitter sends a common message to all receivers while embedding a covert message for only
one of them. In this scenario the attacker is thus at the same time also a legitimate receiver for certain
messages.

In most of the mentioned results, covert capacities can only be achieved if transmitter(s) and legitimate
receivers share a secret key when the adversary has a better channel than the legitimate receiver. Indeed,
[3], [17], [18] determined the minimum key rates (measured again as the number of key bits divided by the
square-root of the blocklength and the covertness constraint) required to achieve the largest possible covert
rates. Since share secret keys are rare resources in practical systems, one is generally interested also in the
following questions:
• What is the minimum key rate required to achieve a given covert rate?
• Which covert rates are achievable given a limited key budget?

In this article we answer these questions for discrete memoryless channels (DMC) and for discrete
memoryless MACs (DMMACs). A priory these quantities can depend on how much the warden’s output
distribution can deviate (in KL sense) from the distribution that is induced in the absence of any
communication. We shall show that for a large class of permissible KL divergences above questions share
the same answer.

The largest covert rates for given limited key budgets has previously been treated in [22] for BCs and
for binary-input DMCs in [19], where it was termed the covert capacity-key tradeoff. It was shown in [19]
that this covert capacity-key tradeoff follows a linear growth for small key rates before saturating at the
covert capacity, i.e., the largest achievable covert rate under an unlimited key budget. The results in [22]
even suggested that such a linear growth also ho a general linear growth.

Our Contributions: In this paper, we characterize the covert capacity-key tradeoff over DMCs with
arbitrary input alphabets. Our results illustrate that the covert capacity-key tradeoff for non-binary input
DMCs critically depends on whether the KL divergence between the warden’s output distributions for a
given input symbol and the output distribution induced by the zero-symbol is larger or smaller than the
corresponding KL divergence for the legitimate receivers. In case the warden observes a better channel than
the receiver uniformly for all non-zero inputs, the covert capacity-key tradeoff grows linearly for low key
rates and (even when the input alphabet is non-binary) the optimal signaling strategy is binary using only
the zero input symbol and a specific non-zero symbol. For larger key rates the covert capacity-key tradeoff
is however sublinear before it saturates at the covert capacity. In the other extreme case where the warden
is uniformly (over all inputs) weaker (in above mentioned KL sense) than the legitimate receiver, the covert
capacity-key tradeoff is trivially independent of the key rate. For all intermediate scenarios where the warden
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is stronger than the legitimate receiver for some non-zero inputs but weaker for others, the covert-capacity
key tradeoff is positive already for zero key-rates, grows sublinearly in the regime of low key rates and
then saturates at the covert capacity when the key-rates are sufficiently large. In these scenarios, binary
signaling is generally not optimal, not even at small key rates.

We further explore the covert capacity-key tradeoff region for the discrete memoryless multiple-access
channel (DMMAC). As a first result we determine the covert capacity-key tradeoff region, i.e., the set of all
rate pairs given individual key rates, for the two-user DMMAC with general finite alphabets. This tradeoff
region had not been studied before and is introduced in this paper.

Similarly to the DMC scenario, the behaviour of the covert capacity-key tradeoff region of DMMACs
depends on whether or not the warden is stronger than the legitimate receiver (in above described KL
divergence sense). When the warden consistently observes a stronger channel across all relevant input pairs,
we find that simple binary signaling is optimal (regardless of the input alphabet) for small key rates. In this
regime, there is no tradeoff between the achievable covert rates of the two userseach users covert rate grows
linearly with its own key rate, mirroring the behavior observed in single-user discrete memoryless channels
(DMCs). However, as key rates increase, the tradeoff region grows sublinearly, and an interdependence
between the covert rates of the two users emerges.

In scenarios where the warden is stronger for some input pairs but weaker for others, the covert capacity-
key tradeoff region exhibits sublinear growth at all key rates and consistently presents a tradeoff between
the two users achievable covert rates. Interestingly, in a special case where the warden is stronger than the
legitimate receiver for all nonzero inputs from one transmitter (and for the zero input from the other) but
weaker for the reverse scenario, we find that the covert capacity-key tradeoff depends only on the key rate
of the first transmitter. Surprisingly, the second (but not the first) transmitter’s maximum covert rate remains
constant, regardless of key rate availability.

Notation: In this paper, we follow standard information theory notations. We use calligraphic fonts for
sets (e.g. S) and note by |S| the cardinality of a set S. Random variables are denoted by upper case letters
(e.g., X), while their realizations are denoted by lowercase letters (e.g. x). We write Xn and xn for the
tuples (X1, . . . , Xn) and (x1, . . . , xn), respectively, for any positive integer n > 0. For a distribution P
on X , we note its product distribution on X n by P⊗n(xn) =

∏n
i=1 P (xi). We also denoteby Supp(P )

the support of a distribution P , i.e. Supp(P ) = {x : P (x) 6= 0}. For two distributions P and Q on X ,
D(P‖Q) =

∑
x∈X P (x) log

(
P (x)
Q(x)

)
denotes the KL divergence between the distributions. We use H(·),

H(·|·), and Hb(·) to denote entropy, conditional entropy, and binary entropy, and I(·, ·) and I(·; ·|·) for
mutual information. The logarithm function is in base 2 and motivated by continuity of the function t log t
we define 0 log(0) = 0. We use Landau notation, i.e., for a function f(n) we write f(n) = o(g(n)) if the
ratio f(n)/g(n) vanishes as n → ∞, and we write f(n) = O(g(n)) if the cumulation points of the ratio
f(n)/g(n) are within a bounded interval. We abbreviate probability mass function by pmf and independent
and identically distributed by i.i.d..

Paper Outline: In the following Section II, we introduce covert communication over a single-user DMC
and define the notion of covert capacity-key tradeoff, which is then derived and discussed in the following
Section III. Section IV introduces the two-user DMMAC setup, defines the notion of covert capacity-key
tradeoff region, and finally characterizes and discusses the region. Section V and the following technical
appendices conclude the manuscript.

II. THE SINGLE-USER SETUP

Consider the setup illustrated in Figure 1. The transmitter (Tx) wishes to send a message W to the
legitimate receiver (Rx) while avoiding detection by the warden which attempts to detect the presence of
communication. Communication takes place over a block of n channel uses. The Tx produces channel
inputs in a finite alphabet X and the legitimate Rx and the warden observe channel outputs within finite
alphabets Y and Z . These outputs are produced by a DMC, that means, if the Tx produces the n channel
inputs Xn = xn then for any i ∈ {1, . . . , n} the i-th output symbols Yi and Zi observed at the legitimate Rx
and the warden are generated from the i-th input xi according to the conditional laws Γ(·|xi) and Q(·|xi),
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Fig. 1: Point-to-point covert communication over a Discrete Memoryless Channel.

repectively. (Notice that only the marginal conditional channel laws will matter in the sequel but not the
joint conditional channel law of both outputs given the input.)

The Tx encodes message W using some encoding function ϕ(n) defined on appropriate domains, along
with a secret-key S. Subsequently, it sends the resulting codeword

Xn = ϕ(n)(W,S) (1)

over the channel. For readability, we will write xn(w, s) instead of ϕ(n)(w, s). Let the message W and the
secret-key S be represented by two sequences of m and p i.i.d. Bernoulli-1/2 bits, where these numbers m
and p will depend on the blocklength n. The secret-key S is exclusively known to the transmitter and the
Rx but not to the warden.

The legitimate Rx estimates the message as:

Ŵ = g(n)(Y n, S) (2)

using an appropriate decoding function.
To ensure reliability of communication, we seek for systems (encoding and decoding functions) where

lim
n→∞

Pr[Ŵ 6= W ] = 0. (3)

At the same time we impose that the output distribution implied at the warden

Q̂n(zn) ,
1

2m2p

∑

(w,s)

Q⊗n(zn|xn(w, s)). (4)

be almost indistinguishable from the warden’s output distribution when the all-zero sequence is transmitted
(which stands for absence of communication), i.e., from

Q⊗n(zn|0n), (5)

where we impose that the 0-symbol be part of the input alphabet X . In particular, we will phrase the
covertness constraint in terms of the KL divergence

Dn , D
(
Q̂n(·)

∥∥Q⊗n(·|0n)
)
. (6)

A. Covert Capacity-Key Tradeoff
Definition 1: For any given k ≥ 0 and sequence {δn}n, define the {δn}-capacity-key tradeoff r?(k, {δn})

as the largest rate r ≥ 0 such that there exists a sequence (in the blocklength n) of tuples (m, p) and
encoding/decoding functions (ϕ(n), g(n)) satisfying

lim
n→∞

Pr[Ŵ 6= W ] = 0 (7a)

and

r ≤ lim inf
n→∞

m√
nδn

, (8)
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k ≥ lim sup
n→∞

p√
nδn

, (9)

and for sufficiently large blocklengths n we have Dn ≤ δn.
To ensure that the capacity-key tradeoff stays finite and is non-trivial, we assume that:

∑

x∈X\{0}

ψ(x)Q(·|x) 6= Q(·|0), ∀ψ(·), (10a)

Supp (Q(·|x)) ⊆ Supp (Q(·|0)) , ∀x ∈ X , (10b)
Supp (Γ(·|x)) ⊆ Supp (Γ(·|0)) , ∀x ∈ X (10c)

where in the above, ψ(·) indicates a pmf over X\{0}.
Moreover, we restrict to {δn} sequences that decay to 0 but no faster than in the order of log2(n)/n, i.e.,

we assume that:

lim
n→∞

δn = 0, (11a)

lim
n→∞

(√
δn
√
n− log n

)
=∞. (11b)

In fact, as we show in the sequel, for all sequences {δn} satisfying (11), the capacity-key tradeoff is the same,
and we shall therefore omit the argument {δn} from our notations and simply write r?(k). Accordingly, we
write the covert capacity, i.e., the largest value of the capacity-key tradeoff as

Ccovert := sup
k≥0

r?(k). (12)

Remark 1: Throughout the manuscript, our achievability results are established for sequences {δn}
satisfying (11) while our converse results hold for all vanishing {δn} sequences.

III. SINGLE-USER RESULTS

Given a pmf ψ(·) over X\{0}, we use the abbreviations

χ2(ψ) ,
∑

z∈Z

(∑
x∈X ψ(x)Q(z|x)−Q(z|0)

)2

Q(z|0)
. (13)

For given x ∈ X\{0}, we define:

DY(x) , D (Γ(·|x)‖Γ(·|0)) , (14)
DZ(x) , D (Q(·|x)‖Q(·|0)) . (15)

Finally, for each pmf ψ over X\{0}, we define a function rψ : k 7→ rψ(k). If the pmf ψ is such that the
difference

∆ψ ,
∑

x∈X\{0}

ψ(x) · (DZ(x)− DY(x)) (16)

is positive, we define

rψ(k) = min

{ ∑
x∈X\{0} ψ(x) · DY(x)

∑
x∈X\{0} ψ(x) · (DZ(x)− DY(x))

· k,
√

2

∑
x∈X\{0} ψ(x) · DY(x)

√
χ2(ψ)

}
, (17)

and if ψ is such that ∆ψ ≤ 0, we define

rψ(k) = Cψ ,
√

2

∑
x∈X\{0} ψ(x) · DY(x)

√
χ2(ψ)

. (18)
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So, if ∆ψ ≤ 0 the function is constant equal to Cψ and if ∆ψ > 0, the function grows linearly from the
origin (k = 0, r = 0) to the point

k = kψ ,
√

2

∑
x∈X\{0} ψ(x) · (DZ(x)− DY(x))

√
χ2(ψ)

(19)

r = Cψ ,
√

2

∑
x∈X\{0} ψ(x) · DY(x)

√
χ2(ψ)

, (20)

and saturates at rψ(k) = Cψ for all key rates k ≥ kψ.
Theorem 1: We have

r?(k) = max
ψ

rψ(k), (21)

where the maximum is over all pmfs ψ on X\{0}. Moreover, the covert capacity can be expressed as

Ccovert := sup
ψ
Cψ. (22)

Proof: Can formally be obtained by specializing our MAC result, Theorem 5 ahead, to the case where
one of the input alphabets is degenerate. We provide here a brief sketch of a direct proof for the DMC.

Sketch of Achievability: Fix ψ and parameter

φ = min

{
k2

k2ψ
, 1

}
. (23)

Apply the coding scheme in [3, Section V] to only the first n1 = bφnc channel uses and transmit the
zero-symbol otherwise. Probability of error can tend to 0 for

m ≈ φωn
√
n
∑

x∈X\{0}

ψ(x)DY(x), (24a)

m+ p ≈ φωn
√
n
∑

x∈X\{0}

ψ(x)DZ(x), (24b)

and with KL-divergence

Dn ≈ φ · ω
2
n

2
χ2(ψ). (25)

for any sequence ωn tending to 0 slowlier than log2(n)/n. Combining these results proves achievability of
the rate rψ(k).

Sketch of Converse: Let k be fixed and consider any sequence of encodings and decodings satisfying (7)
and Dn ≤ δn for sufficiently large n. By the considerations in [3], there must exist a sequence ωn tending
to 0 and a pmf ψ over X\{0} so that (24) and (25) hold with inequalities ≤, ≥, ≥, respectively, and
for φ arbitrary close to 1 (above or belwo depending on the direction of the inequality). Since δn ≥ Dn,
for sufficiently large values of n, we can conclude that there must exist a parameter β ∈ [0, 1] so that
δn ≈ β−2 · ω2

n

2
χ2(ψ). Solving for ωn and plugging into the mentioned inequalities corresponding to (24)

roughly proves that

r ≤
√

2β

∑
x∈X\{0} ψ(x) · DY(x)

√
χ2(ψ)

(26)

k ≥
√

2β

∑
x∈X\{0} ψ(x) · (DZ(x)−DY

(x))
√
χ2(ψ)

, (27)

for some pmf ψ(·) and some β ∈ [0, 1]. Optimizing finally over β and ψ proves that r∗(k) ≤ supψ rψ(k).



7

Remark 2: Notice that for binary input-channels there is only one valid distribution ψ (the singleton on
the non-zero input) and Theorem 1 simplifies considerably.

Remark 3: As follows from the proof of Theorem 1, rψ(k) is the largest covert rate that can be achieved
with a given input pmf ψ and key rate k.
The approach proposed in [22] of appropriately choosing the ωn-sequence in [3] (see also our proof sketch
above) does not suffice to determine the optimal set of message- and key-rates that can be achieved. In
fact, scaling the ωn-sequence does not impact the rates r and k. Notice further that for non-binary input
alphabets the dependency of the message- and key-rates, i.e., our capacity-key tradeoff, is not necessarily
linear as claimed in [22]. The following subsection discusses regimes where r?(k) is linear and where it is
not.

A. Discussion and Simplifications of r?(k)

For the further analysis of r?(k), we distinguish three cases depending on whether ∆ψ is positive for all
pmfs ψ, is negative for all ψ, or it is positive for some ψs and negative for others. Consider an example
where ∆ψ is always positive:

Example 1 (Adversary Stronger than Legitimate Receiver): Consider a channel with input alphabet X =
{0, 1, 2}, output alphabets Z = Y = {0, 1, 2, 3, 4}, and transition pmfs:

Γ =




0.23, 0.20, 0.25, 0.05, 0.27
0.35, 0.22, 0.10, 0.05, 0.28
0.27, 0.24, 0.24, 0.07, 0.18


 (28a)

and

Q =




0.22, 0.32, 0.15, 0.12, 0.19
0.36, 0.03, 0.39, 0.21, 0.01
0.31, 0.20, 0.07, 0.22, 0.20


 (28b)

where the rows pertain to the three input symbols x = 0, 1, 2 and the columns to the five output symbols
0, 1, 2, 3, 4.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

5 · 10−2

0.1

0.15

0.2

key-rate k

ra
te
r ψ

(k
)

r?(k)
ψ(1) = 1
ψ(2) = 1

Fig. 2: The figure illustrates the functions rψ(k) for different pmfs ψ. The capacity-secret-key tradeoff r?(k)
corresponds to the upper convex hull of all the curves.

For this channel the difference ∆ψ > 0 for all pmfs ψ, since for all x ∈ X\{0} we have DZ(x)−DY(x) >
0. Figure 2 illustrates the function rψ for different choices of the input pmf ψ. The blue dashed line
corresponds to the degenerate choice ψ(1) = 1 and the black dash-dotted line to the degenerate choice
ψ(2) = 1.
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We observe that in this example the extreme lines rψ(k) with smallest and largest slopes correspond to the
degenerate pmfs that put probability 1 on a single non-zero input. This is true in general as can be seen by
the following lemma and noting that the slope of rψ(k) is given by

Sψ ,

∑
x∈X\{0} ψ(x) · DY(x)

∑
x∈X\{0} ψ(x) · (DZ(x)− DY(x))

> 0. (29)

Lemma 1: If
DZ(x)− DY(x) > 0, ∀x ∈ X\{0}, (30)

then Sψ > 0 for all input pmfs ψ and is largest (smallest) for a degenerate pmf ψ that puts probability mass
1 on one of the non-zero inputs.

Proof: Consider the convex hull of the points

{(DZ(x)− DY(x), DY(x))}x∈X\{0} (31)

which by our assumption all lie in the first quadrant of the two-dimensional Euclidean space. If for each
point we consider the straight line from the origin to this point, the line with largest (smallest) slope is
attained at one of the points in (31). Moreover, the slope for each of the points in (31) is given by

DY(x)

DZ(x)− DY(x)
, (32)

and thus equal to Sψ for degenerate pmf ψ with probability mass 1 on the non-zero symbol x.
In a similar way, since each point P = (P1, P2) in the convex hull is naturally assigned to a different

pmf ψ in the sense that:

P1 =
∑

x∈X\{0}

ψ(x) · (DZ(x)− DY(x)) (33)

P2 =
∑

x∈X\{0}

ψ(x) · DY(x), (34)

and the slope of the straight line from the origin to this P is given by Sψ, from the arguments in the
previous paragraphs, we can deduce that the largest (smallest) slope Sψ is obtained from a degenerate pmf
ψ with probability mass on a single non-zero symbol.

With above lemma, we can simplify Theorem 1 for the class of channels satisfying (30).
Corollary 2 (Adversary Stronger than Legitimate Receiver): If (30) holds, then

r?(k) =





Smax · k if ∈ [0, klin] ,

maxψ∈L(k)Cψ if ∈ (klin, ksat) ,

Ccovert if ∈ [ksat,∞) ,

(35)

where
Smax , max

x∈X\{0}

DY(x)

DZ(x)− DY(x)
; (36)

and

klin ,
√

2
DZ(xbest)− DY(xbest)√

χ2(δxbest)
(37)

ksat ,
√

2

∑
x∈X\{0} ψ

∗(x) · DY(x)
√
χ2(ψ∗)

, (38)
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where xbest is the maximizer in (36); δxbest indicates the degenerate pmf with probability 1 at xbest; and ψ∗

the maximizer in (22), i.e., the covert capacity achieving input-distribution. Moreover,

L(k) ,

{
ψ : k ≥

√
2

∑
x∈X\{0} ψ(x) · DY(x)

√
χ2(ψ)

}
. (39)

Remark 4: From Lemma 1 and above Corollary 2, we can directly deduce that for channels satisfying
(30), binary signaling on inputs 0 and xbest is optimal for small key rates k ≤ Smax, where recall that xbest

is the maximizing input in (36) and Smax is defined in (36). Moreover, in the regime of small key rates
the covert capacity-key tradeoff is linear. Specifically, increasing the key-rate by 1 will increase the largest
achievable rate by Smax.

For channels where (30) holds, the capacity-key tradeoff starts at the origin: r?(0) = 0. For all other
channels however this is not the case. In fact, when the adversary is no better than the legitimate Rx for at
least one of the non-zero inputs, i.e., when

DZ(x)− DY(x) ≤ 0, for some x ∈ X\{0}, (40)

then a positive message-rate is achievable even with zero key-rate, i.e., r?(0) > 0. In fact, we have the
following corollary directly from Corollary 1 and our discussion above.

Corollary 3 (Adversary Sometimes Weaker than Legitimate Rx): If (40) holds, then

r?(k) = max
ψ∈L(k)

√
2

∑
x∈X\{0} ψ(x) · DY(x)

√
χ2(ψ)

. (41)

In particular,
r?(k) = Ccovert, k ≥ ksat. (42)

The following example illustrates the covert capacity tradeoff for a channel satisfying Assumption (40).

Example 2 (Adversary Sometimes Weaker than Legitimate Rx): Consider a channel with ternary inputs
X = {0, 1, 2}, quinary outputs Y = Z = {0, 1, 2, 3, 4}, and transition pmfs:

Γ =




0.24 0.10 0.22 0.22 0.22
0.20 0.14 0.26 0.328 0.072
0.06 0.19 0.2 0.05 0.50


 (43a)

and

Q =




0.32 0.22 0.23 0.13 0.10
0.47 0.25 0.10 0.14 0.04
0.38 0.01 0.15 0.12 0.34


 (43b)

For this channel, Assumption (40) holds for x = 1 but not for x = 2.
Figure 3 illustrates the function rψ for above channel and for different choices of the input pmf ψ. The

blue dashed line corresponds to the degenerate choices ψ(1) = 1 and the black dash-dotted line to ψ(2) = 1.
To study the last case where

DZ(x)− DY(x) ≤ 0, for all x ∈ X\{0}, (44)

we notice that this implies in particular also that for any ψ:
∑

x∈X\{0}

ψ(x) (DZ(x)− DY(x)) ≤ 0 (45)

and thus each of the functions rψ is a straigth line.
Corollary 4 (Adversary Weaker than Legitimate Rx): Under Condition (44),

r?(k) = Ccovert, k ≥ 0. (46)
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Fig. 3: The figure illustrates the functions rψ(k) for different pmfs ψ. The capacity-secret-key tradeoff r?(k)
corresponds to the upper convex hull of all the curves.

IV. THE MULTIPLE-ACCESS CHANNEL: MODEL AND RESULTS

We turn our focus to a two-user multi-access channel (MAC), see Figure 4, where the two Txs produce
inputs in finite alphabets X1 and X2, the legitimate Rx observes outputs in the finite alphabet Y , and the
warden observes outputs in the finite alphabet Z .

'
(n)
1

Xn
1

Y n

Zn

Xn
L

(Wc,1, S1, C1) {cWc,1, . . . ,cWc,L}

bH 2 {0, 1}

Channel

S = {S1, . . . , SL}

Warden

g
(n)
0 , g

(n)
1

(Wc,L, SL, CL)
'

(n)
LC

...

User L

User 1

Fig. 4: Covert communication over a two-user MAC.

This covert MAC has previously been studied in [17]. The main difference here is that each Tx j ∈ {1, 2}
has access to additional local randomness described by Ci which consists of gj i.i.d. Bernoulli-1/2 bits.
Each Tx j ∈ {1, 2} thus produces its channel inputs as

Xn
j = ϕ(n)(Wj, Sj, Cj), (47)

where Wj and Sj are independent i.i.d. Bernoulli-1/2 bitstrings of lengths mj and pj (which grow with n),
respectively and Sj is know to Tx j and the Rx, while Wj and Cj only to Tx j.

As for the single-user setup, the legitimate Rx and the warden observe outputs generated by discrete
memoryless channels Γ(·|·, ·) and Q(·|·, ·) based on the input sequences produced at the two Txs. That
means, if Tx 1 sends inputs Xn

1 = xn1 and Tx 2 sends Xn
2 = xn2 , then for each i ∈ {1, . . . , n}, the legitimate

Rx observes output symbol Yi following the conditional law Γ(·|x1,i, x2,i) and the adversary observes output
Zi following the conditional law Q(·|x1,i, x2,i).

After observing outputs Y n, the legitimate Rx decodes both messages W1 and W2 as:

(Ŵ1, Ŵ2) = g(n)(Y n, S1, S2). (48)

using an appropriate decoding function g(n).
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χ2(ψ) ,
∑

z∈Z

( ∑

(x1,x2)∈X̃

ψ(x1, x2)Q(z|x1, x2)−Q(z|0, 0)

)2

Q(z|0, 0)
. (56)

Covertness imposes that the output distribution implied at the warden

Q̂n(zn) ,

∑

(w1,w2,s1,
s2,c1,c2)

Q⊗n(zn|xn1 (w1, s1, c1), x
n
2 (w2, s2, c2))

2m1+m22p1+p22g1+g2
. (49)

be almost indistinguishable from the warden’s output distribution Q⊗n(·|0n, 0n) when the all-zero sequence
is transmitted by both Txs (i.e. no communication). We thus assume that both input alphabets X1 and X2

contain the zero-symbol 0, and then require that the KL-divergence

Dn , D
(
Q̂n
∥∥Q⊗n(·|0n, 0n)

)
(50)

be below a target sequence δn.
Definition 2: For a given sequence {δn} and key rates k1, k2 ≥ 0, define the {δn}-capacity-key tradeoff

region R?
{δn}(k1, k2) as the set of all rate pairs (r1, r2) such that there exists a sequence (in the blocklength

n) of tuples (m1,m2, p1, p2, g1, g2) and encoding/decoding functions (ϕ
(n)
1 , ϕ

(n)
2 , g(n)) satisfying

lim
n→∞

Pr[(Ŵ1, Ŵ2) 6= (W1,W2)] = 0, (51)

and

rj ≤ lim inf
n→∞

mj√
nδn

, j ∈ {1, 2}, (52)

kj ≥ lim sup
n→∞

pj√
nδn

, j ∈ {1, 2}, (53)

and for sufficiently large blocklengths n we have Dn ≤ δn.

Again, we shall show that for all sequences {δn} satisfying (11), the capacity-key tradeoff region is the
same, and therefore in the sequel we simply write R?(k1, k2).

To avoid that the problem be trivial or impossible, we impose the following restrictions on the MAC to
hold for any input pair (x1, x2) ∈ X1 ×X2:

∑

ψ

ψ(x1, x2)Q(·|x1, x2) 6= Q(·|0, 0), ∀ψ, (54a)

Supp(Γ(·|x1, x2)) ⊆ Supp(Γ(·|0, 0)), ∀x1 ∈ X1, x2 ∈ X2 (54b)
Supp(Q(·|x1, x2)) ⊆ Supp(Q(·|0, 0)), ∀x1 ∈ X1, x2 ∈ X2. (54c)

where here ψ denotes any pmf over X1 ×X2.

A. Results
Define the following subset of X1 ×X2:

X̃ , ((X1\{0}) × {0}) ∪ ({0} × (X2\{0})) . (55)

For any pmf ψ over X̃ , define the quantity (56) on top of the page. Define further:

DY(x1, x2) = D (Γ(·|x1, x2) ‖Γ(·|0, 0)) , (57)
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r1 ≤ min





∑
x1∈X1\{0} ψ(x1, 0) · DY(x1, 0) · k1

max
{∑

x1∈X1\{0} ψ(x1, 0) · (DZ(x1, 0)− DY(x1, 0)) , 0
} ,
√

2

∑
x1∈X1\{0} ψ(x1, 0) · DY(x1, 0)

√
χ2(ψ)





(59a)

r2 ≤ min





∑
x2∈X2\{0} ψ(0, x2) · DY(0, x2) · k2

max
{∑

x2∈X2\{0} ψ(0, x2) · (DZ(0, x2)− DY(0, x2)) , 0
} ,
√

2

∑
x2∈X2\{0} ψ(0, x2) · DY(0, x2)√

χ2(ψ)



 .

(59b)

DZ(x1, x2) = D (Q(·|x1, x2) ‖Q(·|0, 0)) . (58)

For any fixed ψ and key-pairs (k1, k2), let R?
ψ(k1, k2) denote the rate-pairs (r1, r2) satisfying Inequalities

(59) on top of the page, where we define a/0 =∞.
Theorem 5: Given key-rates k1, k2 ≥ 0 and a sequence {δn}n≥1 satisfying (11), the capacity-key tradeoff-

region is
R?(k1, k2) =

⋃

ψ

R?
ψ(k1, k2), (60)

where the union is taken over all pmfs ψ over the alphabet X̃ .
Proof: See Appendix A.

Remark 5 (Local Randomness only Required at One Transmitter): Inspecting the achievability proof in
Appendix A, we notice that given key rates k1 and k2 and pmf ψ over X̃ the entire region R?

ψ(k1, k2) is
• achievable without local randomness at both Txs if the maxima in (59) are achieved by the second

terms.
• achievable without common randomness at Tx 1 if

k1
∑

x2∈X2\{0}

ψ(0, x2) · (DZ(0, x2)− DY(0, x2)) > k2
∑

x1∈X1\{0}

ψ(x1, 0) · (DZ(x1, 0)− DY(x1, 0))

• achievable without common randomness at Tx 2 if

k1
∑

x2∈X2\{0}

ψ(0, x2) · (DZ(0, x2)− DY(0, x2)) < k2
∑

x1∈X1\{0}

ψ(x1, 0) · (DZ(x1, 0)− DY(x1, 0)) .

Remark 6 (Opacity to channel transition probabilities for non-zero input pairs): Examining the expressions
in (59), one can notice that the covert capacity-key tradeoff only depends on the channel transition
probabilities Γ(·|x1, x2) and Q(·|x1, x2) for input pairs (x1, x2) ∈ X̃ ∪ {(0, 0)} but not on the transition
probabilities for other input pairs.

The structure of the covert capacity-key tradeoff region R?(k1, k2) depends on whether the differences

DZ(x1, 0)− DY(x1, 0) > 0, x1 ∈ X1\{0}, (61a)
DZ(0, x2)− DY(0, x2) > 0, x2 ∈ X2\{0} (61b)

are positive or not.
Remark 7 (When no Key is Required at a Tx): When (61a) is violated for all inputs x1 ∈ X1\{0}, then

the r1-rate only depends on the choice of the pmf ψ but not on k1. Moreover, the extreme r1-point of the
covert capacity-key tradeoff region R?(k1, k2) neither depends on the key rate k2; the region itself however
does. Similar observations hold for r2 when (61b) holds for all inputs x2 ∈ X2\{0}. Obviously, if (61)
holds for all non-zero inputs x1 and x2, then the entire capacity-key tradeoff region depends neither on k1
nor on k2.

In contrast, when the adversary is uniformly stronger than the legitimate Rx, the following result holds.
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Corollary 6 (Adversary Stronger than Legitimate Receiver): If (61) hold for all x1 ∈ X1\{0} and x2 ∈
X2\{0}, then

R?(k1, k2) =





[0, k1S1,max]× [0, k2S2,max] if k1 ≤ k1,lin
k2 ≤ k2,lin,

max
ψ∈L(k1,k2)

R?
ψ(k1, k2) if k1 ≥ k1,lin,

or k2 ≥ k2,lin,

(62)

where

S1,max , max
x1∈X1\{0}

DY(x1, 0)

DZ(x1, 0)− DY(x1, 0)
, (63a)

S2,max , max
x2∈X2\{0}

DY(0, x2)

DZ(0, x2)− DY(0, x2)
, (63b)

and

k1,lin ,
√

2
DZ(x1,best, 0)− DY(x1,best, 0)√

χ2(δx1,0)
, (64)

k2,lin ,
√

2
DZ(0, x2,best)− DY(0, x2,best)√

χ2(δ0,x2)
, (65)

for x1,best and x2,best the maximizers in (63) and

L(k1, k2) ,

{
ψ : k1 ≥

√
2

∑
x1∈X1\{0} ψ(x1, 0) · DY(x1, 0)

√
χ2(ψ),

k2 ≥
√

2

∑
x2∈X2\{0} ψ(0, x2) · DY(0, x2)√

χ2(ψ)

}
. (66)

Proof: Under Condition (61), the first term in (59) is stringent for small key values k1, k2 because the
denominator is non-zero. Moreover, these first expressions do not depend on the overall pmf ψ, but only
on the x1- and x2- “marginals”, respectively. Moreover, the capacity-key tradeoff region is achieved by a
singleton distribution putting all mass on a single non-zero value for x1 and x2. Details of the proofs are
omitted due to lack of space.

Remark 8 (Optimality of Binary Signaling for Strong Adversaries and Small Key Rates): Binary signaling
(i.e. Xj = {0, xj,best},∀j ∈ {1, 2}) at both Txs is optimal when the adversary is stronger than the legitimate
Rx and in the regime of small key rates. Moreover, in this regime there is no tradeoff between the largest
covert rates that the two users can simultaneously achieve. For larger key rates however a tradeoff arises
between the largest rates that are simultaneously achievable at the two users.

We end this subsection with two numerical examples.
Example 3 (Ternary Inputs with a Stronger Adversary): Consider now a DMMAC with ternary input

alphabets X1 = X2 = {0, 1, 2} and let the output alphabets Y = Z = {0, 1, 2, 3}. Assume that the channel
transition laws are given by

Γ =




0.2 0.28 0.28 0.24
0.05 0.1 0.45 0.4
0.07 0.37 0.4 0.16
0.23 0.24 0.2 0.33
0.18 0.4 0.14 0.28
0.2 0.27 0.5 0.03
0.05 0.35 0.49 0.11
0.2 0.42 0.25 0.13
0.32 0.47 0.01 0.2




and Q =




0.2 0.2 0.36 0.24
0.01 0.37 0.17 0.45
0.42 0.35 0.05 0.18
0.25 0.25 0.15 0.37
0.6 0.27 0.01 0.12
0.3 0.1 0.33 0.27
0.1 0.22 0.67 0.01
0.38 0.32 0.25 0.05
0.17 0.3 0.23 0.3




, (67a)
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Fig. 5: R∗(k1, k2) for the channel in (67) under various symmetric constraints on the key rates k1 and k2.

where the four columns correspond to the four output symbols 0, 1, 2, 3 and the nine rows correspond to
the nine distinct pairs (x1, x2) in increasing alphabetical ordering, i.e., (0, 0), (0, 1), (1, 0), (1, 1), . . . , (2, 2).
According to Theorem 5, since ψ only takes value over the input pairs (x1, x2) ∈ X̃ where exactly one of
the two inputs is zero, the covert capacity-key tradeoff region only depends on rows 1, 2, 3, 4, and 7. The
other rows in both transition matrices Γ and Q do not play any role.

For this channel Conditions (61) are satisfied for all non-zero inputs x1, x2. That means the adversary is
again uniformly (over all inputs) stronger than the legitimate Rx (in KL-sense) and thus positive key rates
are required to achieve positive covert rates. Figure 5 illustrates the capacity key-rate tradeoff regions for
this channel at different secret-key rates. We observe that for small key rates, the tradeoff region is a square
region and there is no tradeoff between the largest covert rates r1 and r2 that are simultaneously achievable
at the two users. For larger key rates a tradeoff arises between the two covert rates.
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Fig. 6: R∗(k1, k2) for the channel in (68) when symmetric constraints are imposed on the key rates k1 and
k2.

Example 4 (Ternary Example with a Mixed (Stronger/Weaker) Adversary): Consider another DMMAC
with ternary input alphabets X1 = X2 = {0, 1, 2}, output alphabets Y = Z = {0, 1, 2, 3}, and channel
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transition laws

Γ =




0.20 0.29 0.28 0.23
0.05 0.10 0.44 0.41
0.07 0.37 0.40 0.16
0.31 0.47 0.01 0.21
0.23 0.24 0.21 0.33
0.18 0.4 0.14 0.29
0.21 0.27 0.50 0.02
0.04 0.35 0.50 0.11
0.21 0.42 0.25 0.12




and Q =




0.20 0.19 0.36 0.25
0.01 0.37 0.17 0.45
0.42 0.35 0.05 0.18
0.17 0.31 0.22 0.30
0.25 0.25 0.19 0.31
0.60 0.27 0.02 0.11
0.29 0.10 0.33 0.28
0.10 0.22 0.67 0.01
0.38 0.32 0.25 0.05




, (68a)

For this channel, Condition (61b) is satisfied for all non-zero inputs x2 but at the same time Condition (61a)
is violated for all non-zero inputs x1. As described in Remark 7 the covert capacity-key tradeoff region
R?(k1, k2) does not depend on the key-rate k1 but only on k2. Figure 6 illustrates the capacity key-rate
tradeoff regions for this channel at different key rates.

V. SUMMARY AND CONCLUSION

We determined the covert capacity-key tradeoff for discrete and memoryless single-user and multi-access
channels, i.e., the largest covert rates that are achievable for given key rates. Previous results had only
determined the key rates required at the largest possible covert rates, while our results allow to conclude
how much key-rate is required at any desired covert rate.

Our results provide new insights into the relationships between the required key rates and the achievable
covert rates. For single-user channels with binary inputs, the relationship between key-rate and largest
achievable covert rate is linear for low key rates before it saturates at the covert capacity. For non-binary
input channels the relationship is linear for small key rates only if the adversary is uniformly (over all
nonzero inputs) stronger (in a Kullback-Leibler-divergence sense) than the legitimate Rx. In this case, binary
signaling between the zero and a single non-zero input is optimal in the regime of small key rates. For
larger key rates or if the adversary is not uniformly stronger than the legitimate Rx, the largest achievable
rate grows sublinearly in the key-rate before it saturates at the covert capacity. Binary signaling is not
necessarily optimal in these cases.

In this work, we further characterized the covert capacity-key tradeoff region for discrete memoryless
multiple-access channels (DMMAC). We showed that similarly to the DMC, the behavior of these regions
depends on whether the warden observes a stronger channel than the legitimate receiver for the different
inputs. When the warden is consistently stronger over all inputs, binary signaling is optimal at low key
rates, and no tradeoff exists between the users’ covert rateseach scales linearly with its own key rate. At
higher key rates, the tradeoff region grows sublinearly, introducing interdependencies between the users
rates. When the warden is stronger for some inputs but weaker for others, the tradeoff region exhibits
sublinear growth at all key rates and maintains an inherent rate tradeoff between users.

Our results for the MAC can easily be extended to scenarios with more than two transmitters and also
to interference channels. For the latter extension, notice that in our achievability proof for the MAC, the
single receiver decodes each of the two messages individually, see (83) and (85). The same decoding can
thus also be implemented at the two distributed receivers in an interference channel.

APPENDIX A
PROOF OF THEOREM 5

The theorem follows directly from the following proposition and by noting that the optimal values of the
parameters β1 and β2 are either equal to 1 or make that equality holds in (71) or (72), respectively.

Proposition 7: Given a tuple of message and key rates (r1, r2, k1, k2), it is possible to find a sequence
(in the blocklength n) of tuples (m1,m2, p1, p2, g1, g2) and encoding/decoding functions (ϕ

(n)
1 , ϕ

(n)
2 , g(n))
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satisfying (51)–(53) and so that Dn ≤ δn for sufficiently large blocklengths n, if and only if, there exists a
pmf ψ over X̃ and two numbers β1, β2 ∈ [0, 1] so that the following inequalities hold:

r1 ≤ β1
√

2

∑

x1∈X1\{0}

ψ(x1, 0)DY(x1, 0)

√
χ2(ψ)

, (69)

r2 ≤ β2
√

2

∑

x2∈X2\{0}

ψ(0, x2)DY(0, x2)

√
χ2(ψ)

, (70)

k1 ≥ β1
√

2

∑

x1∈X1\{0}

ψ(x1, 0) (DZ(x1, 0)− DY(x1, 0))

√
χ2(ψ)

(71)

k2 ≥ β2
√

2

∑

x2∈X2\{0}

ψ(0, x2) (DZ(0, x2)− DY(0, x2))

√
χ2(ψ)

. (72)

Proof: We prove achievability followed by the converse.
Achievability:
Assume that β1 ≥ β2, otherwise switch the roles of the two users. Set φj = β2

j , for j ∈ {1, 2}. In our
coding scheme, Tx 1 communicates during the first

n1 , bφ1nc (73)

channel uses and deterministically sends the all-zero sequence during the last n − n1 channel uses. Tx 2
communicates only during the first

n2 , bφ2nc ≤ n1 (74)

channel uses; during the following n1 − n2 channel uses it sends completely random symbols according
to a distribution that we shall specify shortly; and during the last n − n1 channel uses it sends the all-
zero sequence. In our scheme Tx 2 thus uses its local randomness only if β1 > β2; and Tx 1 uses its
local randomness when β2 > β1. Figure 7 illustrates this scheme. We next explain the generation of the
codewords xn1

1 (W1, S1) and xn2
2 (W2, S2) and of the random inputs at Tx 2.

n

xn·ϕ1

1 (W1, S1) 00...0

⌊n · ϕ1⌋1

n

xn·ϕ2

2 (W2, S2) 00...0

⌊n · ϕ1⌋1 ⌊n · ϕ2⌋

random inputs

User 1

User 2

Fig. 7: Covert coding scheme for the MAC.

Let µ > 0 be an arbitrary small number and define

ωn ,

√
2δn

(1 + µ) · φ1 · χ2(ψ)
. (75)

and
αn ,

ωn√
n
. (76)
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Under our assumptions (11) we have

lim
n→∞

ωn = 0, (77a)

lim
n→∞

(
ωn
√
n− log n

)
=∞. (77b)

We further pick a pmf ψ over the previously defined set X̃ = ((X1\{0}) × {0}) ∪ ({0} × (X1\{0}))
and also define the pmfs (which depend on n)

PX1(x1) = ψ(x1, 0) · αn, ∀x1 ∈ X1\{0}, (78)
PX2(x2) = ψ(0, x2) · αn, ∀x2 ∈ X2\{0}, (79)

PXj
(0) = 1−

∑

xj∈Xj\{0}

PXj
(xj), j ∈ {1, 2}, (80)

PX1X2Y (x1, x2, y) , PX1(x1)PX2(x2)Γ(y|x1, x2), ∀(x1, x2, y) ∈ X1 ×X2 × Y . (81)

Codebook generation: For each i = 1, . . . , n1, independently draw the i-th entry of each codeword
xn1
1 (w1, s1) according to PX1 . For each i = 1, . . . , n2, independently draw the i-th entry of each codeword
xn2
2 (w2, s2) according to PX2 .
The codebooks are revealed to all parties.

Decoding at the Receiver: For any blocklength n′ and positive constant η, define the set

An′

η ,

{
(xn

′

1 , x
n′

2 , y
n′

) : log

(
Γ⊗n

′
(yn

′|xn′
1 , x

n′
2 )

Γ⊗n′(yn′|0n′ , 0n′)

)
≥ η

}
. (82)

The legitimate Rx observes Y n = yn and knows the secret-keys (S1, S2). To decode message W1, it looks
for a unique index w1 satisfying

(xn1
1 (w1, S1), 0

n1 , yn1) ∈ An1
η1
, (83)

where for any n′ < n we let yn′ denote the first n′ symbols of yn and

η1 , (1− µ)φ1

√
nωn ·

∑

x1∈X1\{0}

ψ(x1, 0)DY(x1, 0). (84)

If such a unique index w1 exists, the legitimate Rx sets Ŵ1 = w1. Otherwise, it declares an error and stops.
Similarly, to decode message W2, the legitimate Rx looks for a unique index w2 satisfying

(0n2 , xn2
2 (w2, S2), y

n2) ∈ An2
η2
, (85)

for
η2 , (1− µ)φ2

√
nωn ·

∑

x2∈X2\{0}

ψ(0, x2)DY(0, x2). (86)

If such a unique index w2 exists, it sets Ŵ2 = w2. Otherwise, it declares an error.
Performance Analysis: The first analysis steps are standard for covert communication and can be obtained,
for example, by converting the steps in [23, Section IV] to our setup where message W1 is decoded based
on the key and the first n1 outputs of Y n and message W2 based on the keys and the first n2 outputs of
Y n. By these analysis steps, we obtain that for sufficiently large blocklengths n, we can choose

m1 = (1− µ)φ1 · ωn
√
n ·

∑

x1∈X1\{0}

ψ(x1, 0)DY(x1, 0), (87a)

m2 = (1− µ)φ2 · ωn
√
n ·

∑

x2∈X2\{0}

ψ(0, x2)DY(0, x2), (87b)

while guaranteeing

Pr[Ŵj 6= Wj] ≤ e−Bφj ·ωn
√
n, j ∈ {1, 2}, (88)
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for a positive real number B.
The resolvability analysis requires more care. Recall the definition of the warden’s output distribution

Q̂(zn) in (49) and that covertness is measured as:

Dn = D(Q̂n‖Γ⊗n(·|0n, 0n)). (89)

Define the pmfs

QZ|X1(z|x1) ,
∑

x2∈X2

PX2(x2)Q(z|x1, x2), z ∈ Z, x1 ∈ X1, (90)

QZ|X1(z|x2) ,
∑

x1∈X1

PX1(x1)Q(z|x1, x2), z ∈ Z, x2 ∈ X2, (91)

and

Q̃(z) ,
∑

x1∈X1

∑

x2∈X2

PX1(x1)PX2(x2)Q(z|x1, x2), z ∈ Z. (92)

Notice that Dn only depends on the first n1 channel uses, as the terms corresponding to the last n− n1

channel uses are zero. By Pinsker’s inequality, we have the following bound:
∣∣∣Dn − D

(
Q̃⊗n1 ‖Q⊗n1(·|0n1 , 0n1)

)∣∣∣

≤ D
(
Q̂n1 ‖ Q̃⊗n1

)
+ n1 log

(
1

minz∈Z Q(z|0, 0)

)√
1

2
D
(
Q̂n1 ‖ Q̃⊗n1

)
, (93)

where Q̂n1 denotes the pmf of the warden’s first n1 outputs.
Since αn → 0 as n→∞, by [17, Eq. (295)], we can write

D
(
Q̃⊗n1 ‖Q⊗n1(·|0n1 , 0n1)

)
= (1 + o(1)) · n1 ·

α2
n

2
· χ2(ψ) (94)

= (1 + o(1)) · n1

n
· ω

2
n

2
· χ2(ψ) (95)

=
(1 + o(1))

1 + µ
δn, (96)

where in the last equality we used that the ratio n1

n
→ φ1 and the definition of ωn in (75). By Lemma 2

ahead, the divergence term D
(
Q̂n1 ‖ Q̃⊗n1

)
vanishes exponentially in

√
nωn. Combining this result with

(93) and (96), we can conclude that our coding scheme satisfies the divergence constraint Dn ≤ δn for all
sufficiently large blocklengths n.

Using the expressions for the message bits in (87) and the definition of ωn in (75), and letting n→∞
and µ, ξ1, ξ2, ξ3 ↓ 0 (since n1 ≈ nφ1 and n2 ≈ nφ2), we conclude achievability of the message-key rate
tuples (r1, r2, k1, k2)

r1 =
√
φ12

∑

x1∈X1\{0}

ψ(x1, 0)DY(x1, 0)

√
χ2(ψ)

, (97)

r2 =
φ1

√
2√

φ2

∑

x2∈X2\{0}

ψ(0, x2)DY(0, x2)

√
χ2(ψ)

, (98)

k1 ≥
√
φ12

∑

x1∈X1\{0}

ψ(x1, 0) (DZ(x1, 0)− DY(x1, 0))

√
χ2(ψ)

, (99)
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k2 ≥
φ1

√
2√

φ2

∑

x2∈X2\{0}

ψ(0, x2) (DZ(0, x2)− DY(0, x2))

√
χ2(ψ)

. (100)

Setting β1 =
√
φ1 and β2 = φ2√

φ1
and remarking that we can relax the equalities on the message rates into

≤-inequalities (we can always decide to send dummy information bits) proves the desired achievability
result.

Lemma 2: Let

θ̄1 , αnn1 ·
∑

x1∈X1\{0}

ψ(x1, 0)DZ(x1, 0), (101a)

θ̄2 , αnn2 ·
∑

x2∈X2\{0}

ψ(0, x2)DZ(0, x2), (101b)

and θi = (1 + ξ1)θ̄i, for i = 1, 2 and arbitrary small but positive constants ξ1, ξ2. If the message and key
bits satisfy

lim supn→∞ (m1 + p1 − θ1) = −∞, (102a)
lim supn→∞ (m2 + p2 − θ2) = −∞, (102b)

then D
(
Q̂n1 ‖ Q̃⊗n1

)
tends to 0 as n→∞ at a speed that is exponential in ωn

√
n.

Proof: Define for a given codebook C:

Q̂n1(zn1) ,
1

2m1+m2+p1+p2

∑

(w1,s1)

∑

(w2,s2)

Q̂n1
w1,w2,s1,s2

(zn1), (103)

where for any valid (w1, w2, s1, s2), we have:

Q̂n1
w1,w2,s1,s2

(zn1) , Q⊗n2(zn2|xn2
1 (w1, s1), x

n2
2 (w2, s2)) ·Q(n2→n1)

Z|X1
(zn1
n2+1|xn1

1,n2+1(w1, s1)), (104)

for zn1
n2+1 , (zn2+1, . . . , zn1) and for Q(n2→n1)

Z|X1
defined as:

Q
(n2→n1)
Z|X1

(
zn1
n2+1|xn1

1,n2+1(w1, s1)
)
,

n1∏

i=n2+1

QZ|X1(zi|x1,i). (105)

We can now notice:

EC
[
D
(
Q̂n1

∥∥∥Q̃⊗n1

)]

≤ E


log




∑

(w1,w2,s1,s2)

E
{Xn1

1 (w1,s1)}\X
n1
1 (1,1),

{Xn2
2 (w2,s2)}\X

n2
2 (1,1)

[
Q̂n1
w1,w2,s1,s2

(Zn1)

2m1+m2+p1+p2 · Q̃⊗n1(Zn1)

]




 (106a)

= E

[
log

( ∑

(w1,s1)6=(1,1)
(w2,s2)6=(1,1)

E
X

n1
1 (w1,s1)

X
n2
2 (w2,s2)

[
Q̂n1
w1,w2,s1,s2

(Zn1)

2m1+m2+p1+p2 · Q̃⊗n1(Zn1)

]
+

Q̂n1
1,1,1,1(Z

n1)

2m1+m2+p1+p2 · Q̃⊗n1(Zn1)

+
∑

(w2,s2)6=(1,1)

E
X

n2
2 (w2,s2)

[
Q̂n1

1,w2,1,s2
(Zn1)

2m1+m2+p1+p2 · Q̃⊗n1(Zn1)

]

+
∑

(w1,s1)6=(1,1)

E
X

n1
1 (w1,s1)

[
Q̂n1
w1,1,s1,1

(Zn1)

2m1+m2+p1+p2 · Q̃⊗n1(Zn1)

]


 (106b)
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(a)
= E

[
log

(
(2m1+p1 − 1)(2m2+p2 − 1)

2m1+m2+p1+p2
+

Q̂n1
1,1,1,1(Z

n1)

2m1+m2+p1+p2 · Q̃⊗n1(Zn1)

+
(2m2+p2 − 1)Q⊗n1

Z|X1
(Zn1|Xn1

1 (1, 1))

2m1+m2+p1+p2 · Q̃⊗n1(Zn1)
+

(2m1+p1 − 1)Q⊗n2

Z|X2
(Zn2|Xn2

2 (1, 1))

2m1+m2+p1+p2 · Q̃⊗n2(Zn2)

)]

(106c)

≤ E

[
log

(
1 +

Q̂n1
1,1,1,1(Z

n1)

2m1+m2+p1+p2 · Q̃⊗n1(Zn1)
+
Qn1

Z|X1
(Zn1 |Xn1

1 (1, 1))

2m1+p1 · Q̃⊗n1(Zn1)
+
Qn2

Z|X2
(Zn2|Xn2

2 (1, 1))

2m2+p2 · Q̃⊗n2(Zn2)

)]
. (106d)

Define for any pair θ = (θ1, θ2) the set:

Bn1
θ ,

{
(xn1

1 , x
n2
2 , z

n1) ∈ X n1
1 ×X n2

2 ×Zn1 :

log

(
Q⊗n2(zn2|xn2

1 , x
n2
2 ) ·Qn2→n1

Z|X1
(zn1
n2+1|xn1

1,n2+1)

Q⊗n1(zn1|0n1 , 0n1)

)
≤ θ1 + θ2,

log

(
Qn1

Z|X1
(zn1 |xn1

1 )

Q⊗n1(zn1|0n1 , 0n1)

)
≤ θ1,

log

(
Qn2

Z|X2
(zn2 |xn2

2 )

Q⊗n2(zn2|0n2 , 0n2)

)
≤ θ2

}
. (107)

and notice that xn2
2 is of length n2 while xn1

1 and zn1
1 are of length n1. Further define the event

B , {(Xn1
1 (W1, S1), X

n2
2 (W2, S2), Z

n1) ∈ Bn1
θ } (108)

and denote its complement by Bc.
We continue to bound

E

[
log

(
1 +

Q̂n1
1,1,1,1(Z

n1)

2m1+m2+p1+p2 · Q̃⊗n1(Zn1)
+

Γn1

Z|X1
(Zn1|Xn1

1 (1, 1))

2m1+p1 · Q̃⊗n1(Zn1)
+

Γn2

Z|X2
(Zn2|Xn2

2 (1, 1))

2m2+p2 · Q̃⊗n2(Zn2)

)∣∣∣∣∣B
]

Pr[B]

(a)

≤ E

[
log

(
1 +

2θ1+θ2Q⊗n1(Zn1|0n1 , 0n1)

2m1+m2+p1+p2 · Q̃⊗n1(Zn1))
+

2θ1Q⊗n1(Zn1|0n1 , 0n1)

2m1+p1 · Q̃⊗n1(Zn1)
+

2θ2Q⊗n2(Zn2|0n2 , 0n2)

2m2+p2 · Q̃⊗n2(Zn2)

)∣∣∣∣∣B
]

Pr[B]

(109a)

≤ 2θ1+θ2

2m1+m2+p1+p2
E
[
Q⊗n1(Zn1|0n1 , 0n1)

Q̃⊗n1(Zn1)

]
+

2θ1

2m1+p1
E
[
Q⊗n1(Zn1 |0n1 , 0n1)

Q̃⊗n1(Zn1)

]

+
2θ2

2m2+p2
E
[
Q⊗n2(Zn2 |0n2 , 0n2)

Q̃⊗n2(Zn2)

]
(109b)

(b)
=

2θ1+θ2

2m1+m2+p1+p2
+

2θ1

2m1+p1
+

2θ2

2m2+p2
, (109c)

where (a) holds by the definition of the set Bnθ in (107); and (b) holds because Zn′ ∼ Q̃⊗n
′ for any n′ and

because pmfs sum to 1.
Moreover, since by definition (92), we can lower bound Q̃(z) by PX1(0)PX2(0) minz∈Z Q(z|0, 0), we

obtain:

E

[
log

(
1 +

Q̂n1
1,1,1,1(Z

n1)

2m1+m2+p1+p2 · Q̃⊗n1(Zn1)
+
Qn1

Z|X1
(Zn1|Xn1

1 (1, 1))

2m1+p1 · Q̃⊗n1(Zn1)
+
Qn2

Z|X2
(Zn2 |Xn2

2 (1, 1))

2m2+p2 · Q̃⊗n2(Zn2)

)∣∣∣∣∣B
c

]
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≤ n1 log

(
4(

1−∑x1∈X1\{0} ψ(x1, 0)αn

)(
1−∑x2∈X2\{0} ψ(0, x2)αn

)
·minz∈Z Q(z|0, 0)

)
. (110)

To bound the probability of event Bc, we notice that the expectations of the log-terms in (107) can be
upper bounded, respectively, by θ̄1 + θ̄2, θ̄1, and θ̄2 plus some functions O(α2

n) that vanish in the order of
α2
n. Since also the variances of above log-expressions vanish in the order of αn, we can apply Bernstein’s

Inequality and the union bound to conclude that by our choice θi = (1 + ξi)θ̄i, for i = 1, 2,, there exist
positive constants B1, B2, B3 > 0 such that

Pr[Bc] ≤ e−B1ωn
√
n + e−B2ωn

√
n + e−B3ωn

√
n (111)

Combining finally (106d) with (109c), (110), and (111) through the total law of expectation, we conclude
that under Conditions (102), the divergence D

(
Q̂n1 ‖ Q̃⊗n1

)
tends to 0 exponentially fast in

√
nωn.

Converse:
The particularity and the distinction of our converse proof from the previously established one [17, Section

V.C] is that users are equipped with local randomness. We highlight the main differences.
Consider a vanishing sequence {δn} and a sequence of length-n codes with vanishing probability of error

and Dn ≤ δn for all sufficiently large blocklengths. Consider now a fixed blocklength n, and let Xn
1 , X

n
2

be the random inputs generated under the chosen codes and Y n as well as Zn the corresponding outputs
at the legitimate Rx and the warden.

Define
αn,j,i(x) , Pr[Xj,i = x], i ∈ {1, . . . , n}, ∀j ∈ {1, 2}, (112)

and the derived nonnegative quantities

αn ,
1

n

n∑

i=1


 ∑

x1∈X1\{0}

αn,1,i(x1) +
∑

x2∈X2\{0}

αn,2,i(x2)


 , (113)

and

ψn(x1, 0) =
1
n

∑n
i=1 αn,1,i(x1)

αn
, (114)

ψn(0, x2) =
1
n

∑n
i=1 αn,2,i(x2)

αn
. (115)

Notice that when the probability of decoding errors tends to 0 and the message sizes m1 and m2 tend to∞,
the sequence αn cannot decrease to 0 as 1/n because otherwise in the limit most codewords consist only
of the 0 symbol and cannot be distinguished. We can thus assume in the sequel that limn→∞ nαn =∞.

Lower bound on δn: We start by writing:

Dn =
∑

zn

Q̂n(zn) log

(
Q̂n(zn)

Q⊗n(zn|0n, 0n)

)
(116)

(a)

≥
n∑

i=1

∑

zi

Q̂(i)(zi) log

(
Q̂(i)(zi)

Q(zi|0, 0)

)
(117)

=
n∑

i=1

D
(
Q̂(i)‖Q(·|0, 0)

)
(118)

(b)
=

n∑

i=1

D

( ∑

x1∈X1
x2∈X2

αn,1,i(x1)αn,2,i(x2)Q(·|x1, x2)
∥∥∥ Q(·|0, 0)

)
(119)

(c)

≥ nD(Q̄‖Q(·|0, 0)) (120)
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(d)
= n

∑

z∈Z

Q(z|0, 0)

(
1 +

αnζn(z)

Q(z|0, 0)

)
log

(
1 +

αnζn(z)

Q(z|0, 0)

)
(121)

(e)

≥ n
α2
n

2

∑

z∈Z

ζ2n(z)

Q(z|0, 0)
(122)

where above sequence of (in)equalities and approximations are justified as follows:
• (a) holds by the memoryless nature of the channel, by the convexity of the t 7→ t log t function, and

by defining Q̂(i)
C (zi) as the probability of the event Zi = zi;

• (b) by writing out the expectations over the independent random variables X1,i and X2,i;
• (c) holds by the convexity of the relative entropy and

Q̄(z) ,
1

n

n∑

i=1

∑

x1∈X1
x2∈X2

αn,1,i(x1)αn,2,i(x2)Q(·|x1, x2); (123)

• (d) holds by expanding the KL divergence term and upon noticing that we can rewrite Q̄ as

Q̄(z) = Q(z|0, 0)

(
1 +

αn
[
Q̄(z)−Q(z|0, 0)

]

αnQ(z|0, 0)

)
, (124)

and defining

ζn(z) ,
Q̄(z)−Q(z|0, 0)

αn
. (125)

• (e) follows from the inequalities log(1 + x) > x − x2

2
for x ≥ 0 and log(1 + x) > x − x2

2
+ 2x3

3
for

x ∈ [−1
2
, 0] and by loosening the bounds because for large n, we have αn � 1 and thus α4

n � α3
n � α2

n.
Since limn→∞ δn = 0, by (119) we can conclude that

lim
n→∞

αn,j,i(xj) = 0, ∀i ∈ {1, . . . , n}, j ∈ {1, 2}, ∀xj ∈ Xj \ {0}, (126)

and hence
lim
n→∞

αn,j,i(0) = 1, ∀i ∈ {1, . . . , n}, j ∈ {1, 2}. (127)

We now derive the asymptotics of ζn which are going to serve later when we take limits. Consider a
subsequence of blocklengths {n`}∞`=1 for which all expressions

ψn(x1, 0) ,
1
n

∑n
i=1 αn,1,i(x1)

αn
(128a)

ψn(0, x2) ,
1
n

∑n
i=1 αn,2,i(x2)

αn
(128b)

converge, and denote the respective convergence points by

ψ(x1, 0) , lim
`→∞

1
n`

∑n`

i=1 αn`,1,i(x1)

αn`

(129a)

ψ(0, x2) , lim
`→∞

1
n`

∑n`

i=1 αn`,2,i(x2)

αn`

. (129b)

Notice that ψ forms a pmf over the alphabet X̃ . It can then be shown that:

ζ(z) := lim
`→∞

ζn`
(z) (130)

=
∑

(x1,x2)∈X̃

ψ(x1, x2)
(
Q(z|x1, x2)−Q(z|0, 0)

)
. (131)
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Since Dn ≤ δn for sufficiently large blocklengths n, we can conclude that for sufficiently large `:

δn`
≥ (1 + o(1)) · n`

α2
n`

2

∑

z∈Z

ζ2(z)

Q(z|0, 0)
. (132)

Upper bound on m1 and m2: For a given blocklength n, let

Pe , Pr
[
Ŵ1 6= W1 or Ŵ2 6= W2

]
(133)

Since the message W1 is uniform over {1, . . . ,M1} and independent of the local randomness C1, C2, we
have

m1 ≤
1

1− Pe
(I(W1;Y

n|W2, S1, S2, C1, C2, X
n
2 ) + Hb(Pe)) (134)

≤ 1

1− Pe
·

n∑

i=1

(
H(Yi|X2i)−H(Yi|X1i, X2i) + Hb(Pe)

)
(135)

=
1

1− Pe

(
n

n∑

i=1

1

n
I(X1i;Yi|X2i) + Hb(Pe)

)
. (136)

Define T as the time sharing random variable which is uniform over {1, . . . , n} and independent of all
other random variables. Then:

m1 ≤
1

1− Pe

(
nI(X̃1; Ỹ |X̃2, T ) + 1

)
(137)

≤ n(1 + o(1))

1− Pe


 ∑

x1∈X1\{0}

PX1,T
(x1) · DY(x1, 0) +

1

n


 ,

(138)

=
nαn(1 + o(1))

1− Pe
·
∑

x1∈X1\{0}

ψn(x1, 0)DY(x1, 0), (139)

where the second inequality is obtained by applying [17, Lemma 1] for each realization of T and by noticing
the joint pmf

PX1,TX2,TYTT (x1, x2, y, t) = PT (t)PX1,T |T (x1|t)PX2,T |T (x2|t)Γ(y|x1, x2) (140)

for PT uniform over {1, . . . , n}; and the last equality holds by using the fact that αnn cannot tend to 0
because otherwise no information is transmitted. Similar steps can be used to bound m2.

Since Pe → 0 as n → ∞ and ψn converges on the sequence of blocklengths {n`}, we obtain for each
n`:

m1 ≤ n`αn`
(1 + o(1))

∑

x1∈X1\{0}

ψ(x1, 0)DY(x1, 0). (141)

m2 ≤ n`αn`
(1 + o(1))

∑

x2∈X2\{0}

ψ(0, x2)DY(0, x2). (142)

Upper bound on r1 and r2: Combining (141) with (132), we obtain:

lim
`→∞

m1√
n`δn`

≤
√

2

∑
x1∈X1\{0} ψ(x1, 0) · DY(x1, 0)

√∑
z∈Z

ζ2(z)
Q(z|0,0)

(143)

=
√

2

∑
x1∈X1\{0} ψ(x1, 0) · DY(x1, 0)

√
χ2(ψ)

, (144)
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and

lim
`→∞

m2√
n`δn`

≤
√

2

∑
x2∈X2\{0} ψ(0, x2) · DY(0, x2)√

χ2(ψ)
. (145)

Upper bound on δn: Let β1 and β2 be the two numbers in [0, 1] that satisfy

lim
`→∞

m1√
n`δn`

= β1
√

2

∑
x1∈X1\{0} ψ(x1, 0) · DY(x1, 0)

√
χ2(ψ)

(146a)

lim
`→∞

m2√
n`δn`

= β2
√

2

∑
x2∈X2\{0} ψ(0, x2) · DY(0, x2)√

χ2(ψ)
. (146b)

Assume for the moment that β1, β2 are strictly larger than 0, and thus we can divide by them. Then,
(146) combined with (141) and (142) implies that for all blocklengths n`:

√
n`δn`

≤ n`αn`

βj
√

2(1− Pe)
√
χ2(ψ)(1 + o(1)), j ∈ {1, 2}. (147)

Lower bound on mj + pj , for j ∈ {1, 2}: We start with the lower bound

m1 + p1 = H(W1, S1|C1, C2) (148)
≥ I(W1, S1;Z

n|C1, C2) (149)
(a)

≥ I(Xn
1 ;Zn|C1, C2) (150)

(b)

≥ I(Xn
1 , X

n
2 ;Zn|C1, C2)− I(Xn

2 ;Zn|Xn
1 ) (151)

where above sequence of (in)equalities are justified as follows:
• (a) holds because Xn

1 = xn1 (W1, S1, C1) is a function of W1, S1, and C1.
• (b) holds because of the Markov chain (C1, C2)→ (Xn

1 , X
n
2 )→ Zn and because conditioning reduces

entropy.
Similarly we get,

m2 + p2 ≥ I(Xn
1 , X

n
2 ;Zn|C1, C2)− I(Xn

1 ;Zn|Xn
1 ). (152)

We next focus on the first mutual-information term that is common to the RHS of (151) and (152). To
this end, we define for each pair (c1, c2) ∈ G1 × G2 the warden’s average output distribution:

Q̂n
(c1,c2)

(zn) ,

∑

(w1,s1)

∑

(w2,s2)

Q⊗n(zn|xn1 (w1, s1, c1), x
n
2 (w2, s2, c2))

2m1+m2+p1+p2

(153)

and the divergence
Dn,(c1,c2) , D

(
Q̂n

(c1,c2)

∥∥ Q⊗n(·|0n, 0n)
)
. (154)

With these definitions, we can write:

I(Xn
1 , X

n
2 ;Zn|C1, C2) (155)

(a)
= E

[∑

zn

Q⊗n(zn|Xn
1 , X

n
2 ) log

(
Q⊗n(zn|Xn

1 , X
n
2 )

Q⊗n(zn|0n, 0n)

)]
− E

[
Dn,(C1,C2)

]
(156)

(b)

≥
n∑

i=1

E
[∑

zi

Q(zi|X1,i, X2,i) log

(
Q(zi|X1i, X2i)

Q(zi|0, 0)

)]
−Dn

(157)
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(c)
=

n∑

i=1

( ∑

x1∈X1\{0}

αn,1,i(x1)DZ(x1, 0) +
∑

x2∈X2\{0}

αn,2,i(x2)DZ(0, x2)

)
(1 + o(1))−Dn (158)

(d)
= nαn

( ∑

x1∈X1\{0}

ψn(x1, 0)DZ(x1, 0) +
∑

x2∈X2\{0}

ψn(0, x2)DZ(0, x2)

)
(1 + o(1))−Dn, (159)

where above sequence of (in)equalities are justified as follows:
• (a) holds by the definition of Dn,(c1,c2);
• (b) holds by convexity of the divergence;
• (c) by writing out the expectations over the independent random variables X1,i and X2,i; by noting that

for X1,i = X2,i = 0 the term in the expectation evaluates to 0; and by recalling that all αn,1,i, αn,2,i → 0
as n→∞;

• (d) holds by the definition of ψn in (128).
For the second mutual-information term on the RHS of (151), we have:

I(Xn
1 ;Zn|Xn

2 ) ≤
n∑

i=1

H(Zi|X2,,i)−H(Zi|X1,i, X2,i) (160)

= nI(X1,T ;ZT |X2,T , T ) (161)

≤ nαn(1 + o(1)) ·
∑

x1∈X1\{0}

ψn(x1, 0)DZ(x1, 0), (162)

where the last inequality holds by applying [17, Lemma 1] to outputs ZT and for each realization of T .
Similarly,

I(Xn
2 ;Zn|Xn

1 ) ≤ nαn(1 + o(1)) ·
∑

x2∈X2\{0}

ψn(0, x2)DZ(0, x2). (163)

Thus, combining (159), (162) and (163) with (151)–(152) and Dn ≤ δn, for sufficiently large values of
n we obtain:

m1 + p1 ≥ nαn(1 + o(1)) ·
∑

x1∈X1\{0}

ψn(x1, 0)DZ(x1, 0)− δn (164)

and

m2 + p2 ≥ nαn(1 + o(1)) ·
∑

x2∈X2\{0}

ψn(0, x2)DZ(0, x2)− δn. (165)

Lower bound on rj + kj , for j ∈ {1, 2}: Restricting to the subsequence of blocklengths {n`}, by the

definition of ψ(x1, 0) and ψ(0, x2), we obtain from (164), (165), and (147):

lim
`→∞

m1 + p1√
n`δn`

≥ β1
√

2

∑
x1∈X1\{0} ψ(x1, 0)DZ(x1, 0)

√
χ2(ψ)

(166)

and

lim
`→∞

m2 + p2√
n`δn`

≥ β2
√

2

∑
x2∈X2\{0} ψ(x2, 0)DZ(0, x2)√

χ2(ψ)
. (167)

Here we used the fact that
√

δn
n

vanishes for increasing blocklengths because δn → 0 as n→∞.

Concluding the Proof of the Proposition: The proof of the proposition is then concluded by combining
(166) and (167) with (146), and by noting that this latter equality can be turned into an inequality because
the Txs are always allowed to send dummy information bits.
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