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Abstract—In this paper, we consider a point-to-point integrated
sensing and communication (ISAC) system, where a transmitter
conveys a message to a receiver over a channel with memory
and simultaneously estimates the state of the channel through the
backscattered signals from the emitted waveform. Using Massey’s
concept of directed information for channels with memory, we
formulate the capacity-distortion tradeoff for the ISAC problem
when sensing is performed in an online fashion. Optimizing the
transmit waveform for this system to simultaneously achieve good
communication and sensing performance is a complicated task,
and thus we propose a deep reinforcement learning (RL) approach
to find a solution. The proposed approach enables the agent to
optimize the ISAC performance by learning a reward that reflects
the difference between the communication gain and the sensing
loss. Since the state-space in our RL model is à priori unbounded,
we employ deep deterministic policy gradient algorithm (DDPG).
Our numerical results suggest a significant performance improve-
ment when one considers unbounded state-space as opposed to a
simpler RL problem with reduced state-space. In the extreme case
of degenerate state-space only memoryless signaling strategies are
possible. Our results thus emphasize the necessity of well exploiting
the memory inherent in ISAC systems.

I. INTRODUCTION

Integrating sensing and communication (ISAC) into a single
system is motivated by reducing hardware costs, bandwidth
usage, and power consumption. It is enabled by several features
anticipated for 6G communication systems: higher frequency
bands (from mmWave up to THz), wider bandwidths and denser
distributions of massive antenna arrays [1]–[5].

Recently, deep learning technology has demonstrated its
capability in various wireless communication applications such
as channel estimation, signal detection, and resource allocation
[6], [7]. Motivated by this, some recent studies have focused
on enhancing the performance of an ISAC system using deep
reinforcement learning approaches in different model-based and
model-free settings and for a wide range of applications [8]–
[10].

In this paper, we propose a reinforcement learning (RL)
approach to study fundamental limits of ISAC systems with
memory by adopting a deep deterministic policy gradient
(DDPG) algorithm [11] where an agent simultaneously takes
sensing and communication actions to optimize the ISAC
performance. More specifically, we use Massey’s concept of
directed information for channels with memory [12] and for-
mulate the capacity-distortion trade-off under an online-sensing
framework. This formulation includes an optimization problem
where the objective is to optimize the transmit waveform so
as to simultaneously achieve good communication and sensing
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Fig. 1: system model

performance. We simplify this optimization problem for the
class of unifilar channels [13], and reformulate the problem in
this special case as a Markov decision process (MDP). Finally,
using a DDPG algorithm, we numerically evaluate the capacity-
distortion trade-off for a specific example. Our numerical results
suggest a significant performance improvement if our RL ap-
proach is applied to the full model with unbounded state-space
as opposed to a restricted and simplified model with limited
state-space. In the extreme case of degenerate state-space, the
RL formulation only allows for memoryless signaling strategies
and is highly suboptimal.

The capacity-distortion trade-off of ISAC systems has been
studied both in the asymptotic [14]–[16] and finite blocklength
[17] regimes. However, while most works focus on memoryless
ISAC channels, [16] considered a very general model with
memory similar to the one in this work. The difference between
our work and [16] lies in our focus on online-estimators that
sense the targets in an online manner and not just at the end
of the communication. Moreover, we managed to simplify the
general complicated expression for the class of unifilar channels.

II. PROBLEM SETUP

Consider the point-to-point setup in Figure 1 where a dual
function ISAC transmitter (Tx) wishes to communicate the
message M ∈ [1 : 2nR] to a receiver (Rx), where R denotes the
rate of communication and n the blocklength of transmission.
At the same time, the Tx also collects backscattering signals to
estimate sensing parameters of the system.

More specifically, at each discrete-time i ∈ {1, . . . , n}, the Tx
emits a channel input to the system, and the environment creates
two outputs: the receive signal Yi observed at the Rx and the
backscattered signal Zi observed at the Tx. Both signals depend

433979-8-3503-5405-8/24/$31.00 ©2024 IEEE Asilomar 2024

20
24

 5
8t

h 
As

ilo
m

ar
 C

on
fe

re
nc

e 
on

 S
ig

na
ls,

 S
ys

te
m

s,
 a

nd
 C

om
pu

te
rs

 |
 9

79
-8

-3
50

3-
54

05
-8

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IE
EE

CO
N

F6
00

04
.2

02
4.

10
94

26
18

Authorized licensed use limited to: Telecom Paris. Downloaded on April 08,2025 at 16:21:58 UTC from IEEE Xplore.  Restrictions apply. 



on an internal state sequence U1, . . . , Un of the environment.
In practical contexts, this state sequence can model obstacles,
fading phenomena, or also velocities or directions of vehicles
in the neighborhood of the Tx or the Rx. We formalize a very
general model with channel transition law

PZiYi|XiUiZi−1Y i−1 , i ∈ {1, . . . , n}, (1)

in function of the current and past inputs and states and the past
outputs and backscatterers. Both the channel from the Tx to the
Rx (also called communication channel) as well as the channel
from the Tx to itself (also called sensing or radar channel) can
thus have arbitrary memory and arbitrarily depend on the past
state symbols U i. The two channels can either be dependent or
independent, depending on the specific choice of channel laws
{PZiYi|XiUiZi−1Y i−1} that one considers.

The Tx can compute its channel inputs in an interactive way,
depending on the previously observed backscatterers. Thus, at
a given time i ∈ {1, . . . , n}, the Tx produces the input Xi as

Xi = fi(M,Zi−1, Xi−1) (2)

using some encoding function fi on appropriate domains.
In terms of sensing, the Tx is interested in estimating a given

target Si which can depend on the channel’s internal state Ui

and inputs/outputs. The Tx produces a time-i state estimate Ŝi

in an online manner based on its previous observations:

Ŝi = gi(X
i, Zi). (3)

Sensing performance is measured by average block distortion:

∆(n) :=
1

n

n∑
i=1

E[d(Si, Ŝi)], (4)

where d(·, ·) is a given bounded per-symbol distortion function.
The optimal estimator g∗i (·, ·) is easily obtained from the

target distribution PSi|Xi,Zi implicitly defined by the channel.
We wish to set:

Ŝi := argmin
ŝ

∑
s

PSi|XiZi(si|xi, zi)d(si, ŝ). (5)

The receiver waits until it observes all its n channel outputs
Y n and then decodes message M as

M̂ = ψ(Y n), (6)

using a well-chosen decoding function ϕ that acts on appropriate
domains. (The Rx thus does not have explicit knowledge of the
state à priori, only what it learns from its observed outputs.)

In an information-theoretic tradition, communication perfor-
mance is measured by the rate R that allows to drive the Rx’s
error probability ϵ(n) := P[M̂ ̸= M ] to 0 asymptotically. This
is formalized in the following section.

III. CAPACITY-DISTORTION TRADEOFF

Definition 1: A rate-distortion pair (R,D) is said to be
achievable if there exists a sequence (in n) of (2nR, n)
codes and encoding, estimation and decoding functions
f1, . . . , fn, g1, . . . .gn, ψ that simultaneously satisfy

lim
n→∞

ϵ(n) = 0, (7)

lim
n→∞

∆(n) ≤ D. (8)

The capacity-distortion trade-off C(D) is the largest rate R such
that the rate-distortion tuple (R,D) is achievable.

The capacity-distortion trade-off C(D) of our model can be
obtained following similar steps to [16], see the following
Proposition 1. The only difference between the model here and
the one in [16] lies in the way the transmitter estimates the
state sequence. While in [16], the state estimation is performed
at the very end of the communication, here we impose online
estimators where the i-th state symbol has to be estimated at
the same time as producing the i-th channel inputs.

Proposition 1: The capacity-distortion trade-off C(D) is

C(D) = lim
n→∞

1

n
sup

{PXi|Xi−1Zi−1}n
i=1

n∑
i=1

I(Xi;Yi|Zi−1), (9)

subject to
1

n

n∑
i=1

E[d(Si, g
∗
i (X

i, Zi))] ≤ D, (10)

where g∗i (·, ·) is the argmin-estimator in (5).
Above formula for the capacity-distortion trade-off is difficult
to evaluate due to the limit n→ ∞ and the supremum over the
conditional laws. It simplifies for certain classes of channels,
such as obviously memoryless channels or the set of unifilar
channels [13] on which we shall focus in this article.

Definition 2: Consider perfect feedback, i.e., Y = Z. A state-
dependent channel is called unifilar if

P (yi|xi, yi−1, ui) = P (yi|xi, ui) (11a)

and
ui = ϕ(xi, ui−1, yi) (11b)

for a given state-transition function ϕ(·) on appropriate domains.
Theorem 1: Given D the capacity-distortion trade-off of a

connected unifilar channel, where the initial state s0 is available
to both the encoder and decoder, is given by the following
optimization problem:

C(D) = lim
n→∞

max
{PXi|Ui−1Y i−1}n

i=1

1

n

n∑
i=1

I(Xi, Ui−1;Yi|Y i−1) (12)

subject to

lim
n→∞

1

n

n∑
i=1

∑
yi,xi

min
ŝ

∑
s

PSi|XiY i(si|xi, yi)d(si, ŝ) ≤ D. (13)

Proof: The term in (12) is equivalent to the capacity of a
unifilar channel and has been proved in [18, Theorem 1]. The
condition in (5) stems from the optimal estimator in (5).

IV. REINFORCEMENT LEARNING APPROACH TO ISAC
To evaluate the capacity-distortion trade-off of the proposed

ISAC system, we require to solve a complex multi-letter op-
timization problem, see Theorem 1. Our approach is to first
present a Markov decision process (MDP) formulation of this
optimization problem. We then employ RL where we model the
Tx with an agent performing both sensing and communication
tasks. For this purpose, we use the DDPG algorithm [11] which
is an actor-critic model-free RL algorithm that operates over
continuous action spaces and is of deterministic gradient policy.
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TABLE I: MDP formulation of the capacity-distortion trade-off

state δi−1 PUi−1|Y i−1(·|yi−1)

action ai PXi|Ui−1Y i−1(·|·, yi−1)

reward ri I(Xi, Ui−1;Yi|Y i−1)− βE[d(Si, Ŝi)].
disturbance yi

A. MDP formulation of the capacity-distortion trade-off

To formulate the capacity-distortion trade-off as an MDP,
we require to determine the triple (δi−1, ai, ri) where δi−1 is
the state at time i, ai is the action at time i and ri is the
corresponding reward at time i. For some fixed β ∈ [0, 1],
we determine this triple as in Table I. A new state δi is then
generated according to Equation (14) shown on the next page.

B. DDPG Algorithm

The training procedure of this algorithm consists of K
episodes each of T sequential steps [11]. In each step, we
perform the following two operations:

1) Collecting Experience at the Agent: Given the current
state δi−1, the agent takes an action ai = Aµ(δi−1) according
to the ϵ-greedy policy as follows:

ai =

argmax
ã1

Qπ(δi−1, ã1), w.p. 1− ϵ,

A random action w.p. ϵ,
(15)

with ϵ ∈ [0, 1]. After taking the action ai, the agent ob-
serves the incurred reward ri and the new state si. The tuple
{δi−1, ai, ri, δi} is then stored in a replay buffer denoted by B.

2) Improving agents and environment networks: Draw N
samples randomly from B. For each transition j ∈ {1, . . . , N},
we compute the sampled estimate for future rewards denoted
by bj . We then minimize the following objective function:

L(w) =
1

N

N∑
j=1

(Qw(δj−1, Aµ(δj−1))− bj)
2 (16)

over the parameters of the environment network w. To maximize
the estimate of future cumulative rewards, the parameter µ is
updated as follows

µ→ µ+
η

N

N∑
j=1

∇AQw (δj−1, A) |A=Aµ(δj−1)∇µAµ(δj−1),

(17)

where η is the learning rate at the agent.

V. EXAMPLE: BINARY CHANNEL WITH MULTIPLICATIVE
BERNOULLI STATE

Consider the channel

Yi = SiXi, i ∈ {1, . . . , n} (18)

with binary alphabets X = S = Y ∈ {0, 1}. Assume that the
feedback is perfect, i.e., Zi = Yi, and that the target sequence
satisfies

Si = Si−1 ⊕ S̃i, i = 1, 2, . . . , (19)

with {S̃i} being i.i.d Bernoulli(p) and S0 = 0 deterministically.
We consider the Hamming distortion measure d(s, ŝ) = s⊕ ŝ.

For each time i = 1, 2, . . ., and depending on the past inputs
X1, . . . , Xi−1, let Li denote the time evolved since the input
was 1 for the last time. This is, Li is such that

Xi−1 = · · · = Xi−Li+1 = 0 and Xi−Li
= 1. (20)

Then, define the time-i auxiliary random variable

Ui := (Li, Si−Li
). (21)

Notice that

Ui = ϕ(Xi, Yi, Ui−1) = ϕ(Xi, Yi, (Li−1, Si−1−Li−1
))

=

{
(Li−1 + 1, Si−Li−1

) if Xi = 0

(0, Yi/Xi) else.
(22)

In other words, the Tx can calculate the auxiliary sequence {Ui}
using an online procedure.

We next determine the optimal estimator to estimate the target
Si based on Xi and Y i. When Xi = 1, the Tx should obviously
set Ŝi = Yi resulting in distortion d(Si, Ŝi) = 0. To understand
how to estimate Si when Xi = 0, notice that by (19):

Si = Si−Li
⊕ S̃i−Li+1 ⊕ · · · ⊕ S̃i. (23)

Conditioned on Si−Li
, it is thus trivially independent of inputs,

outputs, and states prior to time i − Li + 1. Moreover, since
by definition of Li we have Xi−Li+1 = · · · = Xi−1 = 0, it is
also independent of inputs and outputs after time i − Li + 1.
The optimal estimator is thus the maximum likelihood estimator
based on Ui = (Li, Si−Li

), which sets

Ŝi = Si−Li
⊕ 1{pLi

> 1− pLi
} (24)

where we define (notice that the right-hand side in the following
expression does not depend on ℓ):

pℓ := P[S̃i−ℓ+1 ⊕ · · · ⊕ S̃i = 1]. (25)

Conditioned on the value of Li = ℓ and given that Xi = 0, the
distortion for the time-i symbol is thus

d(Si, Ŝi) = min{pℓ, 1− pℓ}. (26)

Following a similar reasoning as in the derivation of the
distortion under Xi = 0, we can conclude that given (Ui, Xi)
the channel output and the feedback signal are conditionally
independent of the previous inputs, outputs, and auxiliaries:

(Xi−1, Y i−1, U i−1) → (Xi, Ui) → Yi, i = 1, 2, . . . (27)

Combined with (22), this establishes that channel in this exam-
ple can be seen as a unifilar channel according to Definition 2,
where the auxiliaries Ui acts as the time-i state and the channel
transition law is:

P[Yi = y|Xi = x, Ui = (ℓ, s)] =


1 y = x = 0

0 y = 1, x = 0

pℓ y ̸= s, x = 1

1− pℓ y = s, x = 1.
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Notice that by solving the linear recursion pℓ = (1− p)pℓ−1 +
p(1− pℓ), one obtains that

pℓ =
1

2
− 1

2
(1− 2p)ℓ. (28)

We evaluate Theorem 1 for our unifilar channel.
Theorem 2: Given D, the capacity-distortion trade-off of the

binary channel with multiplicative state in (18) is given by the
following optimization problem:

C(D)= lim
n→∞

max
P

1

n

n∑
i=1

Hb

(
i−1∑
ℓ=1

αi(ℓ)

)
−

i−1∑
ℓ=1

κi(ℓ)Hb(pℓ),

(29a)

s.t.:
n∑

i=1

i−1∑
ℓ=1

P[Xi = 0, ℓi = ℓ] min{pℓ, 1− pℓ} ≤ nD. (29b)

where Hb(·) is the binary entropy function and

P := {PXi|Ui−1
(xi|ui−1)}ni=1, (30)

κi(ℓ) := P[Xi = 1, Li−1 = ℓ], (31)
αi(ℓ) := P[Xi = 0, Li−1 = ℓ]

+P[Xi = 1, Li−1 = ℓ, Si−Li = 1] · pℓ
+P[Xi = 1, Li−1 = ℓ, Si−Li = 0] · (1− pℓ). (32)

Proof: We have for the i-th term:

I(Xi, Ui−1;Yi|Y i−1)

= H(Yi|Y i−1)−H(Yi|Xi, Ui−1, Y
i−1) (33)

= Hb(P[Yi = 0|Y i−1 = yi−1])

−
i−1∑
ℓ=1

P[Xi = 1, Li = ℓ]Hb(pℓ) (34)

= Hb

(
i−1∑
ℓ=1

αi(ℓ)

)
−

i−1∑
ℓ=1

κi(ℓ)Hb(pℓ), (35)

where κi and αi are defined in (31) and (32), respectively. Note
that the first term in (35) is due to the fact that

P[Yi = 0|Y i−1 = yi−1]

=
i−1∑
ℓ=1

∑
s

∑
x

P[Xi = x, Ui−1 = (ℓ, s)]

P[Yi = 0|Y i−1 = yi−1, Xi = x, Ui−1 = (ℓ, s)](36)

=
i−1∑
ℓ=1

P[Xi = 0, Li = ℓ]

+
i−1∑
ℓ=1

pℓ · P[Xi = 1, Li = ℓ, Si−Li
= 1] (37)

+
i−1∑
ℓ=1

(1− pℓ) · P[Xi = 1, Li = ℓ, Si−Li
= 0]. (38)
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and p = 0.1 for degenerate, limited with k ∈ {0.1, 0.4} and
unbounded state spaces.

The second term follows by the fact that conditioning on Li = ℓ,
if Xi = 0 then H(Yi|Xi, Ui−1, Y

i−1) = 0, and if Xi = 1 then
H(Yi|Xi, Ui−1, Y

i−1) = Hb(pℓ).
The distortion calculation follows immediately from (26) and

because when Xi = 1 then the i-th distortion term is zero.

VI. NUMERICAL ANALYSIS

In our implementation, we trained the agent for 500 episodes,
each containing 100 consecutive blocks. The Monte Carlo
evaluation length for the average reward was chosen to be
1000. We solve the optimization problem in (29) using an RL
approach with full (unbounded), limited and degenerate sate
spaces. In the limited case, we restrict the algorithm state space
to a fraction k ∈ [0, 1] of the full state space δi−1. In the
degenerate case, the optimization problem in (29) is solved
for memoryless strategies, i.e., for Xi independent of Ui−1, or
equivalently using an RL approach with constant state-space.

Fig. 2 illustrates the average reward versus the parameter β
for n = 5000 and p = 0.1 for unbounded, limited with k ∈
{0.1, 0.4} and degenerate state spaces. In a similar way, Fig. 3
illustrates this average reward as a function of both β and p.
We observe that the average reward is high for very large ( i.e.,
p > 0.8) and very small (i.e., p < 0.2) values of p, and generally
whenever p ̸= 0.5, the average reward is strictly larger with
unbounded state space compared to the limited and degenerate
cases. For p = 0.5, the situation is somehow degenerate and
average reward is the same for the cases with degenerate, limited
and unbounded state spaces.

Fig. 4 illustrates the communication gain versus D for
the cases with unbounded and degenerate state spaces when
p = 0.3. As can be seen from this figure, enlarging the state
space in our RL framework significantly improves sensing and
communication performances.

δi(ui) =

∑
xi,ui−1

δi−1(ui−1)ai(xi, ui−1)P (yi|xi, ui−1)1{ui = f(xi, ui−1, yi}∑
xi,ui−1,ũi

δi−1(ui−1)ai(xi, ui−1)P (yi|xi, ui−1)1{ũi = f(xi, ui−1, yi}
. (14)
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VII. CONCLUSIONS

We have considered an ISAC system where a transmitter
sends a message to a receiver over a channel with memory
and simultaneously estimates given targets by analyzing the
backscattered signals from the emitted waveform. Estimation
of the targets was performed in an online matter. We have used
Massey’s concept of directed information to derive the capacity-
distortion trade-off for this ISAC setup and simplified the
expression for the class of unifilar channels. We then presented
an MDP formulation of the resulting waveform optimization
problem and solved it by employing the DDPG algorithm.
Our numerical results have shown a significant performance
improvement when the RL approach can take advantage of the
full (unbounded) state space as compared to models with limited
(or even degenerate) state spaces.
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