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Abstract—A memoryless state-dependent broadcast channel
(BC) is considered, where the transmitter wishes to convey two
private messages to two receivers while simultaneously estimating
the respective states via generalized feedback. The model at
hand is motivated by a joint radar and communication system
where radar and data applications share the same frequency
band. For physically degraded BCs with i.i.d. state sequences, we
characterize the capacity-distortion region tradeoff. For general
BCs, we provide inner and outer bounds on the capacity-
distortion region, as well as a sufficient condition when it
is equal to the product of the capacity region and the set
of achievable distortion. Interestingly, the proposed synergetic
design significantly outperforms a conventional approach that
splits the resource either for sensing or communication.

I. INTRODUCTION

A key-enabler of future high-mobility networks such as
Vehicle-to-Everything (V2X) is the ability to continuously
track the dynamically changing environment, hereafter called
the state, and to react accordingly by exchanging information
between nodes. Although state sensing and communication
have been designed separately in the past, power and spectral
efficiency as well as hardware costs encourage the integration
of these two functions, such that they are operated by sharing
the same frequency band and hardware (see e.g. [1]). A typical
example of such a scenario is joint radar parameter estimation
and communication, where the transmitter equipped with a
monostatic radar wishes to convey a message to a receiver and
simultaneously estimate the state parameters such as velocity
and range from the backscattered signals. [2]. Motivated by
such an application, the first information theoretical model for
joint sensing and communication has been introduced in [3].
By modeling the backscattered signal as generalized feedback
and designing carefully the input signal, the capacity-distortion
tradeoff has been characterized for a single-user channel [3],
while lower and upper bounds on the rate-distortion region
over multiple access channel has been provided in [4].

The current paper extends [3] to the broadcast channel (BC),
where the transmitter wishes to convey private messages to two
receivers and simultaneously estimate their respective states.
For simplicity, the state information is assumed known at each
receiver. Although oversimplified, the scenario at hand relates
to vehicular networks where a transmitter vehicle, equipped
with a monostatic radar, sends (safety-related) messages to
multiple vehicles and simultaneously estimates the parameters
of these vehicles. It seems challenging to fully characterize
the BC capacity-distortion region and to identify the schemes

that are jointly optimal for both communication and sensing.
In fact, even the optimal schemes for communication only
are generally unknow and the simpler BC capacity region
with generalized feedback has not been characterised in the
general case (see e.g. [5]). Therefore, we first focus on the
special case of physically degraded BCs, where generalized
feedback is only useful for state sensing but does not in-
crease capacity, as in the single user channel. The capacity-
distortion region is completely characterized for this class of
BCs. Moreover, closed-form expressions of the region are
provided for some binary examples. The numerical evaluations
illustrate interesting tradeoffs between the achievable rates
and distortions across two receivers. For general BCs, we
provide a sufficient condition when the capacity-distortion
region is simply the product of the capacity region and the
set of all achievable distortions, thus no tradeoff between
communication and sensing arises. Furthermore, we provide
general inner and outer bounds on the capacity-distortion
region, as well as a state-dependent Dueck’s example. For all
these kinds of BCs, we show though numerical examples that
the synergetic design significantly outperforms the resource-
sharing scheme that splits the resource either for sensing or
communication.

The rest of the paper is organized as follows. Section II
introduces our model and Section III presents some cases that
yield no tradeoff between sensing and communication. Section
IV focuses on the physical degraded broadcast channel and
provides some examples. Finally, upper and lower bounds for
the general memoryless broadcast channel are provided along
with an example in Section V.

II. SYSTEM MODEL
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Fig. 1. Broadcast model for joint sensing and communication

Consider a two-user state-dependent memoryless broadcast
channel (SDMBC) with two private messages W1 and W2 as



illustrated in Fig. 1. The model comprises a two-dimensional
memoryless state sequence {(S1,i, S2,i)}i≥1 whose samples at
time i are distributed according to a given joint law PS1S2 over
the state alphabets S1×S2. Given input and output alphabets
X ,Y1,Y2,Z , input Xi = x ∈ X and state-realizations S1,i =
s1 ∈ S1 and S2,i = s2 ∈ S2, the SDMBC produces a triple
of outputs (Y1,i, Y2,i, Zi) ∈ Y1×Y2×Z according to a given
time-invariant transition law PY1Y2Z|S1S2X(·, ·, ·|s1, s2, x), for
each time i.

A SDMBC is thus entirely specified by the tuple of alpha-
bets and (conditional) pmfs

(X ,Y1,Y2,Z, PS1S2 , PY1Y2Z|S1S2X). (1)

We will often describe a SDMBC only by the pair of pmfs
(PS1S2 , PY1Y2Z|S1S2X), in which case, the corresponding al-
phabets should be clear from the context.

A (2nR1 , 2nR2 , n) code for an SDMBC PY1Y2Z|S1S2X con-
sists of

1) two message setsW1 = [1 : 2nR1 ] andW2 = [1 : 2nR2 ];
2) a sequence of encoding functions φi : W1 × W2 ×
Zi−1 → X , for i = 1, 2, . . . , n;

3) for each k = 1, 2 a decoding function gk : Snk × Ynk →
Wk;

4) for each k = 1, 2 a state estimator hk : Xn×Zn → Ŝnk ,
where Ŝk denotes the given reconstruction alphabet for
state sequence Snk = (Sk,1, · · · , Sk,n).

For a given code, we let the random messages W1 and W2

be uniform over the message sets W1 and W2 and the inputs
Xi = φi(W1,W2, Z

i−1), for i = 1, . . . , n. The corresponding
outputs Y1,iY2,i, Zi at time i are obtained from the states S1,i

and S2,i and the input Xi according to the SDMBC transition
law PY1Y2Z|S1S2X . Further, let Ŝnk := (Ŝk,1, · · · , Ŝk,n) =
hk(Xn, Zn) be the state estimates at the transmitter and let
Ŵk = gk(Snk , Y

n
k ) be the decoded message by decoder k, for

k = 1, 2.
The quality of the state estimates Ŝnk is measured by a given

per-symbol distortion function dk : Sk×Ŝk 7→ [0,∞), and we
will be interested in the expected average per-block distortion

∆
(n)
k ,

1

n

n∑
i=1

E[dk(Ski, Ŝki)], k = 1, 2. (2)

For the decoded messages Ŵ1 and Ŵk we focus on their joint
probability of error:

pn(error) := Pr
(
Ŵ1 6= W1 or Ŵ2 6= W2

)
. (3)

Definition 1. A rate-distortion tuple (R1, R2, D1, D2) is said
achievable if there exists a sequence (in n) of (2nR1 , 2nR2 , n)
codes that simultaneously satisfy

lim
n→∞

p(n)(error) = 0 (4a)

lim
n→∞

∆
(n)
k ≤ Dk, for k = 1, 2. (4b)

The closure of the union of all achievable rate-distortion
tuples (R1, R2, D1, D2) is called the capacity-distortion region

and is denoted CD. The current work aims at specifying the
tradeoff between the achievable rates and distortions. As we
will see in Sections III and V, there is no such tradeoff in
some cases, and the resulting region CD is the product of
SDMBC’s capacity region:

C , {(R1, R2) : (R1, R2, D1, D2) ∈ CD for D1, D2 ≥ 0}, (5)

and its distortion region:

D , {(D1, D2) : (R1, R2, D1, D2) ∈ CD for R1, R2 ≥ 0}. (6)

Before presenting our results on the tradeoff region CD in
the following sections, we describe the optimal choice of the
estimators h1 and h2.

Lemma 1. For k = 1, 2 and any i = 1, . . . , n, whenever
Xi = x and Zi = z, the optimal estimator hk that minimizes
the average expected distortion ∆

(n)
k is given by

ŝ∗k,i(x, z) , arg min
s′∈Ŝk

∑
sk∈Sk

PSk,i|XiZi
(sk|x, z)d(sk, s

′). (7)

In above definition (7), ties can be broken arbitrarily.

Notice that the lemma implies in particular that a sym-
bolwise estimator that estimates Sk,i only based on (Xi, Zi)
is optimal; there is no need to resort to previous or past
observations (Xi−1, Zi−1) or (Xn

i+1, Z
n
i+1).

Proof of Lemma 1: Recall that Ŝnk is a function of
Xn, Zn and write for each i = 1, · · · , n:

E
[
dk(Sk,i, Ŝk,i)

]
= EXn,Zn

[
E[dk(Sk,i, Ŝk,i)|Xn, Zn]

]
(8)

(a)
=
∑
xn,zn

PXnZn(xn, zn)
∑
ŝk∈Sk

PŜk,i|XnZn(ŝk|xn, zn)

·
∑
sk

PSk,i|XiZi
(sk|xi, zi)d(sk, ŝk) (9)

≥
∑
xn,zn

PXnZn(xn, zn)

· min
ŝk∈Sk

∑
sk

PSk,i|XiZi
(sk|xi, zi)d(sk, ŝk)

= E[d(Sk,i, ŝ
∗
k(Xi, Zi))], (10)

where (a) holds by the Markov chain(
Xi−1, Xn

i+1, Z
i−1, Zni+1, Ŝk,i

)
−
− (Xi, Zi)−
− Sk,i.

III. ABSENCE OF RATE-DISTORTION TRADEOFF

We first consider degenerate cases where the rate-distortion
tradeoff region is given by the Cartesian product between the
capacity region C and the distortions region D.

Proposition 2 (No Distortions-Rate Tradeoff).
Consider a SDMBC (PS1S2

, PY1Y2Z|S1S2X) and let
(X,S1, S2, Y1, Y2, Z) ∼ PXPS1S2

PY1Y2Z|S1S2X for a
given input law PX . If there exist functions ψ1 and ψ2 with
domain Z such that for all PX the Markov chains

(Sk, ψk(Z)) ⊥ X, (11)



Sk −
− ψk(Z)−
− (Z,X), k ∈ {1, 2}, (12)

hold, then for the SDMBC under consideration:

CD = C × D. (13)

In this case, there is no tradeoff between the achievable rate
pairs (R1, R2) and the achievable distortion pairs (D1, D2).

Proof: Notice that under the given Markov chains:

PSk,i|XiZi
(sk|x, z) = PSk,i|ψk(Zi)(sk|ψk(z)). (14)

By Lemma 1, the optimal estimators depend only on the
sequences {ψk(Zi)}ni=1, for k = 1, 2. Then, by (11), the
optimal estimators and their performances are independent of
the chosen encoding scheme and we conclude (13).

The following example satisfies conditions (11) and (12) in
Proposition 2 for an appropriate choice of ψ1 and ψ2 .

A. Example: Erasure BC with Noisy Feedback

Let the joint law PS1S2E1E2(s1, s2, e1, e2) over {0, 1}4
be arbitrary but given, and (E1, E2, S1, S2) ∼ PS1S2E1E2 .
Consider the state-dependent erasure BC

Yk =

{
X if Sk = 0,

? if Sk = 1,
, k = {1, 2}, (15)

where the feedback signal Z = (Z1, Z2) is given by

Zk =

{
Yk if Ek = 0,

? if Ek = 1,
, k = {1, 2}. (16)

Further consider the Hamming distortion measure dk(s, ŝ) =
s⊕ ŝ, for k = 1, 2. For the choice

ψk(Z) =

{
1, if Zk =?

0, else,
(17)

the described SDMBC satisfies the conditions in Proposition 2
and its capacity-distortion region is thus given by

CD = C × D. (18)

Remark 1. For the case of output feedback Z = (Y1, Y2) or
E1 = E2 = 0, the transmitter can perfectly estimate the state
(S1, S2), yielding D1 = D2 = 0 regardless of the rate pair
(R1, R2) ∈ C. The capacity region C of the erasure broadcast
channel with output feedback is still unknown in general.

IV. PHYSICALLY DEGRADED BCS

In this section, by focusing on the physically degraded
SDMBC, we fully characterize the capacity-distortion region.
Then, we discuss two binary physically degraded SDMBCs to
illustrate the rate-distortion tradeoff between the two receivers.

Definition 2. An SDMBC (PS1S2
, PY1Y2Z|S1S2X) is called

physically degraded if there are conditional laws PY1|XS1
and

PY2S2|S1Y1
such that

PY1Y2|S1S2XPS1S2 = PS1PY1|S1XPY2S2|S1Y1
. (19)

That means for any arbitrary input PX , if a tuple
(X,S1, S2, Y1, Y2) ∼ PXPS1S2PY1Y2|S1S2X , then it satisfies
the Markov chain

X −
− (S1, Y1)−
− (S2, Y2). (20)

Proposition 3. The capacity-distortion region CD of a
physically degraded SDMBC is the closure of the set of
all quadruples (R1, R2, D1, D2) for which there exists a
joint law PUX so that the tuple (U,X, S1, S2, Y1, Y2, Z) ∼
PUXPS1S2

PY1Y2Z|S1S2X satisfies the two rate constraints

R1 ≤ I(X;Y1 | S1, U) (21)
R2 ≤ I(U ;Y2|S2), (22)

and the distortion constraints

E[dk(Sk, ŝ
∗
k(X,Z)))] ≤ Dk, k ∈ {1, 2}, (23)

where

ŝ∗k(x, z) , arg min
s′∈Ŝk

∑
sk∈Sk

PSk|XZ(sk|x, z)d(sk, s
′). (24)

Moreover, one can restrict to random variables U over alpha-
bets U satisfying |U| ≤ min{|X |, |Y1| · |S1|, |Y2| · |S2|}+ 1.

Proof: The converse follows as a special case of The-
orem 6 ahead where one can ignore constraints (33c) and
(33d). Notice that constraint (33b) is equivalent to (22) because
(U,X) is independent of (S1, S2) and because for a physically
degraded DMBC the Markov chain (20) holds. The cardinality
bound can be proved using Carathéodory’s theorem.

Achievability is obtained by simple superposition coding
and using the optimal estimator described in Lemma 1.

We consider two binary state-dependent channels. For the
binary states, we consider the Hamming distortion measure.

A. Example: Binary BC with Multiplicative States

Consider the physically degraded SDMBC with binary
input/output alphabets X = Y1 = Y2 = {0, 1} and binary
state alphabets S1 = S2 = {0, 1}. The channel input-output
relation is described by

Yk = X · Sk, k = 1, 2, (25)

with the joint state pmf

PS1S2
(s1, s2) =


1− q, if (s1, s2) = (0, 0)

0, if (s1, s2) = (0, 1)

q · γ, if (s1, s2) = (1, 1)

q · (1− γ) if (s1, s2) = (1, 0),

(26)

for γ, q ∈ [0, 1]. Notice that S2 is a degraded version of S1.
We consider output feedback Z = (Y1, Y2).

Corollary 4. The capacity-distortions region CD of the binary
physically degraded SDMBC in (25)–(26) parameterized by (q,
γ) is the set of all quadruples (R1, R2, D1, D2) satisfying

R1 ≤ q ·Hb(p) · r (27a)
R2 ≤ γ · q ·Hb(p) · (1− r) (27b)



Fig. 2. Boundary of the capacity-distortion region CD for the example in
Subsection IV-A.

D1 ≥ (1− p) ·min{q, 1− q} (27c)
D2 ≥ (1− p) ·min{γ · q, 1− γ · q}, (27d)

for some choice of the parameters r, p ∈ [0, 1].

Proof. It suffices to evaluate the rate-constraints (21) and (22)
for X = V ⊕ U when U and V are independent Bernoulli
distributed random variables. In (27), we choose the parameter
p = Pr[X = 1] and r = H(V )

Hb(p)
. To calculate the distortion, we

determine the optimal estimator ŝ∗k(x, y1, y2) from (24) as

ŝ∗k(1, y1, y2) = yk, (28a)
ŝ∗k(0, y1, y2) = 1{PSk

(1) > 1/2}. (28b)

Remark 2. Fixing r = 1, the capacity-distortion region in
(27) reduces to the capacity-distortion tradeoff of a single user
channel [3, Proposition 1]. Similarly to the single-user case,
we observe the tension between the minimum distortion by
choosing p = 1 (always sending X = 1) and the maximum
rate by choosing p = 1/2. In the BC, the resource is shared
between the two users via the time-sharing parameter r.

It is worth comparing the capacity-distortion region CD,
achieved by the proposed co-design scheme that uses a com-
mon waveform for both sensing and communication tasks,
with the rate-distortion region achieved by two baseline
schemes: i) a resource splitting scheme that performs either
state estimation via feedback or broadcasting that ignores the
feedback; ii) a time-sharing scheme that performs either state
estimation via feedback or broadcasting with feedback.

Fig. 2 shows in red colour the dominant boundary points of
the projection of the tradeoff region CD onto the 3-dimensional
plane (R1, R2, D1) when γ = 1/2 and q = 0.6. The tradeoff
with D2 is omitted because D2 is a scaled version of D1. We
compare our proposed scheme with the two aforementioned
baseline schemes. From Fig. 2, we observe that both resource-
splitting and time-sharing approaches fail to achieve the entire
tradeoff region CD.

So far, there was no tradeoff between the two distortion
constraints D1 and D2. This is different in the next example,
which otherwise is very similar.

B. Example: Binary BC with Flipping Inputs

Reconsider the same state pmf PS1S2 as in the previous
example, but now a SDMBC with transition law

Y1 = X · S1, Y2 = (1−X) · S2. (29)

Consider output feedback Z = (Y1, Y2).

Corollary 5. The capacity-distortion region CD of the binary
SDMBC with flipping inputs in (29) and output feedback is
the set of all quadruples (R1, R2, D1, D2) satisfying

R1 ≤ q ·Hb(p) · r (30a)
R2 ≤ γ · q ·Hb(p) · (1− r) (30b)
D1 ≥ (1− p) ·min{q(1− γ), (1− q)} (30c)
D2 ≥ p · qmin{γ, 1− γ} (30d)

for some choice of the parameters r, p ∈ [0, 1].

Proof. To achieve this region, we can consider the same
choices of (U,X) as in the previous example. The optimators
are given by (28a) and

ŝ∗2(x = 0, y1, y2) = y2, (31)
ŝ∗2(x = 1, y1, y2) = 1{PS2

(1) > 1/2}. (32)

In contrast to the previous example, here we observe a
tradeoff between the achievable distortions D1 and D2.

V. GENERAL BOUNDS

Reconsider the general SDMBC (not necessarily physically
degraded). We provide an inner and an outer bound on the
capacity-distortion region.

Theorem 6. If (R1, R2, D1, D2) is achievable on a SDMBC
(PS1S2

, PY1Y2Z|S1S2X), then there exists for each k =
1, 2 a conditional pmf PUk|X such that the random tuple
(Uk, X, S1, S2, Y1, Y2, Z) ∼ PUk|XPXPS1S2

PY1Y2Z|S1S2X

satisfies the rate constraints

R1 ≤ I(U1;Y1 | S1), (33a)
R1 +R2 ≤ I(X;Y1, Y2 | S1, S2, U1), (33b)
R1 +R2 ≤ I(X;Y1, Y2 | S1, S2, U2), (33c)

R2 ≤ I(U2;Y2 | S2) (33d)

and the average distortion constraints

E[dk(Sk, ŝ
∗
k(X,Z)))] ≤ Dk, k ∈ {1, 2}, (34)

where the function ŝ∗k(·, ·) is defined in (24).

Proof: Omitted. See [5].
The next inner bound is obtained by combining the achiev-

able region in [6] with the optimal estimator in Lemma 1.

Proposition 7. Consider a SDMBC (PS1S2
, PY1Y2Z|S1S2X).

For any (conditional) pmfs PU0U1U2X and PV0V1V2|U0U1U2Z

and tuple (U0, U1, U2, X, S1, S2, Y1, Y2, Z, V0, V1, V2) ∼
PU0U1U2XPS1S2PY1Y2Z|S1S2XPV0V1V2|U0U1U2Z , the closure of



R1 ≤ I(U0, U1;Y1, V1 | S1)− I(U0, U1, U2, Z;V0, V1|S1, Y1) (36a)
R2 ≤ I(U0, U2;Y2, V2 | S2)− I(U0, U1, U2, Z;V0, V2|S2, Y2) (36b)

R1 +R2 ≤ I(U1;Y1, V1|U0, S1) + I(U2;Y2, V2|U0, S2) + min
i∈{1,2}

I(U0;Yi, Vi | Si)− I(U1;U2|U0)

−I(U0, U1, U2, Z;V1|V0, S1, Y1)− I(U0, U1, U2, Z;V2|V0, S2, Y2)− max
i∈{1,2}

I(U0, U1, U2, Z;V0|Si, Yi) (36c)

the set of all quadruples (R1, R2, D1, D2) satisfying inequal-
ities (36) on top of this page and the distortion constraints

E[dk(Sk, ŝ
∗
k(X,Z)))] ≤ Dk, k ∈ {1, 2}, (35)

for ŝ∗k(·, ·) defined in (24), is achievable.

A. Example: Dueck’s BC with Binary States

Consider a state-dependent version of Dueck’s BC [7] with
input X = (X0, X1, X2) ∈ {0, 1}3, outputs

Yk = (X0, Y
′
k, S1, S2), k = 1, 2, (37)

and states S1, S2 ∈ {0, 1}, and

Y ′k = Sk(Xk ⊕N), k = 1, 2, (38a)

where the noise N is Bernoulli- 12 independent of the inputs.
Assume i.i.d. states such that PS1S2

(s1, s2) = PS(s1)PS(s2)
for a given pmf PS . The feedback signal is Z = (Y ′1 , Y

′
2).

Corollary 8. The capacity-distortion region CD of Dueck’s
state-dependent BC is included in the set of quadruples
(R1, R2, D1, D2) satisfying the four rate-constraints

R1 ≤ 1− p (39a)
R2 ≤ p+ (PS(1))2 ·Hb(β) (39b)
R1 ≤ q + (PS(1))2 ·Hb(β) (39c)
R2 ≤ 1− q (39d)

and the two distortion-constraints for k=1,2

Dk ≥
1

2
(1− β) ·min{PS(1), PS(0) · (1 + PS(0))}

+
1

2
β
[
PS(0)PS(1) + PS(1) ·min{PS(0), PS(1)}

]
(39e)

for some choice of the parameters p, q, β ∈ [0, 1].

Moreover, it includes the set of all quadruples
(R1, R2, D1, D2) that for some β ∈ [0, 1] satisfy

Rk ≤ 1, k ∈ {1, 2}, (40a)
R1 +R2 ≤ 1 + PS(1) · (Hb(β)− PS(0)) (40b)

and the two distortion constraints in (39e).
Proof: To obtain the inner bound (40), evaluate Proposi-

tion 7 for: X0, X1, X2 are Bernoulli- 12 with X0 independent
of (X1, X2) and X1 = X2 = x with probability β

2 for all
x ∈ {0, 1}; Ui = Xi, for i = 0, 1, 2; and V1 = (X0, X1),
V2 = (X0, X2), and either V0 = X1 ⊕ Y ′1 or V0 = X2 ⊕ Y ′2 .
The outer bound is based on Theorem 6.

0.16 0.17 0.18
0.8
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1.2

1.4

1.6

D

R
1

+
R

2

Upper Bound from (39)
Lower Bound (40b)

Fig. 3. Upper and lower bounds of Corollary 8 on the maximum achievable
sum-rate (R1 + R2) in function of the admissible distortion D1 = D2 for
the state-dependent Dueck BC when PS(1) = 3/4 and PS(0) = 1/4.

The inner and outer bounds of Corollary 8 do not coincide
in general. In particular, Fig. 3 shows the largest sum-rate R1+
R2 that our inner and outer bounds admit in function of the
admissible distortion D1 = D2 when PS(1) = 3

4 and PS(0) =
1
4 . (Notice that the minimum distortion is Dmin = 5

32 .) In
contrast, when PS(1) ≤ PS(0), the distortion constraint (39e)
simplifies to Dk ≥ 1

2PS(1). In this case, the choice β = 1/2
is optimal for both the inner and outer bounds, in which case
the bounds coincide and are equal to C ×D. There is thus no
rate-distortion tradeoff.
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