
1

An Information-Theoretic Approach to Joint
Sensing and Communication

Mehrasa Ahmadipour, Mari Kobayashi, Michèle Wigger, Giuseppe Caire

Abstract—A communication setup is considered where
a single transmitter wishes to convey messages to one or
two receivers and simultaneously estimate the states of the
receivers through the backscattered signals of the emitted
waveform. The scenario at hand is motivated by joint radar
and communication, which aims to co-design radar sensing
and communication over shared spectrum and hardware.
In this paper, we model the communication channel
as a simple memoryless channel with independent and
identically distributed (i.i.d.) time-varying state sequences
and we model the backscattered signals by (strictly causal)
generalized feedback. For single-receiver systems of this
form, we fully characterize the capacity-distortion tradeoff,
defined as the largest rate at which a message can reliably
be conveyed to the receiver while simultaneously allowing
the transmitter to sense the state sequence with a given
allowed distortion. Our results show a tradeoff between the
achievable rates and distortions, and that this tradeoff only
stems from a common choice of the input distribution (the
waveform) but not from other properties of the utilized
codes. To better illustrate the capacity-distortion tradeoff,
we propose a numerical method to compute the optimal
inputs (waveforms) that achieve the desired tradeoff. For
two-receiver systems with two states, we characterize the
capacity-distortion tradeoff region of physically degraded
broadcast channels (BC) as a rather straightforward ex-
tension of the single receiver case. Here, a tradeoff not only
arises between sensing and communication performances
but also between the various rates and the distortions
of the different states. Similarly to the single-receiver
case, the optimal co-design scheme exploits the generalized
feedback signals only for sensing but not for improving
communication performance. This is different for general
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two-receiver BCs, where optimal co-design schemes exploit
generalized feedback also to improve capacity. However,
as we show, also for BCs the optimal sensing performance
only depends on the chosen input distribution (waveform)
but not on the code construction used to accomplish the
communication task. For general BCs, we provide inner
and outer bounds on the capacity-distortion region, as
well as a sufficient condition when this capacity-distortion
region is equal to the product of the capacity region and
the set of achievable distortions, in which case no tradeoff
between sensing and communication occurs. A number
of illustrative examples demonstrate that the optimal co-
design schemes outperform conventional schemes that split
the resources between sensing and communication, both
for single-receiver and BC systems.

I. INTRODUCTION

Future generation wireless networks are expected to
support several autonomous and intelligent applications
that strongly rely on accurate sensing and localization
techniques [3]. An example are intelligent transportation
systems where vehicles interact in a cooperative radar
sensor network with the goal to provide unique safety
features and intelligent traffic routing. The key enabler
of such applications is the ability to sense the dy-
namically changing environment continuously, hereafter
called the state, and to react accordingly by exchanging
information. The standard assumption of such a joint
radar sensing and communication system is a transmitter
equipped with a co-located radar receiver that wishes
to convey a message to a (already detected) receiver
and simultaneously estimate the state parameters of that
receiver.

A common but naive approach to address sensing
and communication is to separate the two tasks in
independent systems and accordingly split the available
resources such as bandwidth and power between the
two systems. In our information-theoretic model that
we present shortly, such a system corresponds to time-
sharing between communication and sensing; we shall
call this basic time-sharing (TS). The high cost of
spectrum and hardware however encourages integrat-
ing the sensing and communications tasks via a single
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waveform and a single hardware platform (see, e.g.,
[4], [5] and references therein). First attempts towards
such integrated systems use a standard communication
system and exploit the backscattered signal from this
waveform for sensing purposes, where the employed
transmit waveform is either optimized for sensing or
for communication; we shall call these the sensing and
communication modes of improved TS.

The scenario at hand has been extensively studied in
the literature (see e.g. [6], [7] and references therein).
In particular, several joint sensing and communication
schemes, or co-design schemes, have been proposed
to optimize performance metrics capturing some ten-
sion between two performances [8]–[12]. Despite of
these works providing system guidelines or proposing
waveforms suitable to some specific scenarios, none
has addressed the fundamental performance limits above
which a joint sensing and communication system can-
not operate irrespectively of computational complexities,
choices of state parameters, or further assumptions. This
observation inspires us to study the fundamental limit of
joint sensing and communication from an information-
theoretic perspective.

Our work is the first information-theoretic work on
joint sensing and communication. We emphasize the
difference to the information-theoretic works in [13]–
[17] where sensing (state-estimation) is performed at
the receiver and not at the transmitter, which models
different real-world applications. In [13], [15]–[17], the
transmitter even knows the state a priori.

In this paper, we build on a simple single-transmitter
communication model with a discrete memoryless chan-
nel and independent and identically distributed (i.i.d.)
state-sequences. The transmitter observes strictly causal
generalized feedback signals, used for state sensing,
while each receiver is assumed to perfectly know its
corresponding channel state. The generalized feedback
model captures two underlying assumptions used in radar
signal processing. On the one hand, it captures the inher-
ently passive nature of the backscattered signal observed
at the transmitter, which cannot be controlled but is
determined by its surrounding environment. On the other
hand, it models the fact that the backscattered signal
depends on the waveform employed by the transmitter. It
is thus clear, that the employed waveform affects both the
communication and sensing performances of the system
and should be designed in a synergistic manner. Our
goal is to characterize the fundamental tradeoff between
the communication and sensing performance of such
systems and the improvements an optimally designed
scheme achieves over the separation scheme (i.e., the
described basic TS) and over integrated systems that

either prioritize sensing or communication (i.e., above
described improved TS). To this purpose, we consider the
capacity-distortion tradeoff as a performance measure
since it suitably balances between two ultimate objec-
tives: maximizing communication rate and minimizing
state estimation error or distortion. The presented model
was introduced in our conference publications [1], [2]
and was also extended to the two-user multiple-access
channel in [18], [19].

In this work we consider the single-transmitter single-
receiver point-to-point (P2P) channel and the single-
transmitter two-receiver BC. For the P2P channel we
exactly characterize the capacity-distortion-cost tradeoff,
which allows to quantify the merit of an optimal co-
design scheme over the described basic and improved
TS schemes. Not surprisingly, our results show that
without loss in optimality the communication scheme
can ignore the generalized feedback signals, which are
only used for state sensing, and communication and
sensing performances only depend on each other through
the choice of the common waveform. Our results further
show that in most situations a tradeoff between the
simultaneously achievable sensing and communication
performances arises. Based on our results we further
identify “matched” situations where the same waveform
simultaneously achieves capacity and minimum distor-
tion. A Blahut-Arimoto type algorithm is presented that
evaluates the capacity-distortion-cost tradeoff numeri-
cally.

While feedback does not increase capacity of memo-
ryless P2P channels, it can significantly increase capacity
of memoryless BCs [20]–[22] because it enables the
transmitter to send some common information that is
useful to both receivers at the same time (see e.g., [23,
Section 17]). ln our joint sensing and communication-
over-BC setup, the generalized feedback thus improves
both sensing and communication performances. Never-
theless, like in the P2P setup, the two performances only
depend on each other through the common choice of
the waveform. In other words, we show that the opti-
mal state-sensing is independent of the employed BC-
feedback-code and only depends on the chosen wave-
form but not on other details of the code construction.
This allows to base joint coding and sensing systems on
known BC-feedback code constructions such as [20]–
[22]. Based on the scheme in [20], we provide a general
inner bound on the capacity-distortion region for general
memoryless BCs with generalized feedback. We also
provide a general outer bound by extending a known
converse technique that reveals the outputs at one of the
receivers to the other receiver. Inner and outer bounds
coincide only in special cases. Completely characteriz-
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ing the capacity-distortion tradeoff region for a general
memoryless state-dependent BC seems extremely chal-
lenging since even the capacity region (without sensing)
is unknown both in the case without and with feedback
(see e.g., [20]–[22], [24], [25]). Instead, we characterize
the capacity-distortion region for the special case of
physically degraded BCs. Analogously to the single-user
case, feedback does not enlarge capacity for physically
degraded BCs and is useful only for sensing but not for
communication. Through various numerical examples
we illustrate the merit of optimal co-design schemes
the basic and improved TS for physically degraded and
general BCs.

A. Contributions

The paper provides the following technical contribu-
tions:

1) It characterizes the capacity-distortion-cost trade-
off of state-dependent memoryless channels in
Theorem 1 and states the optimal estimator
(a deterministic symbol-by-symbol estimator) in
Lemma 1. A modified Blahut-Arimoto algorithm
[26], [27] is proposed to calculate the tradeoff
region numerically. To this end, the optimality of
an alternating optimization approach is proved in
Theorem 4.

2) As a rather straightforward extension of The-
orem 1, we characterize the capacity-distortion
tradeoff region of physically degraded state-
dependent memoryless broadcast channels in The-
orem 2.

3) For general state-dependent BCs, we provide an
outer bound on the capacity-distortion region in
Theorem 3 and an inner bound in Proposition
1. The inner bound is based on [20] and can
be achieved using a block-Markov strategy that
combines Marton coding with a lossy version of
Gray-Wyner coding with side-information.

4) Corollary 1 (for single-user channels) and Propo-
sition 2 (for broadcast channels) identify suffi-
cient conditions for channels where no capacity-
distortion tradeoff arises.

5) Many illustrative examples are provided to demon-
strate the benefits of the optimal co-design scheme
compared to the aforementioned baseline schemes.
These include a binary channel with a multiplica-
tive Bernoulli state in Corollary 2, a real Gaussian
channel, a binary BC with multiplicative Bernoulli
states in Corollaries 3 and 4, as well as the state-
dependent Dueck BC in Corollaries 7 and 8.

Encoder ReceiverW Ŵ

Xi Yi

Si

Ŝn Estimator

Zi�1

Transmitter PS

PY Z|XS

Fig. 1. Joint sensing and communication model.

B. Organization

The rest of this paper is organized as follows. The
following Section II formulates the joint sensing and
communication problem in a single-receiver channel
and provides the corresponding capacity-distortion-cost
tradeoff. Section III extends the obtained results to two-
user broadcast channels. Finally, Section IV concludes
the paper.

C. Notation

We use calligraphic letters to denote sets, e.g., X . The
sets of real and nonnegative real numbers, however, are
denoted by R and R+

0 . Random variables are denoted
by uppercase letters, e.g., X , and their realizations by
lowercase letters, e.g., x. For vectors, we use boldface
notation, i.e., lower case boldface letters such as xxx for
deterministic vectors. We use [1 : X] to denote the
set {1, · · · , X}. We use Xn for the tuple of random
variables (X1, · · · , Xn). We abbreviate independent and
identically distributed as i.i.d. and probability mass func-
tion as pmf. Logarithms are taken with respect to base
2. We use ⊥ to indicate independence between random
variables.

II. A SINGLE RECEIVER

A. System Model

Consider the point-to-point communication scenario
depicted in Fig. 1, where a transmitter wishes to commu-
nicate a message to a receiver over a memoryless state-
dependent channel and simultaneously estimate the state
from generalized feedback. In order to formulate the
joint sensing and communication problem, we consider
a state-dependent memoryless channel such that the
channel output at the receiver Yi and the feedback signal
Zi at a given time i are generated according to its
stationary channel law PY Z|XS(·, ·|xi, si) given the time-
i channel input Xi = xi and state realization Si = si,
irrespective of the past inputs, outputs and state signals.
Except for some Gaussian examples, we assume that the
channel states Si, inputs Xi, outputs Yi, and feedback
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signals Zi take value in finite sets S, X , Y , and Z ,
respectively. The state sequence {Si}i≥1 is assumed i.i.d.
according to a given state distribution PS(·) and perfectly
known to the receiver.

A (2nR, n) code for the state-dependent memoryless
channel (SDMC) consists of

1) a discrete message set W of size |W| ≥ 2nR;
2) a sequence of encoding functions φi : W×Zi−1 →
X , for i = 1, 2, . . . , n;

3) a decoding function g : Sn × Yn →W;
4) a state estimator h : X n × Zn → Ŝn, where Ŝ

denotes a given finite reconstruction alphabet.
For a given code, the random message W is uniformly

distributed over the message set W and the inputs are
obtained as Xi = φi(W,Z

i−1), for i = 1, . . . , n.
The corresponding channel outputs Yi and Zi at time
i are obtained from the state Si and the input Xi

according to the SDMC transition law PY Z|SX . Let
Ŝn := (Ŝ1, · · · , Ŝn) = h(Xn, Zn) denote the state
estimate at the transmitter and Ŵ = g(Sn, Y n) the
decoded message at the receiver.

The quality of the state estimates is measured by the
expected average per-block distortion

∆(n) := E[d(Sn, Ŝn)] =
1

n

n∑

i=1

E[d(Si, Ŝi)] (1)

where d : S × Ŝ 7→ R+
0 is a given bounded distortion

function:
max

(s,ŝ)∈S×Ŝ
d(s, ŝ) <∞. (2)

In practical communication systems, we typically impose
an expected cost constraint on the channel inputs such
as an average or peak power constraint. These cost
constraints can often be expressed as

E[b(Xn)] =
1

n

n∑

i=1

E[b(Xi)] (3)

for some given cost functions b : X 7→ R+
0 .

Definition 1. A rate-distortion-cost tuple (R,D,B) is
said achievable if there exists a sequence (in n) of
(2nR, n) codes that simultaneously satisfy

lim
n→∞

P (n)
e = 0, (4a)

lim
n→∞

∆(n) ≤ D, (4b)

lim
n→∞

1

n

n∑

i=1

E[b(Xi)] ≤ B (4c)

for P (n)
e := Pr

(
Ŵ 6= W

)
.

The capacity-distortion-cost tradeoff C(D,B) is the

largest rate R such that the rate-distortion-cost tuple
(R,D,B) is achievable.

The main result of this section is an exact char-
acterization of C(D,B). We begin by describing the
optimal estimator h, which is independent of the choice
of encoding and decoding functions, and operates on a
symbol-by-symbol basis, i.e., it computes estimate Ŝi
only in function of Xi and Zi but not of the other inputs
and feedback signals.

Lemma 1. Define the function

ŝ∗(x, z) := arg min
s′∈Ŝ

∑

s∈S
PS|XZ(s|x, z)d(s, s′), (5)

where ties can be broken arbitrarily and

PS|XZ(s|x, z) =
PS(s)PZ|SX(z|s, x)∑
s̃∈S PS(s̃)PZ|SX(z|s̃, x)

. (6)

Irrespective of the choice of encoding and decoding
functions, distortion ∆(n) in (4b) is minimized by the
estimator

h∗(xn, zn) := (ŝ∗(x1, z1), ŝ∗(x2, z2), . . . , ŝ∗(xn, zn)).
(7)

Notice that the function ŝ(·, ·) only depends on the
SDMC channel law PY Z|SX and the state distribution
PS .

Proof: See Appendix A.
The optimal state estimator is thus a symbolwise

estimator directly applied to the sequences observed at
the transmitter. As we shall see later in this article, this
optimality of the symbolwise estimator extends also to
the broadcast scenario.

Lemma 1 implies that we can focus without loss in
optimality on a symbol-by-symbol deterministic estima-
tor. Based on (5), we define the estimation cost c(x) of
the optimal estimator as

c(x) := E[d(S, ŝ∗(X,Z))|X = x] . (8)

We are ready to present the capacity-distortion-cost
tradeoff.

B. Capacity-Distortion-Cost Tradeoff

In order to characterize some useful properties of the
capacity-distortion-cost function, we define the following
sets:

PB =

{
PX

∣∣∣∣
∑

x∈X
PX(x)b(x) ≤ B

}
, (9a)

PD =

{
PX

∣∣∣∣
∑

x∈X
PX(x)c(x) ≤ D

}
. (9b)
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Then, the minimum distortion for a given cost B is given
by

Dmin(B) := min
PX∈PB

∑

x∈X
PX(x)c(x). (10)

Definition 2. Define the information-theoretic tradeoff
function Cinf : [Dmin(B),∞)× [0,∞)→ R+

0 as

Cinf(D,B) := max
PX∈PD∩PB

I(X;Y | S) (11)

where (X,S, Y, Z) ∼ PXPSPY Z|SX and the maximum
is over all PX satisfying both the distortion and cost
constraints (9b) and (9a).

Lemma 2. Given a SDMC PY Z|SX with state-
distribution PS , the capacity-distortion-cost tradeoff
function Cinf(D,B) has the following properties.

i) Cinf(D,B) is non-decreasing and concave in D ≥
Dmin(B) and B ≥ 0.

ii) Cinf(D,B) saturates at the channel capacity:

Cinf(D,B) = CNoEst(B), ∀D ≥ Dmax(B), (12)

where CNoEst(B) := maxPX∈PB
I(X;Y |S) denotes

the classical channel capacity of the SDMC for a
given cost B, and Dmax(B) denotes the correspond-
ing distortion

Dmax(B) :=
∑

x∈X
PXmax

(x)c(x). (13)

for PXmax
:= argmaxPX∈PB

I(X;Y |S).

Proof: The proof is a straightforward extension of
[14, Corollary 1] to the case of two cost functions and
the state dependent channel. The nondecreasing property
follows immediately from the definition in (11) because
we have PD1

⊆ PD2
and PB1

⊆ PB2
for any D1 ≤ D2

and B1 ≤ B2.
In order to verify the concavity of Cinf(D,B) with

respect to (D,B), we consider time-sharing between
two input distributions, denoted by P

(1)
X and P

(2)
X , that

achieve Cinf(D1,B1) and Cinf(D2,B2), respectively. To
make the dependency of the mutual information with
respect to the input distribution more explicit, we adapt
the following notation: for any pmf PX over the input
alphabet X , let I(PX , PY |XS | PS) := I(X;Y | S) for
(S,X, Y ) ∼ PSPXPY |XS .

For any θ ∈ (0, 1), we have:

θCinf(D1,B1) + (1− θ)Cinf(D2,B2)
(a)
= θI

(
P

(1)
X , PY |XS

∣∣∣ PS
)

+(1− θ)I
(
P

(2)
X , PY |XS

∣∣∣ PS
)

(b)

≤ I
(
θP

(1)
X + (1− θ)P (2)

X , PY |XS
∣∣∣ PS

)

(c)
= Cinf (θD1 + (1− θ)D2, θB1 + (1− θ)B2) . (14)

where (a) follows by definition, (b) follows from the
concavity of the mutual information functional with
respect to the input distribution, (c) follows by the
linearity of the constraints and because for any k = 1, 2

the pmf P (k)
X has expected cost no larger than Bk and

expected distortion no larger than Dk. This establishes
the concavity of Cinf(D,B).

We now state the main result of this section.

Theorem 1. The capacity-distortion-cost tradeoff of a
SDMC PY Z|SX with state-distribution PS is:

C(D,B) = Cinf(D,B), D ≥ Dmin(B), B ≥ 0. (15)

Proof: See Appendix B.
The proof of Theorem 1 is similar to the proof of

the classic capacity-cost function [28], except that one
also has to account for the sensing performance. Both
in the converse proof and the achievability proof, this
can be accomplished by evaluating the performance of
the optimal (per-symbol) estimator ŝ∗(·, ·) in Lemma 1.
In particular, a standard random coding argument can be
used to prove achievability of Theorem 1.

On a different note, capacity of a memoryless channel
is known to be achieved with i.i.d. inputs. Also because
of the memoryless nature of the optimal estimator h(·, ·)
in Lemma 1, this observation extends to our joint sensing
and communication setup.

Appendix C presents a Blahut-Arimoto type algorithm
that can be used to solve the optimization problem
(11), which characterizes the capacity-distortion-cost
tradeoff Cinf(D,B). It is used to evaluate the capacity-
distortion-cost tradeoff for the Gaussian example in
Subsection II-C3 ahead.

Combining Lemma 2 and Theorem 1, we can conclude
that the rate-distortion tradeoff function C(D,B) is non-
decreasing and concave in D ≥ Dmin and B ≥ 0,
and for any B ≥ 0 it saturates at the channel ca-
pacity CNoEst(B). For many channels, given B ≥ 0,
the tradeoff C(D,B) is strictly increasing in D until
it reaches CNoEst(B). However, for SDMBCs and costs
B ≥ 0 where the capacity-achieving input distribution
PXmax

:= argmaxPX∈PB
I(X;Y | S) also achieves min-

imum distortion Dmin(B) in (10), the capacity-distortion
tradeoff is constant C(D,B) = CNoEst(B), irrespective of
the allowed distortion D. This is in particular the case,
when the expected distortion E[d(S, ŝ∗(X,Z))] does not
depend on the input distribution PX . The following
corollary identifies a set of SDMCs PY Z|SX and state
distributions PS where this holds for all costs B ≥ 0.
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Corollary 1. Assume that there exists a function ψ(·)
with domain X × Z so that irrespective of the input
distribution PX the following two conditions hold:

(S, ψ(X,Z)) ⊥ X, (16)

S(−−ψ(X,Z)(−−(X,Z), (17)

for (S,X,Z) ∼ PSPXPZ|SX . In this case, for any
given B, the rate-distortion tradeoff function C(D,B)
is constant over D ≥ Dmin and equal to the channel
capacity of the SDMC:

C(D,B) = CNoEst(B), ∀D ≥ Dmin(B), B ≥ 0.
(18)

Proof: See Appendix D.

The following state-dependent erasure channel satis-
fies the conditions in above corollary. Let S be Bernoulli-
p and Y equal to the erasure symbol “?” when S = 1
and Y = X when S = 0. Moreover, assume perfect
output feedback, i.e., Y = Z. For the choice ψ(X,Z) =
1{Z = “?”} = S both Markov chains in Corollary 1
are trivially satisfied because S and X are independent.

Remark 1. Theorem 1 is easily adapted to the more
general case of imperfect channel state information
(CSI), i.e., to a scenario where the receiver does not
observe the state-sequence Sn but a related sequence
SnR, where (Sn, SnR) are i.i.d. according to an arbitrary
distribution PSSR

. In this case, Theorem 1 remains valid
if in Definition (11) the state S is replaced by SR, i.e.,

Cimp(D,B) = max
PX∈PD∩PB

I(X;Y | SR), (19)

D ≥ Dmin(B), B ≥ 0,

where (X,SR, Y, Z) ∼ PXPSSR
PY Z|SSRX and the def-

initions of the sets PB and PD are kept as in (9a) and
(9b), same as the definition of the function c(x) in (8).
Notice that the symbolwise estimator in (7) remains
optimal also in this related setup.

Proof. See Appendix E.

C. Examples

Before presenting our examples, we present two base-
line schemes.

1) Baseline Schemes: We consider two baseline
schemes that time share (TS) between two operating
modes. The first baseline scheme, termed Basic TS
scheme, is unable to simultaneously perform the sensing
and communication tasks and splits its resources (time
or bandwidth) between the following two modes:

• Sensing mode without communication (achieves
rate-distortion pair (0,Dmin(B)))
The input pmf PX is chosen to minimize the
distortion:

PXmin
:= argmin

PX∈PB

∑

x

PX(x)c(x), (20)

and thus the minimum distortion Dmin(B) defined in
(10) is achieved. Due to the lack of communication
capability, the communication rate is zero.

• Communication mode without sensing (achieves
(CNoEst(B),Dtrivial(B)))
The input pmf PX is chosen to maximize the rate:

PXmax
= argmax

PX∈PB
I(X;Y | S), (21)

and this mode thus communicates at a rate equal to
the channel capacity CNoEst(B). Due to the lack of
proper sensing capabilities, the estimator is set to
a constant value regardless of the feedback and the
input signals. The mode thus achieves distortion

Dtrivial(B) := min
s′∈Ŝ

∑

s∈S
PS(s)d(s, s′). (22)

The second baseline scheme is called Improved TS
scheme and can simultaneously perform the communica-
tion and sensing tasks. This scheme time-shares between
the following modes.

• Sensing mode with communication (achieves
(Rmin(B),Dmin(B)))
The input pmf PX is choosen according to (20) to
achieve the minimum distortion. The chosen pmf
PXmin

can achieve the following communication
rate:

Rmin := I(Xmin;Y | S), for Xmin ∼ PXmin
.

(23)
• Communication mode with sensing (achieves

(CNoEst(B),Dmax(B)))
The input pmf PXmax

is chosen as in (21) to
maximize the communication rate. The mode thus
communicates at the capacity CNoEst(B) of the
channel. Sensing is performed by means of the
optimal estimator in (5). The mode thus achieves
distortion

Dmax :=
∑

x∈X
PXmax

(x)c(x), for Xmax ∼ PXmax
.

(24)

It is worth noticing that for any cost B ≥ 0, the two
operating points of the two modes in the Improved TS
scheme, (Rmin(B),Dmin(B)) and (CNoEst(B),Dmax(B)),
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also lie on the capacity-distortion-cost tradeoff curve
C(D,B) presented in Theorem 1. These two points are
thus also operating points of any optimal co-design
scheme. As we will see at hand of the following ex-
amples, all other operating points of the Improved TS
scheme are typically suboptimal compared to an optimal
co-design scheme.

2) Example 1: Binary Channel with Multiplicative
Bernoulli State: Consider a channel Y = SX with
binary alphabets X = S = Y = {0, 1} and where the
state S is Bernoulli-q, for q ∈ (0, 1). We assume perfect
output feedback to the transmitter Y = Z, and consider
the Hamming distortion measure d(s, ŝ) = s⊕ŝ. No cost
constraint is imposed.

The following corollary specializes Theorem 1 to this
example.

Corollary 2. The capacity-distortion tradeoff of a binary
channel with multiplicative Bernoulli state is given by

C(D) = qHb

(
D

min{q, 1− q}

)
, (25)

where Hb(p) denotes the binary entropy function. In
other words, the curve C(D) is parameterized as

{(C = qHb(p), D = pmin{q, 1− q}) : p ∈ [0, 1/2]}.
(26)

Proof: Since Y is deterministic given (S,X), and
it equals 0 whenever S = 0, we have:

I(X;Y | S) = PS(0)H(Y | S = 0)

+PS(1)H(Y | S = 1)

= PS(1)H(X). (27)

Setting p := PX(0), we obtain

I(X;Y | S) = qHb(p). (28)

To calculate the distortion, we notice that the optimal
estimator ŝ∗(·, ·) in Lemma 1 sets

ŝ∗(x, z) =

{
z, if x = 1

argmaxs∈{0,1} PS(s), if x = 0.
(29)

In fact, whenever x = 1 the transmitter acquires full
state knowledge because z = y = s. In this case c(x =
1) = 0. For x = 0, the transmitter does not receive any
useful information about the state and hence uses the
best constant estimator, irrespective of the feedback z.
In this case,

c(x = 0) = E

[
d
(
S, argmax

s∈{0,1}
PS(s)

)∣∣∣X = 0

]

= min
s∈{0,1}

PS(s) = min{q, 1− q}, (30)

where we used the independence of S and X . The ex-
pected distortion of the optimal estimator thus evaluates
to:

D =
∑

x

PX(x)c(x) = PX(0)c(0) = pmin{q, 1− q}.

(31)

0.1 0.2 0.3 0.4

0.1

0.2

0.3

0.4

D1

R
1

C(D) of Corollary 2
Improved TS scheme
Basic TS scheme

Fig. 2. Capacity-distortion tradeoff of the binary channel with
multiplicative Bernoulli state of parameter q = 0.4.

The capacity-distortion tradeoff of Corollary 2 is illus-
trated in Fig. 2 for state parameter q = 0.4. The figure
also compares the performances of the two baseline TS
schemes. We observe a significant gain of an optimal
co-design scheme over the two TS baseline schemes.
We conclude this example with a derivation of the
parameters of the TS schemes.

The capacity-achieving input distribution is easily
found as PXmax

(0) = PXmax
(1) = 1/2, and by (28) and

(31) we find CNoEst = q and Dmax = min{q, 1 − q}/2.
Minimum distortion Dmin = 0 is achieved by always
sending X = 1, i.e., PXmin

(1) = 1 and PXmin
(0) = 0,

in which case Dmin = 0 and Rmin = 0, see also
(28) and (31). The Improved TS scheme thus achieves
all pairs on the line connecting the two points (0, 0)
with (q,min{q, 1−q}/2). To determine the performance
of the basic TS scheme, we recall that the best con-
stant estimator (that does not consider the feedback)
is ŝconst = argmaxs∈{0,1} PS(s) , which allows to
conclude that Dtrivial = min{q, 1 − q}. The basic TS
scheme thus achieves all rate-distortion pairs on the line
connecting the points (0, 0) and (q,min{q, 1− q}).

3) Example 2: Real Gaussian Channel with Rayleigh
Fading: We consider the real Gaussian channel with
Rayleigh fading:

Yi = SiXi +Ni, (32)
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Fig. 3. Capacity-distortion tradeoff of fading AWGN channel B = 10
dB and σ2

fb = 1.

where Xi is the channel input satisfying
limn→∞ 1

n

∑
i E
[
|Xi|2

]
≤ B = 10dB, and both

sequences {Ni} and {Si} are independent of each other
and i.i.d. Gaussian with zero mean and unit variance.
The transmitter observes the noisy feedback

Zi = Yi +Nfb,i, (33)

where {Nfb,i} are i.i.d. zero-mean Gaussian of variance
σ2

fb ≥ 0. We consider the quadratic distortion measure
d(s, ŝ) = (s− ŝ)2.

First, we characterize the two operating points
achieved by the Improved TS baseline scheme. The
capacity of this channel is achieved with a Gaussian
input Xmax ∼ N (0,B), and thus the communication
mode with sensing achieves the rate-distortion pair

CNoEst(B) =
1

2
E
[
log(1 + |S|2B)

]
= 1.213, (34)

Dmax(B) = E
[

(1 + σ2
fb)

1 + |Xmax|2 + σ2
fb

]
= 0.367, (35)

where we have set σ2
fb = 1 and P = 10dB to obtain the

numerical values. Minimum distortion Dmin is achieved
by 2-ary pulse amplitude modulation (PAM), and thus
the sensing mode with communication achieves rate-
distortion pair

Rmin(B) = 0.733, Dmin(B) =
1 + σ2

fb

1 + P + σ2
fb

= 0.166,

(36)
where the numerical value again corresponds to σfb =
1 and B = 10dB. Next, we characterize the per-
formance of the basic TS baseline scheme. The best

constant estimator for this channel is ŝ = 0, and
the communication mode without sensing achieves rate-
distortion pair (CNoEst(B),Dtrivial(B) = 1). The sensing
mode without communication achieves rate-distortion
pair (0,Dmin(B)).

In Fig. 3, we compare the rate-distortion tradeoff
achieved by these two TS baseline schemes with a
numerical approximation of the capacity-distortion-cost
tradeoff C(D,B) of this channel. As previously ex-
plained, C(D,B) also passes through the two end points
(Rmin(B),Dmin(B)) and (CNoEst(B),Dmax(B)) of the
Improved TS scheme. We use the Blahut-Arimoto type
Algorithm 1 to obtain a numerical approximation of
the points on C(D,B) in between these two operating
points. Specifically, the input alphabet is quantized to a
M = 16-ary PAM constellation

Xq := {(2m− 1−M)κ,m = 1, · · · ,M}, (37)

where κ :=
√

3P/(M2 − 1). The Gaussian noise N
is quantized with a centered equally-spaced 50-points
alphabet, and the state S is quantized by applying an
equally-spaced 8000-points quantizer on the Chi-square
distributed random variable S2. Denoting the quantized
input, noise, and state by Xq, Nq, and Sq, we keep
our multiplicative-state, additive-noise channel model to
generate the channel outputs used to run Algorithm 1 to
obtain the numerical approximations:

Yq = SqXq +Nq. (38)

III. MULTIPLE RECEIVERS

In this section, we consider joint sensing and commu-
nication over two-receiver broadcast channels.

A. System Model
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Ŵ0,1

Ŵ1
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Fig. 4. State-dependent broadcast channel with generalized feedback
and state-estimator at the transmitter.

Consider the two-receiver broadcast channel sce-
nario depicted in Fig. 4. The model comprises a two-
dimensional memoryless state sequence {(S1,i, S2,i)}i≥1
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whose samples at any given time i are distributed accord-
ing to a given joint law PS1S2

over the state alphabets
S1 × S2. Receiver 1 observes state sequence {S1,i} and
Receiver 2 observes state sequence {S2,i}. The trans-
mitter communicates with both receivers over a state-
dependent memoryless broadcast channel (SDMBC),
where given time-i input Xi = x and state realizations
S1,i = s1 and S2,i = s2, the time-i outputs Y1,i and Y2,i

observed at the receivers and the transmitter’s feedback
signal Zi are distributed according to the stationary
channel transition law PY1Y2Z|S1S2X(·, ·, ·|s1, s2, x). We
again assume that all alphabets X ,Y1,Y2,Z,S1,S2 are
finite.

The goal of the transmitter is to convey a common
message W0 to both receivers and individual messages
W1 and W2 to Receivers 1 and 2, respectively, while
estimating the states sequences {S1,i} and {S2,i} within
some target distortions. For simplicity, the input cost
constraint is omitted.

A (2nR0 , 2nR1 , 2nR2 , n) code for an SDMBC thus
consists of

1) three message sets W0 = [1 : 2nR0 ], W1 = [1 :
2nR1 ], and W2 = [1 : 2nR2 ];

2) a sequence of encoding functions φi : W0×W1×
W2 ×Z i−1 → X , for i = 1, 2, . . . , n;

3) for each k = 1, 2 a decoding function gk : Snk ×
Ynk →W0 ×Wk;

4) for each k = 1, 2 a state estimator hk : X n×Zn →
Ŝnk , where Ŝ1 and Ŝ2 are given reconstruction
alphabets.

For a given code, we let the random messages W0,
W1, and W2 be uniform over the message sets W0, W1,
and W2 and the inputs Xi = φi(W0,W1,W2, Z

i−1),
for i = 1, . . . , n. The corresponding outputs Y1,iY2,i, Zi
at time i are obtained from the states S1,i and S2,i

and the input Xi according to the SDMBC transition
law PY1Y2Z|S1S2X . Further, for k = 1, 2 let Ŝnk :=

(Ŝk,1, · · · , Ŝk,n) = hk(X
n, Zn) be the transmitter’s

estimates for state Snk and (Ŵ0,k, Ŵk) = gk(S
n
k , Y

n
k )

the messages decoded by Receiver k. The quality of the
state estimates Ŝnk is again measured by bounded per-
symbol distortion functions dk : Sk × Ŝk 7→ [0,∞), i.e.,
we assume

max
sk∈Sk,ŝk∈Ŝk

dk(sk, ŝk) <∞, k = 1, 2. (39)

Our interest is in the two expected average per-block
distortions

∆
(n)
k :=

1

n

n∑

i=1

E[dk(Sk,i, Ŝk,i)], k = 1, 2, (40)

and the joint probability of error

P (n)
e := Pr

(
(Ŵ0,k, Ŵ1) 6= (W0,W1)

or (Ŵ0,k, Ŵ2) 6= (W0,W2)
)
. (41)

Definition 3. A rate-distortion tuple (R0,R1,R2,D1,D2)
is achievable if there exists a sequence (in n) of
(2nR0 , 2nR1 , 2nR2 , n) codes that simultaneously satisfy

lim
n→∞

P (n)
e = 0 (42a)

lim
n→∞

∆
(n)
k ≤ Dk, for k = 1, 2. (42b)

Definition 4. The capacity-distortion region CD is given
by the closure of the union of all achievable rate-
distortion tuples (R0,R1,R2,D1,D2).

In the remainder of the section, we present bounds
on the capacity-distortion region CD. As in the single-
receiver case, one can easily determine the optimal
estimator functions h1 and h2, which are independent
of the encoding and decoding functions and operate on
a symbol-by-symbol basis.

Lemma 3. For each k = 1, 2, define the function

ŝ∗k(x, z) := arg min
s′∈Ŝk

∑

sk∈Sk
PSk|XZ(sk|x, z)d(sk, s

′), (43)

where ties can be broken arbitrarily.
Irrespective of the choice of encoding and decoding

functions, distortions ∆
(n)
1 and ∆

(n)
2 are minimized by

the estimators for k = 1, 2

h∗k(x
n, zn)

= (ŝ∗k(x1, z1), ŝ∗k(x2, z2), . . . , ŝ∗k(xn, zn)). (44)

Proof: See Appendix A.
Analogously to the definition in Equation (8) we can

then define the optimal estimation cost for each input
symbol x ∈ X :

ck(x) := E[dk(Sk, ŝ
∗
k(X,Z))|X = x] , k = 1, 2.

(45)

Characterizing the capacity-distortion region is very
challenging in general, because even the capacity regions
of the SDMBC with and without feedback are unknown
to date. We first present the exact capacity-distortion
region for the class of physically degraded SDMBCs and
then provide bounds for general SDMBCs. We shall also
compare our results on the capacity-distortion regions
to the performances achieved by simple TS baseline
schemes, in analogy to the single-receiver setup.

Specifically, we again have a basic TS baseline scheme
that performs either sensing or communication at a time,
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and an improved TS baseline scheme that is able to
perform both functions simultaneously via a common
waveform by prioritizing either sensing or communi-
cation. Analogously to the single-receiver setup, each
of the two baseline schemes time-shares between a
sensing mode and a communication mode. However,
since we now have two distortions and three rates, the
choice of the “optimal” pmf PX for each mode is not
necessarily unique, but rather a continuum, depending
on which function of the two distortions or the three
rates one wishes to optimize. For fixed input pmf, the
difference between the communication mode without
sensing (employed by the basic TS scheme) and the
communication mode with sensing (employed by the im-
proved TS scheme) lies in the choice of the estimators. In
the former mode, the transmitter applies the best constant
estimators for the two state-sequences, irrespective of its
inputs and feedback outputs. In the latter mode, it applies
the optimal estimators in Lemma 3, which depend on the
input and the feedback output. Similarly, the difference
between the communication modes without and with
sensing is that in the former all rates are zero and in
the latter the chosen input pmf PX can be used for
communication at positive rates.

B. Capacity-Distortion Region for Physically Degraded
SDMBCs

This section characterizes the capacity-distortion re-
gion for physically degraded SDMBCs and evaluates it
for two binary examples.

Definition 5. An SDMBC PY1Y2Z|S1S2X with state pmf
PS1S2

is called physically degraded if there are condi-
tional laws PY1|XS1

and PS2Y2|S1Y1
such that

PY1Y2|S1S2XPS1S2
= PS1

PY1|S1XPS2Y2|S1Y1
. (46)

That means for any arbitrary input PX , the tuple
(X,S1, S2, Y1, Y2) ∼ PXPS1S2

PY1Y2|S1S2X satisfies the
Markov chain

X(−−(S1, Y1)(−−(S2, Y2). (47)

Theorem 2. The capacity-distortion region CD of
a physically degraded SDMBC is given by the clo-
sure of the set of all tuples (R0,R1,R2,D1,D2) for
which there exists a joint law PUX so that the tuple
(U,X, S1, S2, Y1, Y2, Z) ∼ PUXPS1S2

PY1Y2Z|S1S2X sat-
isfies the two rate constraints

R1 ≤ I(X;Y1 | U, S1) (48)

R0 + R2 ≤ I(U ;Y2 | S2), (49)

and the distortion constraints

E[dk(Sk, ŝ
∗
k(X,Z))] ≤ Dk, k = 1, 2. (50)

Proof: The achievability can be proved by standard
superposition coding and using the optimal estimators in
Lemma 3. The converse also follows from standard steps
and the details are provided in Appendix F.

As mentioned in the proof, data communication is
performed by simple superposition coding that ignores
the feedback. Thus, also for physically degraded BCs
feedback only facilitates state sensing but is useless for
communications.

Remark 2. Similarly to the single-receiver case, an
input cost-constraint as in (4c) can be added to our
model. Theorem 2 remains valid in this case, if the choice
of the input distribution PX is limited to satisfy the cost
constraint ∑

x∈X
PX(x)b(x) ≤ B. (51)

The analogous remark also applies to the non-physically
degraded BC ahead and the presented inner and outer
bounds.

Remark 3. Similarly to what we described in Remark 1,
the result in Theorem 2 can be extended to the case with
imperfect receiver state-informations SnR,1 and SnR,2. For
(Sn, SnR,1, S

n
R,2) i.i.d. ∼ PSSR,1,SR,2

it suffices to replace
in the rate-constraints (48) and (49) of Theorem 2 the
state S1 by SR,1 and the state S2 by SR,2. The analogous
remark also applies to the non-physically degraded BC
ahead and the presented inner and outer bounds.

In what follows, we evaluate above Theorem 2 for two
examples.

1) Example 3: Binary BC with Multiplicative
Bernoulli States: Consider the physically degraded
SDMBC with binary input and output alphabets X =
Y1 = Y2 = {0, 1} and binary state alphabets S1 = S2 =
{0, 1}. The channel input-output relation is described by

Yk = SkX, k = 1, 2, (52)

with the joint state pmf

PS1S2
(s1, s2) =





1− q, if (s1, s2) = (0, 0)

0, if (s1, s2) = (0, 1)

qγ, if (s1, s2) = (1, 1)

q(1− γ) if (s1, s2) = (1, 0),

(53)

for γ, q ∈ [0, 1]. Notice that S2 is a degraded version of
S1, which together with the transition law (52) ensures
the Markov chain X(−−(S1, Y1)(−−(S2, Y2) and the
physically degradedness of the SDMBC. We consider
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output feedback
Z = (Y1, Y2), (54)

and set the common rate R0 = 0 for simplicity.
In this SDMBC, zero distortions D1 = D2 = 0 can be

achieved by deterministically choosing X = 1 exactly
as for the single-receiver case. This choice however
cannot achieve any positive communication rates, i.e.,
R1 = R2 = 0. In the sensing mode with and without
communication, we thus have:

(R1,R2,D1,D2) = (0, 0, 0, 0). (55)

The optimal input distribution for communication is
Xmax ∼ B(1/2), in which case all rate-pairs (R1,R2)
satisfying

Rk ≤ PSk
(1), k = 1, 2, (56)

are achievable. The input Xmax ∼ B(1/2) simultane-
ously maximizes both communication rates R1,R2.

In the communication mode without sensing, the trans-
mitter applies the optimal constant estimator for each
state, namely

ŝconst,k := argmax
ŝ∈{0,1}

PSk
(ŝ), k = 1, 2, (57)

and thus achieves all tuples

(R1,R2,D1,D2) = (qr, γq(1−r),D1,max,D2,max) (58)

where D1,max := min{q, 1 − q} and D2,max :=
min{γq, 1−γq}, and r ∈ [0, 1] denotes the time-sharing
parameter between the two communication rates.

In the communication mode with sensing, the same
input Xmax is used. The transmitter however applies the
optimal estimator for k = 1, 2:

ŝ∗k(x, y1, y2) =

{
yk, if x = 1

ŝconst,k, if x = 0,
(59)

and achieves the tuple

(R1,R2,D1,D2) =

(
qr, γq(1− r), D1,max

2
,
D2,max

2

)
,

(60)
where r again denotes the time-sharing parameter be-
tween the two communication rates.

The basic and improved TS baseline schemes achieve
the time-sharing lines between points (55) and (58)
and points (55) and (60), respectively. The following
corollary evaluates Theorem 2 to obtain the performance
of the optimal co-design scheme.

Corollary 3. The capacity-distortions region CD of the
binary physically degraded SDMBC in (52)–(54) is the
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Fig. 5. Boundary of the capacity-distortion region CD for Example
3 in Subsection III-B1.

set of all tuples (R0,R1,R2,D1,D2) satisfying

R0 + R1 ≤ qHb(p)r, (61a)

R0 + R2 ≤ γqHb(p)(1− r), (61b)

D1 ≥ pmin{q, 1− q}, (61c)

D2 ≥ pmin{γq, 1− γq}, (61d)

for some choice of the parameters r, p ∈ [0, 1].

Proof: We start by noticing that for this example
I(X;Y1 | U, S1) = qH(X|U) and I(U ;Y2 | S2) =
qγ(H(X) − H(X | U)). Setting p := PX(0) and r :=
H(X|U)
H(X) , directly leads to the desired rate constraints.

The distortion constraints are obtained from the optimal
estimators in (59). Following the same steps as in the
single-receiver case, i.e. (30) and (31), we obtain

Dk ≥ pmin{PSk
(0), PSk

(1)}, (62)

which concludes the proof.
Notice that above Corollary 3 reduces to Corollary 2

in the special case of R0 = R2 = 0 and D2 = ∞, i.e.,
when we ignore Receiver 2.

Fig. 5 shows in red colour the boundary of the
projection of the tradeoff region CD of this example
onto the 3-dimensional plane (R1,R2,D1), for param-
eters γ = 0.5 and q = 0.6. The tradeoff with D2

is omitted for simplicity and because D2 is a scaled
version of D1. The figure also shows the boundaries of
the basic and improved TS baseline schemes. We again
notice a significant gain for an optimal co-design scheme
compared to the TS baseline schemes.

So far, there was no tradeoff between the two distor-
tion constraints D1 and D2. This is different in the next
example, which otherwise is very similar.

2) Example 4: Binary BC with Multiplicative
Bernoulli States and Flipping Inputs: Reconsider the
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same state pmf PS1S2
as in the previous example, but

now an SDMBC with a transition law that flips the input
for receiver 2:

Y1 = S1X, Y2 = S2(1−X). (63)

As in the previous example we consider output feedback
Z = (Y1, Y2).

Corollary 4. The capacity-distortion region CD of the
binary SDMBC with flipping inputs in (63) and output
feedback is the set of all tuples (R0,R1,R2,D1,D2)
satisfying

R1 ≤ qHb(p)r, (64a)

R0 + R2 ≤ γqHb(p)(1− r), (64b)

D1 ≥ pmin{q(1− γ), (1− q)}, (64c)

D2 ≥ (1− p)qmin{γ, 1− γ}, (64d)

for some choice of the parameters r, p ∈ [0, 1].

The capacity-distortion region expression above cap-
tures the tradeoffs between the two rates through the pa-
rameter r, between the rates and the distortions through
the parameter p, and between the two distortions through
the parameter p.

Comparing above Corollary 4 to the previous Corol-
lary 3, we remark the identical rate constraints and
the relaxed distortion contraints for both D1 and D2 in
Corollary 4. The reason is that the flipping input allows
the transmitter to perfectly estimate S1 from (X,Y1, Y2)
not only when X = 1 but also when X = 0 and Y2 = 1
because they imply that S2 = 1 and by (53) also S1 = 1.

Proof: The proof is similar to the proof of
Corollary 3, except for the description of the optimal
estimators. To determine these optimal estimators, we
remark that only four input-output relations are possi-
ble: (x, y1, y2) ∈ {(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 1, 0)}.
Moreover, when X = 1, then Y1 = S1, and when X = 0,
then Y2 = S2. In particular, when X = 0 and Y2 = 1,
then S2 = 1 and also S1 = 1, see (53). The optimal
estimator for state S1 thus is:

ŝ∗1(x, y1, y2) =





y1, if x = 1

1, if (x, y2) = (0, 1)

arg min
s

PS1|S2
(s|0), else,

(65)
and ŝ∗1(X,Y1, Y2) = S1 unless X = 0, Y2 = 0, and
S1 6= arg mins PS1|S2

(s|0), which is equivalent to (X =
0, S2 = 0) and S1 6= arg mins PS1|S2

(s|0). This yields
c1(1) = 0 and because S2 is independent of X:

c1(0) = PS2
(0) min

s
PS1|S2

(s|0). (66)

Recalling p = PX(0), we readily obtain the distortion
for state S1:

D1 = pmin
s
PS1,S2

(s, 0) = pmin{q(1− γ), 1− q}.
(67)

The optimal estimator and the corresponding distortion
for state S2 can be obtained in a similar way.

C. Capacity-Distortion Region for General SDMBCs

In the remainder of this section, we reconsider general
SDMBCs, for which we present bounds on CD. We start
with a simple outer bound.

Theorem 3 (Outer Bound on CD). If
(R0,R1,R2,D1,D2) lies in CD for a given
SDMBC PY1Y2Z|S1S2X with state pmf PS1S2

,
then there exist pmfs PX , PU1|X , PU2|X such that
the random tuple (Uk, X, S1, S2, Y1, Y2, Z) ∼
PUk|XPXPS1S2

PY1Y2Z|S1S2X satisfies the rate
constraints

R0 + Rk ≤ I(Uk;Yk | Sk), k = 1, 2, (68a)

R0 + R1 + R2 ≤ I(X;Y1, Y2 | S1, S2), (68b)

and the average distortion constraint

E[dk(Sk, ŝ
∗
k(X,Z))] ≤ Dk, k = 1, 2, (69)

where the function ŝ∗k(·, ·) is defined in (43).

Proof: See Appendix F.
Achievability results are easily obtained by combining

existing achievability results for SDMBCs with general-
ized feedback with the optimal estimator in Lemma 3.
We consider the block-Markov coding scheme in [20],
which in each block applies Marton coding to transmit
fresh data to the receivers as well as compression infor-
mation describing the inputs and outputs of the previous
block. The receivers decode the Marton codewords back-
wards, starting from the last block, and using both their
channel outputs as well as the previously decoded com-
pression information pertaining to the block. Combining
this scheme with the optimal estimator in Lemma 3
yields the following proposition.

Proposition 1 (Inner Bound on CD). Consider an
SDMBC PY1Y2Z|S1S2X with state pmf PS1S2

. The
capacity-distortion region CD includes all tuples
(R0,R1,R2,D1,D2) that satisfy inequalities (70) on
top of this page and the distortion constraints (69).
where (U0, U1, U2, X, S1, S2, Y1, Y2, Z, V0, V1, V2) ∼
PU0U1U2XPS1S2

PY1Y2Z|S1S2XPV0V1V2|U0U1U2Z , for
some choice of (conditional) pmfs PU0U1U2X and
PV0V1V2|U0U1U2Z .
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R0 + R1 ≤ I(U0, U1;Y1, V1 | S1)− I(U0, U1, U2, Z;V0, V1 | S1, Y1) (70a)

R0 + R2 ≤ I(U0, U2;Y2, V2 | S2)− I(U0, U1, U2, Z;V0, V2 | S2, Y2) (70b)

R0 + R1 + R2 ≤ I(U1;Y1, V1|U0, S1) + I(U2;Y2, V2 | U0, S2) + min
k∈{1,2}

I(U0;Yk, Vk | Sk)− I(U1;U2 | U0)

−I(U0, U1, U2, Z;V1 | V0, S1, Y1)− I(U0, U1, U2, Z;V2|V0, S2, Y2)

− max
k∈{1,2}

I(U0, U1, U2, Z;V0 | Sk, Yk) (70c)

2R0 + R1 + R2 ≤ I(U0, U1;Y1, V1 | S1) + I(U0, U2;Y2, V2 | S2)− I(U1;U2 | U0)

−I(U0, U1, U2, Z;V0, V1 | S1, Y1)− I(U0, U1, U2, Z;V0, V2 | S2, Y2) (70d)

Proof: Similar to [20] and omitted.
In analogy to Corollary 1 for the single-receiver case,

for some SDMBCs there is no tradeoff between the
achievable distortions and communication rates. In this
case, for the BC, the capacity-distortion region is given
by the Cartesian product between the SDMBC’s capacity
region:

C :={(R0,R1,R2) : D1 ≥ 0, D2 ≥ 0

s.t. (R0,R1,R2,D1,D2) ∈ CD}, (71)

and its distortion region:

D :={(D1,D2) : R0 ≥ 0, R1 ≥ 0, R2 ≥ 0

s.t. (R0,R1,R2,D1,D2) ∈ CD}. (72)

Proposition 2 (No Rate-Distortion Tradeoff). Consider
an SDMBC PY1Y2Z|S1S2X with state pmf PS1S2

for which
there exist functions ψ1 and ψ2 with domain X × Z so
that irrespective of the input distribution PX the relations

(Sk, ψk(Z,X)) ⊥ X, (73)

Sk(−−ψk(Z,X)(−−(Z,X), k = 1, 2, (74)

hold for (S1, S2, X2,Z) ∼ PS1
PS2

PXPZ|XS1,X2
. The

capacity-distortion region of this SDMBC is the product
of the capacity region and the distortion region:

CD = C × D. (75)

Proof: Analogous to the proof of Corollary 1.
Specifically, the proof is obtained from Appendix D
by replacing (S, Ŝ, ψ, Y, T ) with (Sk, Ŝk, ψk, Yk, Tk), for
k = 1, 2.

D. Example 5: Erasure BC with Noisy Feedback

Our first example satisfies Conditions (73) and (74)
in Proposition 2 for an appropriate choice of ψ1 and ψ2,
and its capacity-distortion region is thus given by the
product of the capacity region and the distortion region.

Let (E1, S1, E2, S2) ∼ PE1S1E2S2
over {0, 1}4 be

given but arbitrary. Consider the state-dependent erasure
BC

Yk =

{
X if Sk = 0,

? if Sk = 1,
, k = 1, 2, (76)

where the feedback signal Z = (Z1, Z2) is given by

Zk =

{
Yk if Ek = 0,

? if Ek = 1,
, k = 1, 2. (77)

Further consider Hamming distortion measures
dk(s, ŝ) = s⊕ ŝ, for k = 1, 2. For the choice

ψk(Zk) =

{
1, if Zk =?,

0, else,
(78)

the described SDMBC satisfies the conditions in Propo-
sition 2, thus yielding the following corollary.

Corollary 5. The capacity-distortion region of the state-
dependent erasure BC with noisy feedback in (76)–(77)
is the Cartesian product between the capacity region of
the SDMBC and its distortion region:

CD = C × D. (79)

When PE1S1E2S2
= PE1S1

PE2S2
, then the distortion

region is given by:

D = {(D1,D2) : Dk ≥ PEkSk
(1, 0)}. (80)

Proof. The state can perfectly be estimated (Sk = 0)
with zero distortion if (Sk, Ek) = (0, 0). Otherwise,
the feedback is Zk =? and provides no information.
The optimal estimator is then given by the best constant
estimator, which in this example is:

ŝconst,k = 1{PSk
(1) ≥ PSkEk

(0, 1)}. (81)

This immediately yields the distortion constraint in (80).

Notice that the capacity region C of the SDMBC (76)
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Fig. 6. State-dependent Dueck Broadcast Channel.

is unknown even with perfect feedback. In [29], [30], the
capacity region of this SDMBC with perfect feedback
was characterized when each receiver is informed about
the state realizations at both receivers.

E. Example 6: State-Dependent Dueck’s BC with Mul-
tiplicative Bernoulli States

We consider a state-dependent version of Dueck’s
example in [31], which first served to show that feedback
can increase capacity of a memoryless BC. Interestingly,
despite its simplicity, the state-dependent extension of
this example allows observing various kinds of tradeoffs
between communication and sensing performances and
also between performances at the various receivers. For
example, for specific choices of parameters, the problems
of sensing and communication decompose (Corollary 6),
and it is possible to simultaneously achieve the optimal
sensing and communication performances. For other
parameters a tradeoff arises. The present example also
shows nicely that our presented co-design scheme can
significantly outperform the two TS methods.

Consider the state-dependent BC in Figure 6 with
input X = (X0, X1, X2) ∈ {0, 1}3, i.i.d. Bernoulli states
S1, S2 ∼ B(q), for q ∈ [0, 1], and outputs

Yk = (X0, Y
′
k, S1, S2), k = 1, 2, (82)

where
Y ′k = Sk(Xk ⊕N), k = 1, 2, (83a)

and the noise N ∼ B(1/2) is independent of the inputs
and the states. The feedback signal is

Z = (Y ′1 , Y
′

2), (84)

and for simplicity we again ignore the common rate R0.
We notice that only X1 and X2 are corrupted by the

state and the noise. Since X0 is received without any
state or noise, it is thus completely useless for sensing.

In fact, the optimal estimator of Lemma 3 for k = 1, 2
is (see Appendix H-A)

ŝ∗k(x1, x2, y
′
1, y
′
2)

=





1{q ≥ (1− q)} y′k = 0, y′
k̄

= 1, x1 6= x2

0 y′k = 0, y′
k̄

= 1, x1 = x2

1 y′k = 1

0 y1 = y2 = 0, x1 6= x2

1{q ≥ (1− q)(2− q)} y′1 = y′2 = 0, x1 = x2

,(85)

where we slightly abuse notation by omitting the argu-
ment x0 for the estimator ŝ∗k because this latter does not
depend on x0.

For a given input pmf with probability t :=
Pr[X1 6= X2], the expected distortion achieved by the
optimal estimators in (85) is (see Appendix H-B):

E
[
dk(Sk, ŝ

∗
k(X1, X2, Y

′
1 , Y

′
2))
]

=
1

2
tq (min{q, 1− q}+ (1− q))

+
1

2
(1− t) min{q, (1− q)(2− q)} (86)

We observe different cases: i) for q ∈ [0, 1/2], both
minima are achieved by q; ii) for q ∈

(
1/2, 2 −

√
2
]
,

the first and second minima are achieved by 1−q and q,
respectively; iii) for q ∈

(
2−
√

2, 1
]
, the first and second

minimum are achieved by (1 − q) and (1 − q)(2 − q),
respectively. The distortion constraint (69) thus evaluates
to:

Dk ≥





q/2 q ∈ [0, 1/2]

q(1− t(2q − 1))/2 q ∈
(
1/2, 2−

√
2
]

(1− q)(2− q + t(3q − 2))/2 q ∈
(
2−
√

2, 1
]
.

(87)
We notice that for q ∈ [0, 1/2], the distortion con-

straint is independent of t and thus of PX , and the
minimum expected distortions are Dmin,1 = Dmin,2 =
1
2q. For q ∈

(
1/2, 2 −

√
2
]
, the minimum expected

distortions are achieved for t = 1 and the same holds
also for q ∈

(
2 −

√
2, 2/3

]
. For q ∈ [2/3, 1], the

distortions are minimized for t = 0. We thus have
Dmin,1 = Dmin,2 = Dmin, where

Dmin :=





q/2, q ∈ [0, 1/2]

q(1− q), q ∈ [1/2, 2/3]

(1− q)(2− q)/2, q ∈ [2/3, 1].

(88)

We obtain a characterization of the distortion region:

D = {(D1,D2) : D1 ≥ Dmin, D2 ≥ Dmin}. (89)

The private-messages capacity region is:

C = {(R1,R2) : R1 ≤ 1, R2 ≤ 1,
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and R1 + R2 ≤ 1 + q2}.(90)

The converse and achievability proofs are provided in
Appendices H-C and H-D, respectively.

Reconsider now the case where q ∈ [0, 1/2]. As
previously explained, the distortion is independent of the
input distribution, and the capacity-distortion region CD
degenerates to the product of the capacity and distortion
regions:

Corollary 6. [No Rate-Distortion Tradeoff] For above
state-dependent Dueck example with q ∈ [0, 1/2]:

CD = C × D. (91)

For the general case, we only have bounds on the
capacity-distortion region CD. We first present our outer
bound, which is based on Theorem 3 and proved in
Appendix H-C.

Corollary 7 (Outer Bound). The capacity-distortion
region CD (without common message) of Dueck’s
state-dependent BC is included in the set of tuples
(R1,R2,D1,D2) that for some choice of the parameters
t ∈ [0, 1] satisfy the rate-constraints

Rk ≤ 1, k = 1, 2, (92)

R1 + R2 ≤ 1 + q2Hb(t) (93)

and the distortion constraints in (87).

The inner bound is based on Proposition 1, see Ap-
pendix H-D. Together with the outer bound in Corol-
lary 7 it characterizes both the distortion region D and
the capacity region C in (89) and (90).

Corollary 8 (Inner bound). The capacity-distortion re-
gion CD of the state-dependent Dueck BC includes
all rate-distortion tuples (R1,R2,D1,D2) that for some
choice of t ∈ [0, 1] satisfy (87) and

Rk ≤ 1, k = 1, 2, (94)

R1 + R2 ≤ 1 + qHb(t)− q(1− q), (95)

as well as the convex hull of all these tuples.

Fig. 7 shows our outer and inner bounds in Corollar-
ies 7 and 8 for q = 3/4, where in the inner bound we
consider the convex hull operation through convex com-
binations between values of t > 0 and t = 0. The figure
also shows the performances of the basic and improved
TS baseline schemes, whose modes we explain next.
(Recall that the basic TS scheme time-shares the sensing
mode without communication and the communication
mode without sensing, and the improved TS scheme
time-shares the sensing mode with communication and
the communication mode with sensing.)

Sensing mode with and without communication:
In the sensing mode with communication, one can
choose an arbitrary pmf for X0, e.g., X0 Bernoulli-1/2
because this input does not affect the sensing. From (88),
the minimum distortions of Dmin,1 = Dmin,2 = 5/32 are
achieved by setting X1 = X2 with probability 1. For
X1 = X2 the sum-rate cannot exceed R1 + R2 ≤ 1,
because I(X0, X1, X2;Y1, Y2) = I(X0, X2;Y1, Y2) ≤
H(X0) + I(X2;Y ′1 , Y

′
2 |X0) ≤ 1 as Y ′1 and Y ′2 are

corrupted by the Bernoulli-1/2 noise N . On the other
hand, any rate pair (R1,R2) of sum-rate R1 + R2 = 1
is trivially achievable by communicating only with the
noiseless X0-input.

We conclude that the sensing mode with communi-
cation achieves the rate-distortion tuple (R1,R1,D1,D2)
satisfying

R1 + R2 ≤ 1 and Dk ≥ 5/32, k = 1, 2. (96)

If the transmitter cannot perform communication and
sensing tasks simultaneously, the same minimum distor-
tions are achieved but the rates are trivially zero.

R1 + R2 = 0 and Dk ≥ 5/32, k = 1, 2. (97)

Communication mode with and without sensing:
The optimal pmf PX achieving the capacity region
in (90) corresponds to i.i.d. Bernoulli-1/2 distributed
X0, X1, X2 ( Appendix H-D). The corresponding sum
rate is R1 +R2 = 1+q2 = 25/16. The minimum achiev-
able distortions are thus obtained from (87) by setting
t = Pr[X1 6= X2] = 1/2, i.e., Dmax,1 = Dmax,2 =
11/64. The best constant estimator is Ŝ1 = Ŝ2 = 1
because 3/4 = PSk

(1) > PSk
(0) = 1/4, which achieves

distortions Dtrivial,1 = Dtrivial,2 = 1/4. We can conclude
that the communication mode with sensing achieves all
rate-distortion tuples (R1,R1,D1,D2) satisfying

R1 + R2 ≤ 25/16,

Rk ≤ 1 and Dk ≥ 11/64 k = 1, 2 (98)

and the communication mode without sensing achieves
all rate-distortion tuples (R1,R1,D1,D2) satisfying

R1 + R2 ≤ 25/16

Rk ≤ 1 and Dk ≥ 1/4, k = 1, 2. (99)

IV. CONCLUSION

Motivated by the paradigm of integrated sensing and
communication systems, we studied joint sensing and
communication in memoryless state-dependent channels.
We fully characterized the capacity-distortion tradeoff



16

0.16 0.17 0.17 0.18 0.18
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

D1 = D2

R
1
+
R

2 Outer Bound of Corollary 7
Inner Bound of Corollary 8.

Improved TS
Basic TS

Fig. 7. Sum-rate R1 +R2 vs. symmetric distortion D1 = D2 for the
state-dependent Dueck BC with q = 3/4.

for the single-user channels as well as physically-
degraded broadcast channels. For general broadcast
channels, we presented inner and outer bounds on
the capacity-distortion region. Through a number of
illustrative examples, we demonstrated that the optimal
co-design scheme offers non-negligible gain compared
to the basic time-sharing scheme that performs either
sensing or communication, as well as compared to the
improved time-sharing scheme that integrates both tasks
into a single system but chooses the common waveform
to prioritize one of the tasks. Interestingly, there are
ideal situations where the capacity is achieved without
compromising the sensing performance. Our results also
showed that for the single-transmitter systems studied
in this paper the optimal sensing depends only on the
employed waveform, but not on the underlying coding
scheme. This holds also for broadcast channels where the
two tasks are not only connected through the employed
waveform but also through the generalized feedback,
which in this case should be exploited to improve the set
of achievable rates. Notice that the situation is different
in multi-transmitter situations [19], such as multiple-
access channels, where coding can be used to improve
the sensing performance a the multiple transmitters (by
conveying information from one transmitter to the other
through the generalized feedback links) and thus the
code construction used for data communication should
be adapted to integrate also coding for sensing.

An interesting line of future research is the charac-
terization of the capacity-distortion tradeoff for channels
with memory. In this case, feedback increases capacity
even on the point-to-point channel. For channels with

memory, obtaining good state estimation (sensing) and
communication performances seem less contradicting
goals, because a good state estimation is also useful to
improve communication.
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APPENDIX A
PROOF OF LEMMA 1

Recall that Ŝn = h(Xn, Zn), and write for each i =
1, · · · , n:

E
[
d(Si, Ŝi)

]
=

EXn,Zn

[
E[d(Si, Ŝi)|Xn, Zn]

]

(a)
=
∑

xn,zn

PXnZn(xn, zn)

∑

ŝ∈S
PŜi|XnZn(ŝ|xn, zn)

∑

s

PSi|XiZi
(s|xi, zi)d(s, ŝ)

≥
∑

xn,zn

PXnZn(xn, zn)

min
ŝ∈S

∑

s

PSi|XiZi
(s|xi, zi)d(s, ŝ)

= E[d(Si, ŝ
∗(Xi, Zi))], (100)

where (a) holds by the Markov chain
(
Xi−1, Xn

i+1, Z
i−1, Zni+1, Ŝi

)
(−−(Xi, Zi)(−−Si.

(101)
Summing over all i = 1, . . . , n, we thus obtain:

∆(n) =
1

n

n∑

i=1

E
[
d(Si, Ŝi)

]
(102)

≥ 1

n

n∑

i=1

E[d(Si, ŝ
∗(Xi, Zi))], (103)

which yields the desired conclusion.

APPENDIX B
PROOF OF THEOREM 1

1) Converse: Fix a sequence (in n) of (2nR, n) codes
such that Limits (4) hold. By Fano’s inequality there
exists a sequence εn → 0 as n→∞ so that:

nR ≤ I(W ;Y n, Sn) + nεn

= I(W ;Y n | Sn) + nεn
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=

n∑

i=1

H(Yi | Y i−1, Sn)

−H(Yi |W,Y i−1, Sn) + nεn
(a)

≤
n∑

i=1

H(Yi | Si)

−H(Yi | Xi, Y
i−1,W, Sn) + nεn

(b)
=

n∑

i=1

H(Yi | Si)−H(Yi | Xi, Si) + nεn

=

n∑

i=1

I(Xi;Yi | Si) + nεn (104)

where (a) holds because conditioning can only reduce
entropy; and (b) holds because (W,Y i−1, Si−1, Sni+1)−
(Si, Xi)− Yi form a Markov chain. We continue as:

R ≤ 1

n

n∑

i=1

I(Xi;Yi | Si) + εn

(c)

≤ 1

n

n∑

i=1

Cinf

(∑

x

PXi
(x)c(x),

∑

x

PXi
(x)b(x)

)
+ εn

(d)

≤ Cinf

(
1

n

n∑

i=1

∑

x

PXi
(x)c(x),

1

n

n∑

i=1

∑

x

PXi
(x)b(x)

)
+ εn

(e)

≤ Cinf(D,B) (105)

where (c) holds by the definition of Cinf(D,B), and (d)
and (e) hold by Lemma 2.

2) Achievability: Fix PX(·) and functions ĥ(x, z) that
achieve C(D/(1 + ε),B), where D is the desired distor-
tion and B is the target cost, for a small positive number
ε > 0. We define the joint pmf PSXY := PSPXPY |SX .

a) Codebook generation: Generate 2nR sequences
{xn(w)}2nR

w=1 by randomly and independently drawing
each entry according to PX . This defines the codebook
C = {xn(w)}2nR

w=1, which is revealed to the encoder and
the decoder.

b) Encoding: To send a message w ∈ W , the
encoder transmits xn(w).

c) Decoding: Upon observing outputs Y n = yn

and state sequence Sn = sn, the decoder looks for an
index ŵ such that

(sn, xn(ŵ), yn) ∈ T (n)
ε (PSXY ). (106)

If exactly one such index exists, it declares Ŵ = ŵ.
Otherwise, it declares an error.

d) Estimation: Assuming that it sent the input
sequence Xn = xn and observed the feedback signal
Zn = zn, the encoder computes the reconstruction
sequence as:

Ŝn = (ŝ∗(x1, z1), ŝ∗(x2, z2), . . . , ŝ∗(xn, zn)). (107)

e) Analysis: We start by analyzing the probability
of error and the distortion averaged over the random
code construction. Given the symmetry of the code
construction, we can condition on the event W = 1.

We then notice that the decoder makes an error, i.e.,
declares nothing or Ŵ 6= 1 if, and only if, one or both
of the following events occur:

E1 =
{

(Sn, Xn(1), Y n) /∈ T (n)
ε (PSXY )

}
(108)

E2 =
{

(Sn, Xn(w′), Y n) ∈ T (n)
ε (PSXY )

for some w′ 6= 1
}
. (109)

where we defined PSXY := PSPXPY |SX . Thus, by the
union bound:

P (n)
e = P (E1 ∪ E2) ≤ P (E1) + P (E2). (110)

The first term goes to zero as n → ∞ by the weak
law of large numbers. The second term also tends to
zero as n→∞ if R < I(X;Y |S) by the independence
of the codewords and the packing lemma [23, Lemma
3.1]. Therefore, P (n)

e tends to zero as n→∞ whenever
R < I(X;Y |S).

The expected distortion (averaged over the random
codebook, state and channel noise) can be upper bounded
as

∆(n)

=
1

n

n∑

i=1

E
[
d(Si, Ŝi)

]
(111)

=
1

n

n∑

i=1

E
[
d(Si, Ŝi)

∣∣Ŵ 6= 1
]

Pr(Ŵ 6= 1)

+
1

n

n∑

i=1

E
[
d(Si, Ŝi)

∣∣Ŵ = 1
]

Pr(Ŵ = 1) (112)

≤ DmaxPe

+
1

n

n∑

i=1

E
[
d(Si, Ŝi)

∣∣Ŵ = 1
]
· (1− Pe). (113)

In the event of correct decoding, i.e., Ŵ = 1,

(Sn, Xn(1), Y n) ∈ T (n)
ε (PSPXPY |SX), (114)
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and since Ŝi = ŝ∗(Xi, Zi), also

(Sn, Xn(1), Ŝn) ∈ T (n)
ε

(
PSXŜ

)
, (115)

where PSXŜ denotes the joint marginal pmf of
PSXZŜ(s, x, z, ŝ) := PS(s)PX(x)PZ|SX(z|s, x)1{ŝ =
ŝ∗(x, z)}. Then,

lim
n→∞

1

n

n∑

i=1

E
[
d(Si, Ŝi)|Ŵ = 1

]
≤ (1 + ε)E

[
d(S, Ŝ)

]
,

(116)
for (S, Ŝ) following the marginal of the pmf PSXZŜ
defined above. Assuming that R < I(X;Y |S), and thus
Pe → 0 as n→∞, we obtain from (113) and (116):

lim
n→∞

∆(n) = (1 + ε)E
[
d(S, Ŝ)

]
. (117)

Taking finally ε ↓ 0, we can conclude that the error prob-
ability and distortion constraint (4a), (4b) hold (averaged
over the random code constructions, the random states,
and the noise in the channel) whenever

R < I(X;Y | S), (118)

E
[
d(S, Ŝ)

]
< D. (119)

Notice that the cost constraint (4c) is fullfilled by con-
struction. By standard arguments it can then be shown
that there must exist at least one sequence of determin-
istic code books Cn so that constraints (4) hold.

APPENDIX C
BLAHUT-ARIMOTO TYPE ALGORITHM TO EVALUATE

THEOREM 1

Through simple time-sharing arguments, it can be
shown that for given feasible B, the set of achievable
(R,D) pairs over the single-receiver channel is convex.
Its boundary is thus characterized by solving the follow-
ing parameterized optimization problem for each µ ≥ 0:

Lµ(B) := max
PX∈PB

[
I(PX , PY |XS | PS)

−µ
∑

x∈X
PX(x)c(x)

]
. (120)

Notice that the conditional mutual information functional
can explicitly be written as:

I(PX , PY |XS | PS)

=
∑

x∈X

∑

s∈S

∑

y∈Y
PS(s)PX(x)PY |XS(y|xs)

log
PY |XS(y|xs)
PY |S(y|s) . (121)

for the state pmf PS and the SDMB transition law
PY Z|XS .

For µ = 0, the optimization in (120) yields the capac-
ity of the SDMC under the input cost constraint (disgard-
ing the distortion constraint), while for µ→∞, it yields
the minimum possible distortion subject to the same
input cost constraint. We remark that the parameterized
optimization problem above differs from the standard
Blahut-Arimoto algorithm with cost constraints [27, Sec-
tion IV] only in that 1) the objective function (120) in-
cludes an additional penalty term −µ∑x∈X PX(x)c(x)
and 2) the mutual information functional is I(X;Y | S)
instead of I(X;Y ), which reflects the state-dependent
channel and the state knowledge at the receiver. Since the
penalty term is additive and linear in PX , all concavity
properties desired for a Blahut-Arimoto type algorithm
remain valid. The following Theorem 4 can then be
proved by standard alternating optimization techniques,
in analogy to the proof of the Blahut-Arimoto algorithm
[26], [27].

For any conditional pmf QX|Y S on X given (Y, S),
define the function

Jµ(PX , PY |XS , PS , QX|Y S) :=
∑

x∈X

∑

s∈S

∑

y∈Y
PX(x)PS(s)PY |XS(y|x, s)

· log
QX|Y S(x|y, s)

PX(x)

−µ
∑

x∈X
PX(x)c(x). (122)

Theorem 4. Let the state pmf PS and the SDMC tran-
sition law PY Z|XS be given. The following statements
hold:
a) For any µ,B ≥ 0:

Lµ(B) = max
PX∈P(B)

max
QX|Y S

Jµ(PX , PS , PY Z|XS , QX|Y S).

(123)

b) Fix PX ∈ P(B). Then, Jµ(PX , PS , PY Z|XS , QX|Y S)
is maximized by choosing QX|Y S as

Q?X|Y S(x|y, s) =
PX(x)PY |XS(y|xs)∑
x′ PX(x′)PY |XS(y|x′s) ,

(x, y, s) ∈ X × Y × S,(124)

c) Fix QX|Y S . Then, Jµ(PX , PS , PY Z|XS , QX|Y S) is
maximized by choosing PX ∈ P(B) as

P ?X(x) =
2g(x)

∑
x′ 2

g(x′)
, x ∈ X , (125)
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where

g(x) =
∑

s

∑

y

PS(s)PY |XS(y|xs) logQX|Y S(x|ys)

−λb(x)− µc(x) (126)

and λ ≥ 0 is chosen so that
∑

x∈X P
?
X(x)b(x) = B

when evaluated for P ?X in (125), or if no such λ exists,
then it is set to λ = 0. �

Proof: We give the proofs for the three results a)–c)

a) Fix pmfs PS , PX , PY |XS and define
PSXY (s, x, y) := PS(s)PX(x)PY |XS(y|x, s).
Notice that

Jµ(PX , PY |XS , PS , QX|Y S)

=
∑

x∈X

∑

s∈S

∑

y∈Y
PSXY (s, x, y)

· log
QX|Y S(x|ys)

PX(x)

−µ
∑

x∈X
PX(x)c(x) (127)

=
∑

x∈X

∑

s∈S

∑

y∈Y
PSXY (s, x, y)

· log
QX|Y S(x|ys)PSY (s, y)

PX(x)PSY (s, y)

−µ
∑

x∈X
PX(x)c(x) (128)

=
∑

x∈X

∑

s∈S

∑

y∈Y
PSXY (s, x, y)

[
log

QX|Y S(x|ys)PSY (s, y)

PSXY (s, x, y)

+ log
PSXY (s, x, y)

PX(x)PSY (s, y)

]

−µ
∑

x∈X
PX(x)c(x) (129)

= −D(PSXY ‖QX|Y SPSY )
︸ ︷︷ ︸

≤0

+
∑

x∈X

∑

s∈S

∑

y∈Y
PSXY (s, x, y)

· log
PSXY (s, x, y)

PX(x)PSY (s, y)

−µ
∑

x∈X
PX(x)c(x) (130)

≤
∑

x∈X

∑

s∈S

∑

y∈Y
PSXY (s, x, y)

· log
PSXY (s, x, y)

PX(x)PSY (s, y)

−µ
∑

x∈X
PX(x)c(x) (131)

=
∑

x∈X

∑

s∈S

∑

y∈Y
PSXY (s, x, y)

· log
PY |XS(y|x, s)
PY |S(y|s)

−µ
∑

x∈X
PX(x)c(x) (132)

= I(PX , PY |XS | PS)− µ
∑

x∈X
PX(x)c(x), (133)

where D(·‖·) denotes the Kullback-Leibler Diver-
gence [32]. Above inequality holds with equality
when QX|Y S = PX|Y S , where the latter stands for
the conditional marginal pmf of PSXY . Therefore,
maxQX|Y S

Jµ(PX , PY |XS , PS , QX|Y S) equals the
right-hand side of (133), which directly implies
(123).

b) For fixed PX , according to (127)–(133),
Jµ(PX , PY |XS , PS , QX|Y S) is maximized by
the choice

Q?X|Y S(x|y, s)

=
PSXY (s, x, y)

PSY (s, y)

=
PS(s)PX(x)PY |XS(y|x, s)∑
x′ PS(s)PX(x′)PY |XS(y|x′, s) . (134)

c) The function Jµ(PX , PY |XS , PS , QX|Y S) is
concave in PX and we can thus use the
KKT conditions to find the maximum value
maxPX

Jµ(PX , PY |XS , PS , QX|Y S) over all pmfs
PX satisfying

∑
x∈X PX(x)b(x) ≤ B. In this

case, the KKT conditions are summarized by the
two constraints
∑

s∈S

∑

y∈Y
PS(s)PY |XS(y|x, s) log

QX|Y S(x|y, s)
PX(x)

−
∑

s∈S

∑

y∈Y
PS(s)PY |XS(y|x, s) ln(2)−1

−µc(x)− λb(x)

= ξ, (135)

and ∑

x∈X
PX(x)b(x) ≤ B, (136)

and λ = 0 if above inequality is strict, and the La-
grange multiplier ξ ensures that the pmf PX sums
to 1. Since

∑
s∈S

∑
y∈Y PS(s)PY |XS(y|x, s) = 1,

Equation (135) is equivalent to

logPX(x)
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=
∑

s∈S

∑

y∈Y
PS(s)PY |XS(y|x, s) logQX|Y S(x|y, s)

−µc(x)− λb(x)− ξ − ln(2)−1, (137)

and thus to

PX(x) =

2

∑
s∈S

∑
y∈Y

PS(s)PY |XS(y|x,s) logQX|Y S(x|y,s)−µc(x)−λb(x)

·2−ξ−ln(2)−1

. (138)

Choosing finally the Lagrange multipliers ξ and λ
so that the pmf PX sums to 1 and the cost con-
straint

∑
x∈X PX(x)b(x) ≤ B holds with equality,

we obtain the result in (125). If no such λ exists,
then we set λ = 0.

Each of the two maximizations in (123) is a convex
optimization problem. The solution Lµ(B) can thus
be obtained by an alternating maximization procedure.
For our problem at hand, this alternating maximization
procedure is described in Algorithm 1. The algorithm
produces an optimal convergent input distribution P∞X,µ,
which can be used to compute a pair of capacity-
distortion values (Cµ(B),Dµ(B)) on the boundary of the
capacity-distortion tradeoff for given input cost B:

Cµ(B) = I
(
P

(∞)
X,µ , PY |XS

∣∣∣PS
)

(139a)

Dµ(B) =
∑

x

c(x)P
(∞)
X,µ (x). (139b)

Varying µ, the entire capacity-distortion tradeoff is ob-
tained for fixed input cost B. Moreover, by varying
the input cost B, the whole boundary of the achievable
capacity-distortion-cost tradeoff region is obtained.

APPENDIX D
PROOF OF COROLLARY 1

It suffices to show that under the described conditions,
the distortion constraint (4b) does not depend on PX .
To this end, we define T = ψ(X,Z) and rewrite the
expected distortion as:

E[d(S, Ŝ)]

=
∑

(x,z)∈X×Z
PXZ(x, z)

∑

s∈S
PS|XZ(s|x, z)

·d(s, ŝ∗(x, z)) (143)
(a)
=

∑

(x,z)∈X×Z
PXZ(x, z)

·min
s′∈Ŝ

∑

(s,t)∈S×T
PST |XZ(s, t|x, z)d(s, s′) (144)

Algorithm 1 Blahut-Arimoto Type Algorithm for
SDMCs
Fix µ ≥ 0.

1: procedure TRADEOFF (Cµ(B),Dµ(B))
2: Initialize P (0)

X (x) = 1
|X | for all x ∈ X .

3: for k = 1, 2, 3, . . . do
4:

Q
(k)
X|Y S(x|y, s) =

P
(k−1)
X (x)PY |XS(y|x, s)

∑
x′ P

(k−1)
X (x′)PY |XS(y|x′, s)

.

(140)
5: Choose λ(0) > 0.
6: for ` = 1, 2, . . . do
7: Compute p(`)(x) = eg

(`)(x)∑
x′ e

g(`)(x′)
with

g(`)(x) =
∑

s,y

PS(s)PY |XS(y|x, s) logQ
(k)
X|Y S(x|y, s)

−λ(`−1)b(x)

−µ
∑

(x,s,z)∈X×S×Z
PX(x)PS(s)PZ|XS(z|x, s)

d(s, s∗(x, z)) (141)

8: Update dual variables:

λ(`) =

[
λ(`−1) + α`

(∑

x

b(x)p(`)(x)−B
)]

+

(142)

. where α` is the gradient adaptation step
9: Let P (k)

X (x) = lim`→∞ p(`)(x).

(b)
=

∑

(x,z,t)∈X×Z×T
PXZ(x, z)1{t = ψ(x, z)}

·min
s′∈Ŝ

∑

s∈S
PS|T (s|t)d(s, s′) (145)

=
∑

t∈T
PT (t) min

s′∈Ŝ

∑

s∈S
PS|T (s|t)d(s, s′) (146)

where (a) holds by the definition of ŝ∗(x, z) and the
law of total probability; and (b) by the Markov chain
S(−−T(−−(X,Z), see (17), and because T is a function
of X,Z. The independence of the pair (T, S) with X
from (16), together with the above expression implies
that the expected distortion does not depend on the
choice of the input distribution PX . Hence, we can
conclude that for any given B ≥ 0, the rate-distortion
tradeoff function C(D,B) is constant over all D ≥ Dmin

and coincides with the capacity of the SDMC CNoEst(B).



21

APPENDIX E
PROOF OF REMARK 1

1) Converse: Fix a sequence (in n) of (2nR, n) codes
such that Limits (4) hold. By Fano’s inequality there
exists a sequence εn → 0 as n→∞ so that:

nR ≤ I(W ;Y n, SnR) + nεn

= I(W ;Y n | SnR) + nεn

=

n∑

i=1

H(Yi | Y i−1, SnR)

−H(Yi |W,Y i−1, SnR) + nεn
(a)

≤
n∑

i=1

H(Yi | SR,i)

−H(Yi | Xi, Y
i−1,W, SnR) + nεn

(b)
=

n∑

i=1

H(Yi | SR,i)

−H(Yi | Xi, SR,i) + nεn

=

n∑

i=1

I(Xi;Yi | SR,i) + nεn (147)

where (a) holds because conditioning can
only reduce entropy; and (b) holds because
(W,Y i−1, Si−1

R , SnR,i+1) − (SR,i, Xi) − Yi form a
Markov chain.

Define

Cimp
inf (D,B) := max

PX∈PD∩PB

I(X;Y | SR). (148)

Then, we have

R ≤ 1

n

n∑

i=1

I(Xi;Yi | SR,i) + εn

(c)

≤ 1

n

n∑

i=1

CImp
inf

(∑

x

PXi
(x)c(x),

∑

x

PXi
(x)b(x)

)
+ εn

(d)

≤ CImp
inf

(
1

n

n∑

i=1

∑

x

PXi
(x)c(x),

1

n

n∑

i=1

∑

x

PXi
(x)b(x)

)
+ εn

(e)

≤ CImp
inf (D,B) (149)

where (c) holds by the definition of CImp
inf (D,B) in

(148), and (d) and (e) hold by similar monotonicity and
concavity properties as stated in Lemma 2.

2) Achievability: Fix PX(·) and a function ĥ(x, z)
that achieve C(D/(1 + ε),B), where D is the desired
distortion and B is the target cost, for a small positive
number ε > 0. We define the joint pmf PSSRXY :=
PSSR

PXPY |SSRX . Codebook generation, encoding, and
estimation are as described in the proof of Theorem 1;
the only difference is in the decoding at the receiver,
where the state Sn has to be replaced by SR. In more
details:

a) Decoding: Upon observing outputs Y n = yn

and state sequence SnR = snR, the decoder looks for an
index ŵ such that

(snR, x
n(ŵ), yn) ∈ T (n)

ε (PSRXY ) (150)

where PSRXY =
∑
S PSSRXY . If exactly one such index

exists, it declares Ŵ = ŵ. Otherwise, it declares an error.
b) Analysis: We start by analyzing the probability

of error and the distortion averaged over the random
code construction. Given the symmetry of the code
construction, we can condition on the event W = 1.
We then notice that the decoder makes an error, i.e.,
declares nothing or Ŵ 6= 1 if, and only if, one or both
of the following events occur:

E1 =
{

(SnR, X
n(1), Y n) /∈ T (n)

ε (PXSRY )
}

(151)

or

E2 =
{

(SnR, X
n(w′), Y n) ∈ T (n)

ε (PXSRY )

for some w′ 6= 1
}
. (152)

Thus, by the union bound:

P (n)
e = P (E1 ∪ E2) ≤ P (E1) + P (E2), (153)

where we consider the average probability of error not
only over the random channel noise and states but also
over the random codeconstruction. The first term goes
to zero as n → ∞ by the weak law of large numbers.
By the independence of the codewords and the packing
lemma [23, Lemma 3.1], the second term also tends to
zero as n→∞

R < I(X;Y |SR). (154)

Following similar steps as in the analysis in Ap-
pendix B, and using the fact that by the weak law of
large numbers with probability tending to 1 as n→∞:

(Sn, SnR, X
n(1), Y n) ∈ T (n)

ε (PXPSPSR
PY |SSRX),

(155)
it can be shown that

lim
n→∞

∆(n) = (1 + ε)E[d(S, ŝ∗(X,Z))] . (156)

Thus when ε ↓ 0, the distortion constraint (4b) holds (av-
eraged over the random code constructions, the random
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states, and the noise in the channel) whenever

E[d(S, ŝ∗(X,Z))] < D. (157)

Notice that the cost constraint (4c) is fullfilled by con-
struction.

By standard arguments it can then be shown that
there must exist at least one sequence of deterministic
code books Cn so that constraints (4) are satisfied under
conditions (154) and (157).

APPENDIX F
CONVERSE PROOF OF THEOREM 2

Fix a sequence (in n) of (2nR0 , 2nR1 , 2nR2 , n) codes
satisfying (42). Fix a blocklength n and start with Fano’s
inequality:

R0 + R2 =
1

n
H(W0,W2)

≤ 1

n

n∑

i=1

I(W0,W2;Y2i, S2,i | Y i−1
2 , Si−1

2 ) + εn

≤ 1

n

n∑

i=1

I(W0,W2, Y
i−1

2 , Si−1
2 ;Y2,i, S2,i) + εn

= I(W0,W2, Y
T−1

2 , ST−1
2 ;Y2,T , S2,T | T ) + εn

≤ I(W0,W2, Y
T−1

2 , ST−1
2 , T ;Y2,T , S2,T ) + εn

(a)
= I(U ;Y2 | S2) + εn, (158)

where T is chosen uniformly over {1, · · · , n} and
independent of Xn, Y n

1 , Y
n

2 ,W0,W1,W2, S
n
1 , S

n
2 ; εn is

a sequence that tends to 0 as n → ∞; and U :=
(W0,W2, Y

T−1
2 , ST−1

2 , T ), Y2 := Y2,T and S2 := S2,T .
Here (a) holds because S2 ∼ PS2

independent of (U,X),
where we define X := XT .

Following similar steps, we obtain:

R1 =
1

n
H(W1 |W0,W2)

≤ 1

n
I(W1;Y n

1 , S
n
1 |W0,W2) + εn

≤ 1

n
I(W1;Y n

1 , S
n
1 , Y

n
2 , S

n
2 |W0,W2) + εn

=
1

n

n∑

i=1

I(W1;Y1,i, Y2,i, S1,i, S2,i

| Y i−1
1 , Y i−1

2 , Si−1
1 , Si−1

2 ,W0,W2) + εn

≤ 1

n

n∑

i=1

I(Xi,W1, Y
i−1

1 , Si−1
1 ;Y1,i, Y2,i, S1,i, S2,i

| Y i−1
2 , Si−1

2 ,W0,W2) + εn

(b)
=

1

n

n∑

i=1

I(Xi;Y1,i, S1,i

| Y i−1
2 , Si−1

2 ,W0,W2) + εn (159)

= I(XT ;Y1T , S1,T | Y T−1
2 , ST−1

2 ,W0,W2, T ) + εn
(c)
= I(X;Y1 | S1, U) + εn, (160)

where we defined Y1 := Y1,T and S1 := S1,T ;
and where (b) holds by the physically degraded-
ness of the SDMBC which implies the Markov
chain (W0,W2,W1, Y

i−1
1 , Si−1

1 , Y i−1
2 , Si−1

2 ) → Xi →
(S1,i, Y1,i) → (S2,i, Y2,i), and (c) holds because S1 ∼
PS1

independent of (U,X).
Recall that we assume the optimal estimators (43) in

Lemma 3. Using the definitions of T , X , Sk above and
defining Z := ZT , we can write the average expected
distortions as:

1

n

n∑

i=1

E[dk(Sk,i, ŝ
∗
k(Xi, Zi)] = E[dk(Sk, ŝ

∗
k(X,Z)]. (161)

Combining (158), (160), and (161) and letting
n → ∞, we obtain that there exists a limiting pmf
PUX such that the tuple (U,X, S1, S2, Y1, Y2, Z) ∼
PUXPS1S2

PY1Y2Z|S1S2X satisfies the rate-constraints

R0 + R2 ≤ I(U ;Y2 | S2) (162)

R1 ≤ I(X;Y1 | S1, U) (163)

and the distortion constraints

E[dk(Sk, ŝ
∗
k(X,Z)] ≤ Dk, k = 1, 2, (164)

This completes the proof.

APPENDIX G
PROOF OF THEOREM 3

Fix a sequence (in n) of (2nR0 , 2nR1 , 2nR2 , n) codes
satisfying (42). Fix then a blocklength n and consider
an enhanced SDMBC where Receiver 1 observes the
pair of states S̃1 = (S1, S2) and the pair of outputs
Ỹ1 = (Y1, Y2). The enhanced SDMBC is clearly physi-
cally degraded because for any input pmf PX the Markov
chain

X(−−(S̃1, Ỹ1)(−−(S2, Y2) (165)

holds.
Following the steps in the previous Appendix F, we

can conclude that

R0 + R2 ≤ I(U2;Y2 | S2) + εn (166)

R0 + R1 + R2 ≤ I(X;Y1, Y2 | S1, S2) + εn (167)

and for k = 1, 2

1

n

n∑

i=1

E[dk(Sk,i, ŝ
∗
k(Xi, Zi)] = E[dk(Sk, ŝ

∗
k(X,Z)]. (168)

Consider next a reversely enhanced SDMBC where
Receiver 1 observes only (Y1, S1) but Receiver 2 ob-
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serves both state sequences S̃2 := (S1, S2) and both
outputs Ỹ2 := (Y1, Y2). Following again the steps in the
previous Appendix F, but now with exchanged indices 1
and 2, we obtain:

R0 + R1 ≤ I(U1;Y1 | S1) + εn (169)

R0 + R1 + R2 ≤ I(X;Y1, Y2 | S1, S2) + εn. (170)

Combining all these inequalities and letting first n→
∞ and then εn ↓ 0, establishes the desired converse
result.

APPENDIX H
PROOFS FOR DUECK’S STATE-DEPENDENT BC

A. Optimal Estimator of Lemma 3

We first derive the optimal estimator ŝ∗k(x1, x2, y
′
1, y
′
2)

of Lemma 3 for this example.
Case y′1 = y′2 = 1: In this case, S1 = S2 = 1
deterministically, and thus

ŝ∗k(x1, x2, 1, 1) = 1, ∀(x1, x2), k = 1, 2. (171)

Case y1 = 1′ and y′2 = 0: In this case, S1 = 1
deterministically and

ŝ∗1(x1, x2, 1, 0) = 1, ∀(x1, x2). (172)

To derive the optimal estimator for state S2, we notice
that y′1 = 1 implies x1 ⊕N = 1, i.e., N = x1 ⊕ 1. As a
consequence,

y′2 = (x2 ⊕ x1 ⊕ 1)S2. (173)

So, for x2 = x1 we have y′2 = S2 = 0 and the optimal
estimator sets

ŝ∗2(x1, x2, 1, 0) = 0, x1 = x2. (174)

Instead for x2 6= x1, the feedback output y′2 = 0,
irrespective of the state S2. The optimal estimator then
is the constant estimator

ŝ∗2(x1, x2, 1, 0) = argmax
ŝ∈{0,1}

PS(ŝ), x1 6= x2. (175)

Case y′1 = 1, y′2 = 0: Symmetric to the previous case
y′1 = 0, y′2 = 1. The optimal estimators are as in (174)
and (175), but with exchanged indices 1 and 2.

Case y′1 = y′2 = 0: To find the optimal es-
timators, we calculate the conditional probabilities
PSk|X1X2Y ′1Y

′
2
(·|x1, x2, y

′
1, y
′
2) for y′1 = y′2 = 0.

We again distinguish the two cases x1 = x2 and x1 6=
x2 and start by considering x1 = x2. In this case, x1 ⊕
N = x2⊕N , and so if Sk = 1 then y′1 = y′2 = 0 only if
x1 ⊕N = x2 ⊕N = 0, which happens with probability

1/2 because N is Bernoulli-1/2. By the independence
of the states and the inputs for x1 = x2 and k = 1, 2:

PSk|X1X2Y ′1Y
′
2
(1|x1, x2, 0, 0)

=
PSk

(1)PY ′1Y ′2 |X1X2Sk
(0, 0|x1, x2, 1)

PY ′1Y ′2 |X1X2
(0, 0|x1, x2)

=
PS(1)1/2

PY ′1Y ′2 |X1X2
(0, 0|x1, x2)

. (176a)

Let k̄ := 3 − k for k = 1, 2. If Sk = 0, then y′1 =
y′2 = 0 happens when either x1 ⊕ N = x2 ⊕ N = 0
or when Sk̄ = 0 and x1 ⊕ N = x2 ⊕ N = 1. Since
these are exclusive events and have total probability of
1/2 +PS(0)1/2, we obtain for x1 = x2 and k ∈ {1, 2}:

PSk|X1X2Y ′1Y
′
2
(0|x1, x2, 0, 0)

=
PSk

(0)PY ′1Y ′2 |X1X2Sk
(0, 0|x1, x2, 0)

PY ′1Y ′2 |X1X2
(0, 0|x1, x2)

=
PS(0)(1/2 + PS(0)1/2)

PY ′1Y ′2 |X1X2
(0, 0|x1, x2)

. (176b)

We conclude from (176) that for y′1 = y′2 = 0 and
x =x1 = x2, the optimal estimators are

ŝ∗k(x, x, 0, 0)

= 1 {PS(0)(1 + PS(0)) < PS(1)} , k = 1, 2.(177)

We turn to the case x1 6= x2, where x1 ⊕ N = 1 ⊕
(x2 ⊕ N). As before, if Sk = 1, then Y ′k = 0 only if
x1 ⊕N = 0, which happens with probability 1/2. Now
this implies x2⊕N = 1, and thus Y ′

k̄
= 0 only if Sk̄ = 0,

which happens with probability PS(0). We thus obtain
for x1 6= x2 and k = 1, 2:

PSk|X1X2Y ′1Y
′
2
(1|x1, x2, 0, 0)

=
PSk

(1)PY ′1Y ′2 |X1X2Sk
(0, 0|x1, x2, 1)

PY ′1Y ′2 |X1X2
(0, 0|x1, x2)

=
PS(1)PS(0)1/2

PY ′1Y ′2 |X1X2
(0, 0|x1, x2)

. (178a)

If Sk = 0, then Y ′1 = Y ′2 = 0 happens when xk̄⊕N = 0
or when xk̄ ⊕ N = 1 and Sk̄ = 0. Since these are
exclusive events with total probability 1/2 + PS(0)1/2,
we obtain for x1 6= x2 and k = 1, 2:

PSk|X1X2Y ′1Y
′
2
(0|x1, x2, 0, 0)

=
PSk

(0)PY ′1Y ′2 |X1X2Sk
(0, 0|x1, x2, 0)

PY ′1Y ′2 |X1X2
(0, 0|x1, x2)

=
PS(0)(1/2 + PS(0)1/2)

PY ′1Y ′2 |X1X2
(0, 0|x1, x2)

. (178b)

Since PS(1) < 1 + PS(0), we conclude that for y′1 =
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0, y′2 = 0 and x1 6= x2, the optimal estimator is

ŝ∗k(x1, x2, 0, 0) = 0, x1 6= x2, k = 1, 2. (179)

B. Minimum distortion

We evaluate the expected distortion of the optimal
estimators in (85), for a given input pmf PX0X1X2

. Let
t := Pr[X1 6= X2]. We first consider the distortion on
state S2:

E[d(S2, ŝ
∗
2(X1, X2, Y

′
1 , Y

′
2))]

=
∑

(x1,x2,y′1,y
′
2)∈{0,1}4

PX1X2Y ′1Y
′
2
(x1, x2, y

′
1, y
′
2)

·Pr
[
S2 6= ŝ∗2(x1, x2, y

′
1, y
′
2) | X1 = x1, X2 = X2,

Y ′1 = y1, Y
′

2 = y2

]

(180)
(a)
=

∑

(x1,x2,y′1,y
′
2)∈{0,1}4

PX1X2Y ′1Y
′
2
(x1, x2, y

′
1, y
′
2)

· min
ŝ∈{0,1}

PS2|X1X2Y ′1Y
′
2
(ŝ|x1, x2, y

′
1, y
′
2),

(181)

where (a) follows by the definition of the function ŝ∗2.
In the previous Subsection H-A, we argued that

for y′2 = 1 or for (y′2 = 0, y′1 = 1, x1 =
x2), the state S2 is deterministic (S2 = 1 in the
former case and S2 = 0 in the latter) and thus
minŝ∈{0,1} PS2|X1X2Y ′1Y

′
2
(ŝ|x1, x2, y

′
1, y
′
2) = 0. We fur-

ther argued that for (y′1 = 1, y′2 = 0, x1 6= x2)
the transmitter learns nothing about state S2, which is
thus still distributed according to PS . Based on these
observations, we continue from (181) as:

E[d(S2, ŝ
∗
2(X1, X2, Y

′
1 , Y

′
2)]

= Pr
[
X1 6= X2, Y

′
1 = 1, Y ′2 = 0

]
min{PS(0), PS(1)}

+
∑

(x1,x2)∈{0,1}2
PX1X2Y ′1Y

′
2
(x1, x2, 0, 0)

min{PS1|X1X2Y ′1Y
′
2
(0|x1, x2, 0, 0),

PS1|X1X2Y ′1Y
′
2
(1|x1, x2, 0, 0)}

(b)
= Pr[X1 6= X2, N = X1 ⊕ 1, S1 = 1]

min{PS(0), PS(1)}
+ Pr[X1 = X2]

1

2
min{PS(1), PS(0)(1 + PS(0))}

+ Pr[X1 6= X2]
1

2
PS(0)PS(1) (182)

=
1

2
tq
(

min{q, (1− q)}+ (1− q)
)

+
1

2
(1− t)qmin{q, (1− q)(2− q)}. (183)

where in (b) we used (176)–(179) and the fact that when
X1 6= X2, then event {Y ′1 = 1, Y ′2 = 0} is equivalent to
event {N = X1 ⊕ 1, S1 = 1}.

C. Proof of the Outer Bound

The outer bound is based on Theorem 3, as detailed
out in the following. The single-rate constraints (68a)
specialize to

Rk ≤ I(Uk;Y
′
k, X0 | S1, S2) (184)

(c)
= I(Uk;X0) (185)

≤ 1, (186)

where the equality holds by the chain rule, because
(U1, X0) and (S1, S2) are independent, and because
I(U1;Y ′1 | X0, S1, S2) = 0 due to the Bernoulli-1/2
noise N .

Defining t := Pr[X1 6= X2], Bound (68b) specializes
to:

R1 + R2

≤ I(X0, X1, X2;Y ′1 , Y
′

2 , X0 | S1, S2) (187)
(d)
= H(X0) + I(X1, X2;Y ′2 | S1, S2, Y

′
1 , X0) (188)

(e)
= H(X0)

+I(X1, X2;Y ′2 | S1 = 1, S2 = 1, Y ′1 , X0) (189)

= H(X0)

+I(X1, X2;Y ′2 ⊕ Y ′1 | S1 = 1, S2 = 1, X0) (190)
(f)

≤ H(X0) + PS1S2
(1, 1)H(X1 ⊕X2) (191)

≤ 1 + q2Hb(t). (192)

where (d) holds by the chain rule and because
I(X1, X2;Y ′1 | X0, S1, S2) = 0 due to the Bernoulli-
1/2 noise N ; (e) holds because for (s1, s2) 6= (1, 1) the
mutual information term I(X1, X2;Y ′2 | S1 = s1, S2 =
s2, Y

′
1 , X0) = 0 due to the Bernoulli-1/2 noise N ;

and (f) holds because for S1 = S2 = 1 we have
Y ′2 ⊕ Y ′1 = (X2 ⊕ N) ⊕ (X1 ⊕ N) = X2 ⊕ X1 and
because conditioning can only reduce entropy.

The sum-rate constraint (192) is maximized for t =
1/2, which combined with (186) establishes the converse
to the capacity region in (90).

D. Proof of Achievability Results

We evaluate Proposition 1 for different choices of the
involved random variables. Since we ignore the common
rate R0, bound (70d) is not active and can be ignored.
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1) First choice:

• X0, X1, X2 Bernoulli-1/2 with X0 independent of
(X1, X2) and X1 = X2 = x with probability 1−t

2
for all x ∈ {0, 1};

• Uk = Xk, for k = 0, 1, 2;
• V1 = (X0, X1), V2 = (X0, X2), V0 = X1 ⊕ Y ′1 .

We plug this choice into Proposition 1. Constraint (70a)
evaluates to:

R1 ≤ I(U0, U1;Y1, V1 | S1)

−I(U0, U1, U2, Z;V0, V1 | S1, Y1) (193)

= I(X0, X1;X0, Y
′

1 , S1, S2, X1 | S1)

−I(X0, X1, X2, Y
′

1 , Y
′

2 ;X1 ⊕ Y ′1 , X0, X1

| S1, S2, X0, Y
′

1) (194)
(e)
= H(X0) +H(X1)−H(X1 | Y ′1) (195)

= H(X0) = 1 (196)

where (e) holds because Y ′1 is independent of X1 due to
the Bernoulli-1/2 noise N .

Constraint (70b) evaluates to:

R2 ≤ I(U0, U2;Y2, V2 | S2)

−I(U0, U1, U2, Z;V0, V2|S2, Y2) (197)

= I(X0, X2;X0, Y
′

2 , S1, S2, X2 | S1)

−I(X0, X1, X2, Y
′

1 , Y
′

2 ;X1 ⊕ Y ′1 , X0, X2

| S1, S2, X0, Y
′

2) (198)
(f)
= H(X0) +H(X2)−H(X2)

−H(X1 ⊕ Y ′1 | S1, S2, X0, Y
′

2 , X2) (199)
(g)
= 1− (1− q)(Hb(t) + q), (200)

where (f) holds because of the chain rule and the
independence of X2 and Y ′2 ; and (g) holds because
for S1 = 0 the XOR X1 ⊕ Y ′1 = X1 and thus
H(X1 ⊕ Y ′1 | S1, S2, X0, Y

′
2 , X2) = H(X1 | X2), for

S1 = S2 = 1 the XOR X1⊕Y ′1 = X2⊕Y ′2 , and finally for
S1 = 1 and S2 = 0 the XOR X1⊕Y ′1 = N independent
of (Y ′2 = 0, X2).

Constraint (70b) evaluates to:

R1 + R2

≤ I(U1;Y1, V1 | U0, S1) + I(U2;Y2, V2 | U0, S2)

+ min
k∈{1,2}

I(U0;Yk, Vk | Sk)− I(U1;U2|U0)

−I(U0, U1, U2, Z;V1 | V0, S1, Y1)

−I(U0, U1, U2, Z;V2 | V0, S2, Y2)

− max
k∈{1,2}

I(U0, U1, U2, Z;V0 | Sk, Yk) (201)

= I(X1;X0, Y
′

1 , S1, S2, X1 | X0, S1)︸ ︷︷ ︸
=H(X1)

+ I(X2;X0, Y
′

2 , S1, S2, X2 | X0, S2)︸ ︷︷ ︸
=H(X2)

+ min
k∈{1,2}

I(X0;X0, Y
′
k, S1, S2, Xk | Sk)︸ ︷︷ ︸
=H(X0)

− I(X1;X2)︸ ︷︷ ︸
=H(X1)−H(X1|X2)

− I(X,Y ′1 , Y
′

2 ;X0, X1 | X1 ⊕ Y ′1 , X0, S, Y
′

1)︸ ︷︷ ︸
=0

− I(X,Y ′1 , Y
′

2 ;X0, X2 | X1 ⊕ Y ′1 , X0, S, Y
′

2)︸ ︷︷ ︸
=H(X2|X1⊕Y ′1 ,S1,S2,Y ′2 )

− max
k∈{1,2}

I(X,Y ′1 , Y
′

2 ;X1 ⊕ Y ′1 | S,X0, Y
′
k)︸ ︷︷ ︸

=H(X1⊕Y ′1 |S1,S2,Y ′k)

(202)

(h)
= 2 +Hb(t)−H(X2 | X1 ⊕ Y ′1 , S1, S2, Y

′
2)

−H(X1 ⊕ Y ′1) (203)
(i)
= 1 +Hb(t)− (1− q)Hb(t)− q(1− q), (204)

where we used the abbreviations X = (X0, X1, X2)
and S = (S1, S2) and (h) holds because X1 ⊕ Y1 is
independent of (S1, S2, Y

′
k), for k = 1, 2; and (i) holds

because for S1 = S2 = 1 we have X2 = Y ′2 ⊕ Y ′1 ⊕X1

and thus H(X2 | X1 ⊕ Y ′1 , S1 = 1, S2 = 1, Y ′2) = 0,
for S1 = 0 the XOR X1 ⊕ Y ′1 = X1 and thus
H(X2 | X1⊕Y ′1 , S1 = 1, S2, Y

′
2) = H(X2|X1) = Hb(t),

and finally for S1 = 1 and S2 = 0, we have X1⊕Y ′1 = N
and Y ′2 = 0 and thus H(X2 | X1 ⊕ Y ′1 , S1 = 1, S2 =
0, Y ′2) = H(X2) = 1.

The presented choice of parameters can thus achieve
all rate-distortion tuples (R0,R1,R2,D1,D2) satisfying
the distortion constraints in (87) (which only depends
on the probability t := Pr[X1 6= X2]) and

R1 ≤ 1 (205a)

R2 ≤ 1− (1− q)(Hb(t) + q) (205b)

R1 + R2 ≤ 1 + qHb(t)− q(1− q). (205c)

2) Second choice: Same as the first choice except that
V0 = X2⊕Y ′2 . Following symmetric arguments as above,
we conclude that for this choice the constraints in (70)
evaluate to:

R1 ≤ 1− (1− q)(Hb(t) + q) (206a)

R2 ≤ 1 (206b)

R1 + R2 ≤ 1 + qHb(t)− q(1− q). (206c)

3) Combining the Choices and Time-Sharing: From
the two previous subsections, we conclude that for
any t ∈ [0, 1] the set of rate-distortion tuples
(R0,R1,R2,D1,D2) is achievable if it satisfies (87) and

R0 + R1 ≤ 1 (207a)
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R0 + R2 ≤ 1 (207b)

R0 + R1 + R2 ≤ 1 + qHb(t)− q(1− q). (207c)

As previously discussed, for q ≤ 1/2, the distortion
constraints (87) do not depend on t, and thus without
loss in optimality in (207) one can set t = 1/2, which
results in a sum-rate constraint

R0 + R1 + R2 ≤ 1 + q2. (208)

Combined with (207a) and (207b), this sum-rate bound
establishes the achievability of the capacity region in
(90).

For q > 1/2 the distortion constraints (87) are either
increasing or decreasing in t. The set of achievable rate-
distortion tuples is then obtained by varying t either over
[0, 1/2] or over [1/2, 1]. Numerical results indicate that
the so obtained set is not convex and the convex hull is
obtained by considering convex combinations between
different values of t > 0 and t = 0 for q ∈ [2/3, 1] and
t = 1 for q ∈ [1/2, 2/3].
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