
1 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

TEAPM
Trusted EAP Module

Pascal Urien, Guy Pujolle
Pascal.Urien@enst.fr
Guy.Pujolle@lip6.fr

2 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

AGENDA

1. Introduction
1.1 What is a TEAPM
1.2 What is EAP
1.3 The TEAPM in the IETF
context
1.4 the TEAPM in a Wi-Fi
context
1.5 TEAPM versus
Windows

2. OpenEapSmartcard &
performances issues

2.1 An open platform for
EAP support in smartcards
2.2 Performances issues

3. Smartcard enabled RADIUS
Servers

3.1 Classical RADIUS
servers
3.2 Overview of RADIUS
sessions
3.3 Benefits of smartcard
enabled RADIUS server
3.4 Smartcard enabled
RADIUS server
3.5 Implementation
details
3.6 Scalability versus the
Erlang B law

4. Privacy issues in emerging WLAN
4.1 EAP-METHODS as RFIDs:
Identity Leakage
4.2 RFC 4186, EAP-SIM Identity
Attack
4.3 EAP-AKA, RFC 4187, Identity
Attack
4.4 EAP-TLS, RFC 2716,
Identity Attack
4.5 Classical solutions, but not
standardized
4.6 Proposed solution for EAP-
TLS in TEAPMs
4.7 Illustration of Identity
Protection Dialog

5. TEAPM management model
5.1 The TEAPM Management
Model

6. Conclusion

3 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

1. Introduction

4 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

1.1 What is a TEAPM ?

TEAPMs are smartcards that run EAP client and/or server applications.
A public javacard implementation, based on the OpenEapSmartcard
platform is available on the WEB. Multiple client and server entities may
simultaneously work in a 64 KB device.
TEAPMs benefits

Security modules dedicated to IP devices.
Independent of any operating system (Windows, LINUX,…).
Highly secure authentication servers.
Privacy and tracability .
Remote administration.

Peer Authentication Server

EAP-Peer Layer

EAP-Layer

Lower-Layer

EAP-Auth. Layer

EAP-Layer

Smartcard enabled
RADIUS Server

EAP method
Trusted
EAP Module EAP method

O rdinateur central

TEAPM client TEAPM server Trusted
EAP Module

5 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

1.2 What is EAP ?

EAP is a new Esperanto for IP networks
RFC 2284, "PPP Extensible Authentication Protocol (EAP)",1998.

RFC 2661, "Layer Two Tunneling Protocol (L2TP) ", 1999.
RFC 2637, " Point-to-Point Tunneling Protocol (PPTP) ", 1999.

IEEE 802.1x, 2001
RFC 3559, "RADIUS Support For Extensible Authentication
Protocol", 2003
RFC 3748, Extensible Authentication Protocol, 2004

RFC 2716, "PPP EAP TLS Authentication Protocol“, 1999.
RFC 4186, "Extensible Authentication Protocol Method for Global
System for Mobile Communications (GSM) Subscriber Identity
Modules (EAP-SIM) ", 2006
RFC 4187, "Extensible Authentication Protocol Method for 3rd
Generation Authentication and Key Agreement (EAP-AKA)", 2006

RFC 4072, "Diameter Extensible Authentication Protocol
Application ", 2005
RFC 4306, "Internet Key Exchange (IKEv2) Protocol", 2005
IEEE 802.16e (WiMAX mobile), PKM-EAP, 2005

6 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

1.3 The TEAPM in the IETF context

eapReqData (includes reqId)

eapRespData,
Ignore,
allowNotifications,
decision

methodState,
(method-specific state)

methodState= { INIT,
CONT, MAY_CONT,DONE }

Ignore (message) = { TRUE, FALSE }
allowNotifications (Notification messages) = { TRUE, FALSE }
decision= {UNCOND_SUCC,COND_SUCC, FAIL }

Peer-ID
[Optional]

Server-ID
[Optional]

Method-ID

MSK

IV [Deprecated]

draft-ietf-eap-keying-xx

RFC 4137

AMSK

RFC 3748
EAP method

RFC 4017

AMSK =
KDF(EMSK,parameters)

Content
Mgnt

Identity
Mgnt Peer-Layer

Interface

TEAPM
Interface

Exported
Parameters

Channel
Bindings

Trusted
EAP

Module

EMSK

Security
Mgnt

7 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

1.4 The TEAPM in a Wi-Fi context

EAPCARD
.DLL

EAP-Servers
EAP-Client

Smartcard Enabled
RADIUS Server

Server Code

EAP

ISO 7816

EAP

ISO 7816

IEEE 802.11x
Access Point

Security, Trust, Privacy, Tracability

EAP-Server EAP-Client

TEAPM
OSD*

*OSD: Operating System Dependant

EAP

RADIUS

UDP

IP

802.3 Frames

EAP

802.11 Frames

8 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

1.5 TEAPM versus Windows

Certificate
Store

RAS

Key Storage

EAP
XP

Key Storage

Certificates

Certificate
Store

RAS

EAP

Certificates

VISTA

Smartcard
CSP

Smartcard
CSP

Card
Module

PC/SC
OSD

PC/SC
OSD

Certificate
Store

EAP

Certificates

PC/SC
OSD

TEAPM
TEAPM

OSD

9 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

2. OpenEapSmartcard
& Performances Issues

10 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

2.1 An Open Platform for EAP support in smartcard

4- The Methods are associated to
various authentication scenari.
Once initialized, the selected
method analyses each incoming EAP
request and delivers corresponding
response.

2- Auth.class

3- Credential.class

1- EapEngine.class

draft-eap-smartcard

Cryptographic API
RNG - MD5-– SHA1 - RSA

Security
Management

Network
Interface

Identity
Management

Personalization

ISO 7816 Interface

Javacard
Framework JC.2x

Methods
Credentials

Init
Object

E2PROM

EAP-AKA

EAP-TLS

Init(Object
Credential)

ProcessEap()

Authentication
Interface

Java Virtual Machine

4- Method.class

3- The Credential objects, are used
by to methods, and encapsulate all
information required for processing
a given authentication scenario.

1- The EapEngine manages several methods and/or multiple instances of the
same one. It implements the EAP core, and acts as a router that sends and
receives packets to/from authentication methods. At the end of authentication
process, each method computes a master cryptographic key (AAA Key) which is
read by the terminal operating system.

2- The Authentication interface defines
all mandatory services in EAP methods,
in order to collaborate with the
EapEngine. The two main functions are
Init() and Process-Eap().

First initializes method and returns
an Authentication interface;
Second processes incoming EAP
packets. Methods may provide
additional facilities dedicated to
performances evaluations.

11 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

TEAP-TLS = TTransfer +
TCrypto +

TSoftwareOverhead

Cryptographic
Functions

Protocols

2.2 Performances Issues

3xT analysis
Data Transfer
Cryptographic Operations
Software Overhead

Reading-Writing
Operations

12 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

2.2.1 TTransfer

In protocols dealing with X.509 certificates like EAP-TLS, several
kilobytes (typically 3600 bytes) of data are sent/received to/from
the smartcard. Due to the lack of RAM memory, these information
are written or read in the non-volatile memory (E2PROM, flash
memory,…)

TTransfer = TTransferReader +
TTransferSmartcard +

TSoftwareOverhead + TMemoriesAccesses .

Application

Reader 7816 IO

SRAM

E2PROM

Driver

IO Port

Docking station

TEAPM

13 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

2.2.2 Example of Reading-Writing Operations

Reader A Reader A

Reader B Reader B

0,15 ms/byte (50 Kbits/s)

TTransfer = 2600 x 0,15 = 390 ms

14 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

2.2.3 Cryptographic Operations

MD5

SHA1
TDigest= ½(TMD5+TSHA1)

=11,8 ms/bloc)

Private Key
Encryption

Public Key
Decryption

Public Key
Encryption

Private Key
Decryption

750ms 70ms 60ms 760ms

TRSA= TPubKD +
TPubKE + TPrivKD = 890 ms

TCrypto = TRSA + 532 x TDigest = 1850 ms

15 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

2.2.4 Summary of performances

TEAP-TLS = 5300 ms
TOther = TEAP-TLS - TTransfer - TCrypto

= 5300–400–1850
= 3050ms

As a conclusion TEAPMs spend
0,4s (08%) in data exchange with the docking station.
1,9s (35%) in cryptographic APIs,
3,0s (57%) in other operations realized by Java
software.

16 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

3. Smartcard enabled RADIUS server

17 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

3.1 Classical RADIUS Server

RFC 2865, “Remote Authentication Dial In User Service (RADIUS)”, 2000
Two entities

The Network Access Server (NAS) .
The Authentication Server (AS).

In a telephony context the NAS is running in a Point Of Presence (POP) ,
while in Wi-Fi applications it runs in Access Points (AP), and blocks all
frames that are sent/received by unauthenticated users.

RADIUS works over an UDP/IP stack, and therefore RADIUS messages are
routable through the Internet.
Mainly four types of messages

Access-Request, Access-Challenge, Access-Reject, Access-Success
RADIUS in IEEE 802.11x context

Clients (called supplicants) are authenticated before allocations of their IP
addresses.
Authentication messages (EAP) are exchanged between user and NAS over
PPP or LAN frames. These messages are encapsulated in RADIUS packets
exchanged between NAS and AS entities.

RADIUS security is based on a shared secret (the RADIUS secret) shared
between the NAS and the AS

Cryptographic procedures use MD5 and HMAC-MD5

18 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

3.2 Overview of RADIUS Sessions

Access-Request -153B EAP-Identity.response - 25B

EAP-TLS.request (Start) - 6B Access-Challenge – 90B

Access-Request -226B

Access-Challenge - 1388B

Access-Request - 172B

Access-Challenge - 234B

Access-Request - 1118B

Access-Challenge - 137B

Access-Request - 172B

Access-Accept - 172B

EAP-TLS.response (ClientHello) - 60B

EAP-TLS.request (ServerHello frag#1) - 1296B

EAP-TLS.response (ACK) - 6B

EAP-TLS.request (ServerHello frag#2) - 150B

EAP-TLS.response (ClientFinished) - 946B

EAP-TLS.request (ServerFinished) - 53B

EAP-TLS.response (ACK) - 6B

EAP-Success - 4B

GET-MSK-Key - 64B

Total: 3862B Total: 2616B

NAS AS
RADIUS

1

2

3

5

6

7

8

9

9

10

EAP
SERVER

11

RADIUS
secret

RADIUS
secret

19 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

3.3 Benefits of smartcard enabled RADIUS server

We believe that EAP server smartcards enhance the
RADIUS security, specially in EAP-TLS case for the
following reasons,

The server private key is securely stored and used by
the smartcard.
The client’s certificate is autonomously checked by
the EAP server.
If the EAP client also runs in a smartcard, the EAP
session is then fully processed by a couple of tamper
resistant devices, working as Secure Access Module
(SAM), a classical paradigm deployed in highly
trusted architectures.

20 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

3.4 Smartcard Enabled RADIUS server

Two components
A RADIUS authentication server, running
in a docking host.

It offers the Ethernet connectivity
and IP services. It receives and sends
RADIUS packets over UDP sockets.
It builds or parses RADIUS messages,
handles the RADIUS secret, checks
or generates authentication
attributes. EAP messages,
transported by RADIUS payloads are
forwarded to smartcards, running
EAP-Servers.

EAP servers.
Each smartcard runs an EAP-server,
and fully handles an EAP-TLS
authentication procedure.
Each component stores an unique
X509 certificate and its associated
RSA private key.
It computes EAP responses and
produces EAP requests.
At the end of a successful
authentication session, a MSK is
calculated and delivered to the
RADIUS entity.

EAP sessions
An EAP session is a set of messages
associated to an unique Session-Id
value, which is obtained by the
concatenation of two values, the
NAS-Identifier (RADIUS attribute
n°32) and the Calling-Station-Id (the
client’s MAC address, corresponding
to RADIUS attribute n°31) as follows:
Session-Id = NAS-Identifier | Calling-
Station-Id

EAP
Messages

RADIUS packets

RADIUS
Server

NAS

AS.exe

Docking
HOST

USB smartcard readers

Java
Card

21 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

3.5 Implementation Details

1

2 3

4

(1) Forward EAP
packet to TEAPM

(2) Wait for
TEAPM response
(3) Build RADIUS

packet

(5) Transmit
RADIUS packet

Parse incoming RADIUS packets
Find a TEAPM for this session

(4) Get MSK key

TEA
PM

TEA
PM

TEA
PM

TEA
PM

TEA
PM

EAP Session

1 1 1 1

3 3 3 3

5 5 5 5

begin end

End of EAP message processing

22 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

3.6 Scalability, privation versus the Erlang B law

Pc is the probability of blocking (e.g. a RADIUS packet is silently discarded),
c is the number of EAP servers,
λ is the rate of authentication sessions, and
1/µ the mean time of an authentication session (10s = 5s + 5s)
Let’s assume a network with 1000 users, authenticated every 10mn, then λ =

6x1000/3600=1,7 and so λ/µ = 60,000/3600 = 16,7. The probability of blocking (pc) is
about 50% with 9 smartcards (c = 9) and only 1% with 21 smartcards (c = 21).

1

0

(/) (/)
! !

c kc

c
k

p
c k

λ µ λ µ
−

=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑

c

λ/µ

23 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

4. Privacy Issues in emerging WLANs

24 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

4.1 EAP-METHODS as RFIDs: Identity Leakage

The hacker aims at collecting the peer’s identity, over
the air

Passive attack, simple eavesdropping
Active attack, EAP packets generation from a
malicious Access Point.

Number of EAP packets needed for active attacks
EAP-SIM, RFC 4186, 2x requests, without previous
knowledge
EAP-AKA, RFC 4187, 2x requests, without previous
knowledge
EAP-TLS, RFC 2716, 3x requests. The knowledge of a
valid authenticator’s certificate is required.

25 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

4.2 RFC 4186, EAP-SIM Identity Attack
Peer (Malicious) Authenticator

| |

| EAP-Request/Identity |

|<--|

| |

| EAP-Response/Identity |

| (Includes a pseudonym) |

|-->|

| |

| +------------------------------+

| | Server fails to map the |

| | Pseudonym to a permanent id. |

| +------------------------------+

| EAP-Request/SIM/Start |

| (AT_PERMANENT_ID_REQ, AT_VERSION_LIST) |

|<--|

| |

| EAP-Response/SIM/Start |

| (AT_IDENTITY with permanent identity, AT_NONCE_MT, |

| AT_SELECTED_VERSION) |

|-->|

| |

1

2

PEER’S FULL IDENTITY

26 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

4.3 EAP-AKA, RFC 4187, Identity Attack

Peer (malicious) Authenticator

| EAP-Request/Identity |

|<--|

| EAP-Response/Identity |

| (Includes a pseudonym) |

|-->|

| +------------------------------+

| | Server fails to decode the |

| | Pseudonym. |

| +------------------------------+

| EAP-Request/AKA-Identity |

| (AT_PERMANENT_ID_REQ) |

|<--|

| |

| EAP-Response/AKA-Identity |

| (AT_IDENTITY with permanent identity) |

|-->|

| |

1

2

PEER’S FULL IDENTITY

27 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

4.4 EAP-TLS, RFC 2716, Identity Attack
Authenticating Peer (Malicious) Authenticator

=================== =========================

<- PPP EAP-Request/Identity

PPP EAP-Response/

Identity (MyID) ->

<- PPP EAP-Request/

EAP-Type=EAP-TLS

(TLS Start)

PPP EAP-Response/

EAP-Type=EAP-TLS

(TLS client_hello)->

<- PPP EAP-Request/

EAP-Type=EAP-TLS

(TLS server_hello,

TLS certificate,

[TLS server_key_exchange,]

[TLS certificate_request,]

TLS server_hello_done)

PPP EAP-Response/

EAP-Type=EAP-TLS

(TLS certificate,

TLS client_key_exchange,

[TLS certificate_verify,]

TLS change_cipher_spec,

TLS finished) ->

1

2

3

PEER’S
FULL IDENTITY

28 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

4.5 Classical solutions, but not standardized

Establishment of a first protected channel, that secures
the peer’s identity

Asymmetric protected channel
Protected EAP Protocol (PEAP) Version 2, daft-josefsson-
pppext-eap-tls-eap-10.txt (2004, expired)
EAP Tunneled TLS Authentication Protocol Version (EAP-
TTLSv1), draft-funk-eap-ttls-v1-01.txt, (2006, active)

Symmetric protected channel
EAP-Double-TLS Authentication Protocol, draft-badra-eap-
double-tls-05.txt (2006, active)

29 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

4.6 Proposed solution for EAP-TLS in TEAPMs

Main idea
The peer’s certificate is sent encrypted, the encryption key is deduced
from the master_secret.

encryption_key = PRF(master_secret,
"client_certificate",client_random+server_random);

In order to allow an EAP-TLS peer to request identity protection
exchange, a new extension type is added (TBD) to the Extended Client
and Server Hello messages.
The 'extension_data' field of this extension contains a list of encryption
algorithms supported by the client, ordered by preference.
If the server is willing to accept using the extension, the client and the
server negotiate the symmetric algorithm that will be used to
encrypt/decrypt the client certificate.
At the end of the hello phase, the client generates the
pre_master_secret, encrypts it under the server's public key, and sends
the result to the server.

Encryption of the peer’s certificate
If a stream cipher is chosen, then the peer's certificate is encrypted
with the enc_key, without any padding byte.
If a block cipher is selected, then padding bytes are added to force the
length of the certificate message to be an integral multiple of the bloc
cipher's length.

30 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

4.7 Identity Protection Dialog

Client Hello (ClientRandom)

Server Hello (ServerRandom)

Server’s Certificate

CertificateRequest, ServerHelloDone

Certificate

CertificateVerify {MessagesDigest}KPrivC

ChangeCipherSpec

SERVER

ChangeCipherSpec

Finished (Encrypted+Signed MessagesDigest)

PEER

Finished (Encrypted+Signed MessagesDigest)

ClientKeyExchange {PreMasterSecret}KPubS

The Client’s identity is sent
in clear text

Client
KPubC

CA
KPubCA

Server
KPubS

ExtendedClientHello (ClientRandom))

ExtendedServerHello (ServerRandom)

Server’s Certificate

CertificateRequest, ServerHelloDone

Certificate

CertificateVerify {MessagesDigest} KPrivC

ChangeCipherSpec

SERVER

ChangeCipherSpec

Finished (Encrypted+Signed MessagesDigest)

PEER

CA
KPubCA

Client
KPubC

Finished (Encrypted+Signed MessagesDigest)

ClientKeyExchange {PreMasterSecret}KPubS

The client’s identity is sent encrypted
with the encryption_key
encryption_key =
PRF(MasterSecret,”client_certificate”
ServerRandom+ClientRandom)

Server
KPubS

PreMasterSecret

MasterSecret

Encryption Key

31 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

5. TEAPM Management Model

32 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

5.1 The TEAPM Management Model

TEAPMRemote administration issues
Cancellation of credentials,
such as X509 certificates and
associated private keys.
Updating of credentials.
There is a need to guaranty
continuity or extension of
customer’s subscriptions.
Downloading of new
applications. Authentication
protocols may evolve and
include new functionalities.

There are several ways to tackle
TEAPMs administration.

First deals with legacy
aspects and works with
classical APDUs transported
through protected TLS
channels.
Second may use an HTTPS
transport and implies the
definition of a new classes of
WEB services, dedicated to
smartcard management.

EAP

EAP-TLS or other methods

ISO 7816-4 HTTP

WEB
Services

DATA
Management

APPLET
Management XML

TCP/IP
Stack

TLS

33 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

6. Conclusion

34 /34 Pascal URIEN, September 20th 2006, Sophia Antipolis, France

Conclusion

The TEAPM model is a realistic, but open model for
smartcards deployment in IP networks.

Independent of any operating system (Windows,
Linux,…).
Highly secure authentication servers.
Privacy and tracability .
Remote administration.

We need tamper resistant chips with more computing
capacities.

