

INTRODUCING TRUSTED EAP MODULE FOR SECURITY ENHANCEMENT

IN WLANs AND VPNs

1Pascal Urien, 2Mesmin Dandjinou, 1Mohamad Badra

1Ecole Nationale Superieure des Telecommunications (ENST)

37/39 rue Dareau 75014 Paris
France

Pascal.Urien@enst.fr, Mohamad.Badra@enst.fr

2Universite Polytechnique de Bobo-Dioulasso
Burkina Faso

Msmin.Dandjinou@voila.fr

ABSTRACT
The Extensible Authentication Protocol (EAP) is a kind of
Esperanto used for access control in various network
technologies such as WLAN or VPN. We introduce the
trusted EAP module, a tamper resistant chip that
computes the EAP protocol. Its functional interface is
compatible with IETF emerging specifications. We
present an open smartcard platform which enables the
design of cheap components, both on client and server
side; furthermore we describe a management model that
remotely modifies embedded credentials and applications.
An implementation of a RADIUS server working with
EAP server modules is detailed and analyzed. Finally
experimental performances are commented and we
underline that today EAP modules compute complex
protocol like EAP-TLS in less than 5s, and therefore may
be deployed in existing networks.

KEY WORDS
Security, Smartcard, PKI, WLAN, EAP, VPN, RADIUS,
TLS.

1. Introduction

The Extensible Authentication Protocol (EAP) [11]
appeared in 1999, in order to solve authentication issues
induced by an increasing number of users who intended to
reach their internet service provider (ISP) through
modems, dealing with the point to point protocol (PPP)
[31]. It was then introduced in the IEEE 802.1x [6]
architecture, defining an AAA infrastructure
(Authentication, Authorization and Accounting) for
wired and wireless networks. The emerging IEEE 802.16e
standard [22], which may be understood as a mobile
digital line subscriber technology, also uses EAP through
the PKM-EAP (Privacy Key Management EAP) protocol
[9] in order to authenticate ISP customers. Lastly it can be

used to open secure tunnels, like PPTP [3] or IPSEC
links, since it is supported by the next generation of the
Internet Key Exchange protocol (IKEv2) [13].

In this paper we introduce the trusted EAP module
(TEAPM) e.g. a tamper resistant device, typically a
smartcard, that computes the EAP protocol. The main
idea is to confine critical credentials in a trusted
environment, that moreover autonomously processes EAP
messages.

This paper is organized according to the following plan.
Section 2 recalls some basic features of the EAP
architecture. Section 3 proposes a TEAPM functional
interface, compatible with IETF emerging specifications.
Section 4 outlines main characteristics of smartcards, and
recalls principles of classical remote management.
Section 5 introduces the TEAPM smartcard, an open java
platform that enables the design of cheap components,
both for client and server sides. Furthermore it describes a
management model for embedded credentials and
applications. We detail and analyze a RADIUS [8] server
implementation dealing with EAP-TLS [4] server
modules. Finally, experimental performances are
commented, and we demonstrate that EAP modules may
be deployed in today networks.

2. About the EAP protocol

An EAP dialog (see figure 1) occurs between two entities,
the Authentication Server (EAP server) and the Peer
(EAP Client). The Authentication Server generates
requests processed by the Peer, which returns responses.
At the end of this exchange these two entities usually
calculate a common shared secret (referred as the AAA-
key) involved in calculations of various cryptographic
materials.

191547-030

nicholas

Peer Authentication Server

EAP-Peer Layer

EAP-Layer

Lower-Layer

EAP-Auth. Layer

EAP-Layer

RADIUS Server

EAP method EAP method EAP method EAP method

1

2

3

4

Figure 1. The EAP model

Conceptually [11], an EAP entity consists of four
components:

1- The lower layer responsible for transmitting and
receiving EAP frames exchanged between the Peer and
the Authenticator.

2- The EAP layer that implements duplicate detection and
retransmission, and delivers and receives EAP messages
to and from the EAP peer and authenticator layers.

3- The EAP peer that acts as a router forwarding EAP
packets to the appropriate EAP method identified by a
specific byte type field.

4- EAP methods layer that realizes particular
authentication scenari.

In next sections we shall introduce a tamper resistant
device (the Trusted EAP module) that securely runs one
or several EAP methods. Although this module is well
suited for the Peer side, where it acts as the supplicant’s
electronic karma, it is also helpful on the Authentication
Server side. This aspect is more precisely detailed in
section 5.

Figure 2 illustrates TEAPMs deployment in a Wi-Fi
context. EAP methods are running in highly secure
computing environments, which are not controlled by
classical operating systems such as Windows or Linux.

Peer Authentication Server

EAP-Peer Layer

EAP-Layer

Lower-Layer

EAP-Auth. Layer

EAP-Layer

Smartcards Enabled
RADIUS Server

Trusted
EAP Module
Client

Trusted
EAP Module
Server

Wi-Fi
Network

1

2

3

4 EAP Methods

Figure 2. TEAPM deployment in a Wi-Fi context

3. Trusted EAP Module

The trusted EAP module is a tamper resistant device that
delivers EAP services in a trusted computing
environment. Although this paper is focused on
smartcards, other physical implementations could be
considered.

3.1 Network services

Network services comprise two kinds of functional
interfaces, described in [19] and [23], that we refer as
Peer-Layer Interface and Exported-Parameters (see figure
3).

The interface between EAP methods and Peer layer is
described in [19] and comprises two main procedures (left
part of figure 3):

- methodState() which initializes a method (INIT) or gets
its current state (a choice among CONTinue,
MAY_CONTinue or DONE)

- eapReqData() which forwards EAP messages to
methods, in particular the EAP identity request.

Three variables are internally managed by methods;
ignore indicates that incoming packet has been dropped;
allowNotifications indicates that EAP notifications are
handled; decision gives information about current status
(CONDitional_SUCCess, UNCONDitional_SUCCess,
FAILure) of authentication scenario. According to this
value, an EAP response (eapRespData) may be available.
In case of success, the method computes a set of values,
whose use is more precisely defined in [23], and which
are made available for other EAP layers:

- The Master Session Key (MSK) used as a shared secret,
involved in cryptographic material generation, according
to various standards [5] [10] [22].

- An additional key, the Extended Master Session Key
(EMSK), never shared with a third party.

- Application Master Session Keys (AMSK) introduced
by in [26] and obtained with a key distribution function
(KDF) using EMSK and other values as input parameters.

- Method-ID used as an unique identifier of an EAP
conversation. It’s typically obtained by the concatenation
of two random values generated by server and client
entities.

- Server-ID corresponding to the identity, if any, of the
server. For example it’s the subject field of an X.509
certificate.

- Peer-ID used for the identity, of the client, if any. It
could be the subject field of an X.509 certificate.

192

- Channel Bindings used as elements of information,
typically relative to the IEEE 802.1x access point (Called-
Station-Id, , Calling-Station-Id, NAS-Identifier, NAS IP-
Address, etc.). They are optionally mirrored during an
EAP session, from server to client.

eapReqData (includes reqId)

eapRespData,
ignore,
allowNotifications,
decision

methodState,
(method-specific state)

methodState= { INIT,
CONT, MAY_CONT, DONE }

Ignore (message) = { TRUE, FALSE }
allowNotifications (Notification messages) = { TRUE, FALSE }
decision= {UNCOND_SUCC,COND_SUCC, FAIL }

Peer-ID
[Optional]

Server-ID
[Optional]

Method-ID

MSK

IV [Deprecated]

draft-ietf-eap-keying

RFC 4137

AMSK

RFC 3748

EAP method
RFC 4017

AMSK =
KDF(EMSK,parameters)

Content
Mgnt

Identity
Mgnt Peer-Layer

Interface

TEAPM
Interface

Exported

Parameters

Channel
Bindings

E2PROM

EMSK

Security
Mgnt

CPU

RAM ROM

Figure 3. The Trusted EAP module architecture

3.2 Other services

A TEAPM device has a physical interface with the EAP-
Peer layer and produces output values as described in the
previous section. In this paper we define TEAPM services
as applications executed in a (JAVA) smartcard which
offers a highly secure computing environment.

However other management services are required for
TEAPM practical deployment:

- Content Management. It’s the set of operations needed
to download credentials, required by a given method
(X.509 certificates, cryptographic key, …).

- Security Management. This service manages
mechanisms (PIN code, biometric techniques, …) that
restrict TEAPM use to authorized users.

- Identity Management. When several methods are
available, this service allows to select one of them.

These aspects are more precisely detailed in [21].

4. Smartcard Overview

4.1Smartcard technology

Smartcard is a tamper resistant chip. As an illustration,
many governments enhance their identity protection and
verification by deploying ID-cards [16] or e-Passports
[14], including such a component. It comprises a CPU,
often a crypto-processor, and various kind of memories:
ROM storing the operating system code, RAM used for
stacking operations, and non volatile memory (E2PROM,
FLASH, …) acting as a mass storage (see figure 4).

Security is enforced by various hardware and software
countermeasures controlled by the embedded operating
system. As an illustration internal data bus is encrypted in
order to avoid eavesdropping, or cryptographic
calculations are protected against differential power
attacks. In classical ISO 7816 smartcards [1], commands
are carried through a serial link, whose data rate may
reach 230,000 bauds; but other communication interfaces
are also available such as USB [18] (with a throughput of
12 Mbits/s) and MMC (Multi Media Card).

Smartcards work according to a remote procedure call
(RPC) paradigm. They process requests (named APDUs)
and return responses, whose size are typically less than
256 bytes. Binary encoding rules are precisely defined in
the ISO 7816-4 standard. Furthermore, in most cases,
these devices run a Java Virtual Machine, and securely
execute applications, e.g. software written with a subpart
of the well known Java language.

CLK VSS VDD

Figure 4. Internal structure of a classical smartcard chip

In 2005, 1,8 billion of smartcards were produced and
about 70% of them in the form of SIM [29] modules, that
enforce security procedures for GSM phones. Most SIMs
include a Java Virtual Machine and are remotely managed
by mobile operators.

4.2 SIM remote management

The basic idea behind SIM remote management is to
shuttle meaningful commands ([1] ISO 7816-4 APDUs)
thanks to the popular Short Message Service (SMS). A
SMS message [27] is made of two part: a header and a
payload. According to [28] SIM commands are
transported in one or several concatenated SMSs. This
standard also provides classical security services, such as
data privacy (symmetric keys, KIC are used for command
encryption/decryption) and information integrity
(message authentication codes are computed/checked
according to symmetric KID keys).

The remote management of a SIM module is divided in
two classes of operations, remote access to files and
applet management. So:

- In accordance with [1], SIM files are hierarchically
organized according to a tree scheme including a root

RAM

2304 bytes
DATA

MEMORY

PUBLIC KEY
CO-

-PROCESSOR

E2PROM
TRIPLE DES

CO-
-PROCESSOR

32 KBYTES
DATA &

PROGRAM
MEMORY

RANDOM
NUMBER

GENERATOR

IO
PROGRAM-

-MABLE
I/O

IO1 IO2 IO3

U
A
R
T

ROM
96 KBytes

PROGRAM
MEMORY

16 BIT
T1

16 BIT
T2

TIMERS

80C51
CPU

CLOCK
INPUT
FILTER

POWER
ON/OFF
RESET

SECURITY
SENSORS

RESET
GENERATOR

INTERRUPT
SYSTEM

RST

193

repertory (Master File), sub repertories (Dedicated Files)
and files. Files operations are controlled by a small set of
commands (SELECT FILE, READ, WRITE).

- Applet management includes the opportunity to load,
install and remove embedded applications. For that, three
main commands are needed: LOAD, INSTALL and
DELETE.

These procedures are more precisely defined by [7].
Usually a loading session is accomplished in two steps.
Firstly a mutual authentication is performed between a
Security Domain entity stored in the SIM, and the remote
management entity; two cryptographic keys (S-ENC and
S-MAC) are computed at the end of this operation.
Secondly an application is downloaded under the control
of the Security Domain; S-ENC is used for data
encryption and S-MAC for MAC calculation.

5. The TEAPM Smartcard

The TEAPM smartcard is described by an internet draft
[21]. All services previously mentioned (network
interface, content management, security management,
identity management) are accomplished via a set of
APDUs [1] defined in this document. Example of
performances are given, later in this section.

5.1 OpenEapSmartcard

As we underlined it before, we believe that TEAPM
application is a secure embedded software. In order to
make it widely available, we introduced the
OpenEapSmartcard (see figure 5) platform [12] [17] [20]
[24] [25] whose target is to release an open environment,
working with most of commercial devices. The standard
Java Card Forum (JCF) framework supports a
cryptographic package that includes cryptographic
resources (Random Number Generator, SHA1, MD5,
RSA, DES, 3xDES, AES, etc.) required by classical
authentication protocols (TLS, AKA, …).

The OpenEapSmartcard application comprises four java
components:

1- The EapEngine. It manages several methods and/or
multiple instances of the same one. It implements the
EAP core, and acts as a router that sends and receives
packets to/from authentication methods. At the end of
authentication process, each method computes a key (the
Master Session Key, MSK) which is read by the terminal
operating system.

2- The Authentication interface. This component defines
all services that are mandatory in EAP methods, in order
to collaborate with the EapEngine. The two main
functions are Init() and Process-Eap(). The first one
initializes methods and returns an Authentication

interface; the second function processes incoming EAP
packets.

3- Credential objects. Each method is associated to a
Credential object that encapsulates all information
required for processing a given authentication scenario.

4- Methods. Each authentication scenario is processed by
a specific method class. Once initialized, it analyses each
incoming EAP request and delivers corresponding
response.

Method.class

Auth.class

Credential.class

EapEngine.class

IETF draft-eap-smartcard

Cryptographic API
RNG - MD5-– SHA1 - RSA

Security
Management

Network
Interface

Identity
Management

Personalization

ISO 7816 Interface

Javacard
Framework JC.2x

Methods
Credentials

Init
Object

E2PROM

EAP-AKA

EAP-TLS

Init(Object
Credential)

ProcessEap()

Authentication
Interface

Java Virtual Machine

1

2

3

4

Figure 5. OpenEapSmartcard

5.2 Example of TEAPM deployment

Figure 6 presents a Wi-Fi infrastructure working with
TEAPMs (client and server). We give a short description
of the operations that take place during the client’s
authentication.

1- A client’s PC, that intends to access to resources
offered by the wireless network, periodically transmits an
EAP-Start frame in order to initiate an EAP authentication
scenario.

2- The access point then produces and EAP identity
request that is forwarded by the PC operating system to an
EAP smartcard. This device delivers an EAP identity
response.

3- This response is encapsulated by the AP in a RADIUS
[8] packet, and sent to the RADIUS server. The RADIUS
software checks the availability of a smartcard EAP
server, and forwards the EAP identity response, that
begins a new session.

4- The EAP server returns an EAP request message,
encapsulated again in a RADIUS packet sent to the AP,
and then to the user’s computer. This request is then
forwarded to the client’s smartcard, which processes the
message and outputs a response, sent again to the EAP
server smartcard.

194

1

2 3

4

Figure 6. TEAPM deployment illustration

As illustrated by figure 6, an authentication dialog is a set
of requests and responses exchanged between EAP server
and EAP client. At the end of this process, the server
produces an EAP-Success message, as a result the
RADIUS entity gets a master cryptographic key (MSK)
needed for all security operations between the AP and the
client’s PC.

The MSK key is securely pushed to the AP, in
conjunction with the EAP-Success message, which is
forwarded again to the client.

Upon reception of this event, the client retrieves the MSK
key from its EAP smartcard. Everything is now ready for
computing all cryptographic elements, consumed by radio
security protocols such as WEP [5] or IEEE 802.11i [10].

5.3 Performances

They are some timing constraints, the delay between EAP
requests and responses must be less than 30 s [6].
Furthermore the total authentication duration must be less
than 60 s, in order to avoid the client’s network interface
reset, generated by the DHCP timeout.

With commercial javacards devices, we observed
performances of about 5 s for clients or servers; a detailed
analysis is described in [24]. These figures are compatible
with previously mentioned requirements, and therefore
our platform may be deployed in today network.

5.4 Remote Management

As previously mentioned, remote management of
smartcards is a classical feature in today GSM networks
and facilitates data and application administration. In a

TEAPM context, management functions (see figure 7)
could realize the following services:

- Cancellation of credentials, such as X509 certificates
and associated private keys. Smartcards cloning is
extremely difficult, in consequence there is only one
physical instance of these entities. The ability to remotely
block their use, is an important security requirement, in a
distributed PKI environment.

- Updating of credentials. There is a need to guaranty
continuity or extension of customer subscriptions. This
demand is fulfilled by replacing or adding information
elements that control services availability.

- Downloading of new applications. Authentication
protocols may evolve and include new functionalities. In
that case, the software is transparently updated, e.g.
without TEAPM bearers interaction.

EAP

EAP-TLS or other methods

APDUs
Interpreter HTTP

WEB
Services

DATA
Management

APPLET
Management XML

TCP/IP
Stack

APDU/TLS TLS HTTPS

Authentication
SERVER

EAP-TLS authentication dialog

Protected Management PDUs

EAP-Sucess

TEAPM Access
Point

Figure 7. TEAPM remote management

These useful functionalities require a protected data
transfer between the administration server and the
TEAPM. Most of authentication methods establish secure
links that may transport ciphered and signed messages.

195

Thus, the record layer of EAP-TLS [2] may shuttle
encrypted AVPs (Attribute Value Pair), and EAP-AKA
[30] can transport ciphered payload. Although the DHCP
protocol induces timing constraints (usually 60 s) during
the first authentication occurrence, the re-authentication
process, as defined in [6], doesn’t suffer from this issue,
and therefore is a practical mean for refreshing
information embedded in a tamper resistant device.

The legacy syntax used for management of classical
smartcards is based on APDU encoding. Because all
TEAPM functional interfaces are described as a set of
APDUs, our current TEAPM administration works with
an APDUs interpreter (see figure 5), which parses and
executes incoming commands. However, other techniques
are also suitable and could avoid the deployment of
unusual management tools; for that we propose two
potential candidates:

- LDAP (Lightweight Directory Access Protocol) [32].
The TEAPM content is interpreted as an entry belonging
to a portable directory. Management entities act as LDAP
clients which create, update or delete attributes by means
of messages coded according to the ASN.1 syntax, and
typically encapsulated in TLS packets.

- WEB services. New generation of smartcards, for
example the Trusted Personal Device introduced by the
European project Inspired [35], offers sufficient
resources, in terms of computing capacities and memory
sizes, in order to support a TCP/IP stack [18] and the
HTTP protocol. Such devices may include WEB server
and additional XML facilities (see figure 8), that enable
the remote control of embedded resources through WEB
services interfaces. An early form of these services could
be realized by a specific DTD, translating a collection of
APDUs in an XML document.

Figure 8. The Trusted Personal Device project

5.5 EAP-server design

JavaCard

RADIUS
Server
Code

TEAPM

Figure 9. Practical realization of TEAPM servers

EAP servers are dual forms of the EAP clients. They
process EAP responses and return EAP requests, while
clients do the opposite. These components may be
included in various classes of servers, such as access
server (authentication in PPP), IKE server (authentication
in VPN), or RADIUS server (authentication in Wi-Fi
infrastructure). They enhance the security by processing
the EAP protocol in a highly trusted computing
environment, that equally holds cryptographic credentials.
Even if the server operating system is compromised,
critical data like RSA keys resist to eavesdropping. In that
case, and in similarly to TEAPM clients, the EAP server
can be remotely deactivated thanks to management
facilities. Furthermore, when client’s identity is hidden by
cryptographic shields, they may secretly check this
parameter and notify the success of an authentication
without divulging the true identity of network user [37].
This property facilitates PET (Privacy Enhancing
Technologies) deployment in emerging pervasive
networks.

In an IEEE 802.1x [6] infrastructure, EAP messages are
transported between a network access server (NAS) and
an authentication server by the RADIUS protocol. The
security of this transport is based on a secret (the
RADIUS secret) shared between the AP and the RADIUS
server. In most cases the physical security of an access
point is difficult to evaluate; the secret is permanently
stored in the AP, and perhaps without any cryptographic
protection. For that reason, we designed a RADIUS server
(see figure 9), running in a personal computer (what
means that RADIUS security is controlled by the
computer which also holds the RADIUS secret), but that
delegates all EAP operations to EAP servers (see figure
10). Each of them processes the EAP-TLS protocol
associated to an unique X.509 certificate and its RSA
secret key. These choices greatly simplify the software
design. More details may be found in [36].

196

(1) Forward EAP
packet to TEAPM

(2) Wait for
TEAPM response

(3) Build RADIUS
packet

(5) Transmit
RADIUS packet

Parse incoming RADIUS packets
Find a TEAPM for this session

(4) Get MSK key

TEA
PM

TEA
PM

TEA
PM

TEA
PM

TEA
PM

EAP Session

1 1 1 1

3 3 3 3

5 5 5 5

begin end

End of EAP message processing

EAP Messages
Processing

Figure 10. logical management of TEAPMs

Each EAP session is uniquely identified by the
concatenation of two values, the NAS-Identifier
(RADIUS attribute n°32 in [33]) and the Calling-Station-
Id (the client’s MAC address, corresponding to RADIUS
attribute n°31 in [33]) as follows:

Session-Id = NAS-Identifier | Calling-Station-Id.

When a new session is started (reception of a RADIUS
packet containing an EAP-Identity.response indication)
the RADIUS server software attempts to find a free EAP-
Server which will manage this session until its end. If no
device is available the RADIUS packet is silently
discarded.

EAP message processing is rather slow, and may require a
few seconds; while a complete EAP-Session typically
costs 5 s of TEAPM time. Therefore, each EAP packet is
handled by a software thread, that waits for TEAPM
response, which is afterwards encapsulated in a RADIUS
message and transmitted to the right access point (see
figure 10).

When no EAP server is available, the incoming RADIUS
packet is silently discarded. This mechanism is similar to
the classical blocking algorithm used in circuit-switching,
where an incoming call is ignored if no output trunks are
available. Under the hypothesis the system is working
according to an M/M/c/c queue, it follows the Erlang-B
formula:

where

- pc is the probability of blocking (e.g. a RADIUS packet
is silently discarded),

- c is the number of smartcards (EAP servers),
- λ is the rate of authentication sessions, and
- 1/µ the mean time of an authentication session.

With our best couple of devices (client and server), we
measure an authentication duration of about 5 + 5 = 10 s;
therefore 1/µ =10. Let’s assume a network with 1000
users, with an authentication session every hour, then we
deduce:

λ = 1000 / 3600, and λ/µ = 10 x 1000/3600 = 2,8.

The probability of blocking (pc) is about 50% with 2
smartcards (c = 2) and only 1% with 8 smartcards (c = 8).

6. Conclusion and Future Work

In this paper we have presented a new class of cheap
authentication modules dealing with WLAN and VPN
technologies. We believe that they will improve the
security by first of all computing critical protocols in a
trusted computing platform, and secondly introducing
useful management services.

In a not too distant future, our works will address the
TEAPMs management, by means of WEB services
facilities. We plan to develop TEAPM applications with
the next generation of smartcards, such as the Trusted
Personal Device [35], which includes TCP/IP facilities
and multiple Virtual Machines, providing software tools
dedicated to XML processing.

Furthermore, as the memory sizes of today tamper
resistant device are dramatically increasing, and are
reaching the gigabyte horizon [34], future TEAPMs could
manage a large amount of information.

References

[1] ISO 7816, "Cards Identification - Integrated Circuit
Cards with Contacts".
[2] RFC 2246, "The TLS Protocol Version 1.0", January
1999.
[3] RFC 2637, "Point-to-Point Tunnelling Protocol
(PPTP)", July 1999.
[4] RFC 2716, "PPP EAP TLS Authentication Protocol".
October 1999.
[5] Institute of Electrical and Electronics Engineers,
"Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications", IEEE Standard
802.11, 1999.

1

0

(/) (/)
! !

c kc

c
k

p
c k

λ µ λ µ
−

=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑

[6] Institute of Electrical and Electronics Engineers,
"Local and Metropolitan Area Networks: Port-Based
Network Access Control", IEEE Standard 802.1X,
September 2001.
[7] GP 2.1.1, "Global Platform Card Specification
Version 2.1.1", March 2003.

197

[8] RFC 3579, "RADIUS (Remote Authentication Dial
In User Service) Support For Extensible Authentication
Protocol (EAP)", September 2003.
[9] Institute of Electrical and Electronics Engineers,
"IEEE Standard for Local and Metropolitan Area
Networks, part 16, Air Interface for Fixed Broadband
Wireless Access Systems", IEEE Standard 802.16, 2004.
[10] Institute of Electrical and Electronics Engineers,
"Supplement to Standard for Telecommunications and
Information Exchange Between Systems - LAN/MAN
Specific Requirements - Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY)
Specification for Enhanced Security", IEEE standard
802.11i, 2004.
[11] RFC 3748, "Extensible Authentication Protocol,
(EAP)", B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, H.
Levkowetz, Ed., June 2004.
[12] Urien, P, Badra M, Dandjinou, M, "EAP-TLS
Smartcards, from Dream to Reality", 4th Workshop on
Applications and Services in Wireless Networks,
ASWN’2004, Boston University, Boston, Massachusetts,
USA, August 8-11, 2004.
[13] RFC 4306, "Internet Key Exchange (IKEv2)
Protocol", C. Kaufman, December 2005.
[14] Libon, O, Vandendooren, H, "The Belgian BELPIC
project, a double approach: e-Government & Smartcard",
International Meeting 2004, Sophia Antipolis, France,
September 22-24, 2004.
[15] RFC 4017, "Extensible Authentication Protocol
(EAP) Method Requirements for Wireless LANs", March
2005.
[16] National Institute of Standards and Technology,
"Interfaces for Personal Identity Verification", NIST
Special Publication 800-73, April 2005.
[17] Urien, P, Dandjinou, M, "The OpenEapSmartcard
project", short paper, Applied Cryptography and Network
Security 2005, ANCS 2005, Columbia University, New
York, USA, June 7-10, 2005.
[18] Tual, J.P, Couchard, A, Sourgen, K, "USB Full
Speed enabled smart cards for Consumer Electronics
applications", Consumer Electronics, ISCE 2005,
Proceedings of the Ninth International Symposium on 14-
16 June 2005, pp.230-236.
[19] RFC 4137, "State Machines for Extensible
Authentication Protocol (EAP) Peer and Authenticator",
August 2005.
[20] Urien, P, Dandjinou, M, Badra, M, "Introducing
micro-authentication servers in emerging pervasive
environments", IADIS International Conference
WWW/Internet 2005, Lisbon, Portugal, October 19-22,
2005.
[21] Internet draft, "EAP-Support in Smartcard", draft-
eap-smartcard-09.txt, October 2005.
[22] Institute of Electrical and Electronics Engineers,
"Draft IEEE Standard for Local and metropolitan area
networks part 16: Air Interface for Fixed and Mobile
Broadband Wireless Access Systems Amendment for
Physical and Medium Access Control Layers for

Combined Fixed and Mobile Operation in Licensed
Bands", IEEE 802.16e/D12, October 2005.
[23] Internet draft, "Extensible Authentication Protocol
(EAP) Key Management, Framework", draft-ietf-eap-
keying-09.txt, January 2006.
[24] Urien, P, Dandjinou, M, "Designing smartcards for
emerging wireless networks", Seventh Smart Card
Research and Advanced Application IFIP Conference,
CARDIS 2006, Tarragona-Catalonia, April 19-21, 2006.
[25] OpenEapSmartcard,
http://www.enst.fr/~urien/openeapsmartcard.
[26] Internet draft, "Extensible Authentication Protocol
(EAP) Key Management Extensions", draft-aboba-eap-
keying-extens-00.txt, April 2005.
[27] GSM 03.40, "Technical realization of the Short
Message Service (SMS) Point-to-Point (PP)", ETSI.
[28] TS 03.48, "Security Mechanisms for the SIM
application toolkit", 3GPP.
[29] GSM 11.11, "Specification of the Subscriber Identity
Module - Mobile Equipment (SIM - ME) interface",
ETSI.
[30] RFC 4187, "Extensible Authentication Protocol
Method for 3rd Generation Authentication and Key
Agreement (EAP-AKA)", January 2006.
[31] RFC 1661, "The Point-to-Point Protocol (PPP)", STD
51, July 1994.
[32] RFC 2251, "Lightweight Directory Access Protocol
(v3)", December 1997.
[33] RFC 2865, "Remote Authentication Dial In User
Service (RADIUS)", June 2000.
[34] MegaSIM, http://www.m-systems.com/
[35] FP6-IST, "Integrated Secure Platform for Interactive
Personal Devices", INSPIRED project, Information
Society Technologies, 2004-2006.
[36] Urien P., Dandjinou M., "Introducing Smartcard
Enabled RADIUS Server", CTS 2006, the 2006
International Symposium on Collaborative Technologies
and Systems, Las Vegas, USA.
[37] Urien, P, Badra, M. "Secure Access Modules for
Identity Protection Over the EAP-TLS. Smartcard
benefits for user anonymity in wireless infrastructures.",
Secrypt 2006, the International Conference on Security
and Cryptography, Setubal Portugal, 7-10 August 2006

198

