
Introducing Smartcard Enabled RADIUS Server

Pascal Urien1, Mesmin Dandjinou2

1Ecole Nationale Supérieure des Télécommunications (ENST), 37/39 rue Dareau 75014 Paris France
2Universite Polytechnique de Bobo-Dioulasso, Burkina Faso

Pascal.Urien@enst.fr, Mesmin.Dandjinou@voila.fr

ABSTRACT

This paper introduces an innovative concept of smartcard
enabled RADIUS server. We design RADIUS servers in
which EAP messages are fully processed by smartcards,
called EAP-Servers. When the well known TLS protocol is
used as authentication method, this architecture becomes
scalable. In that case, concurrent authentication sessions
are simultaneously handled by different EAP-Servers,
each of them securely embeds an unique X509 certificate
and its associated private key. We presents experimental
results obtained with commercial components, and
demonstrate that system performances, about 5 seconds
per RADIUS session, are compatible with today network
constraints.

KEYWORDS: Smartcard, AAA, Security, EAP, TLS,
RADIUS, WLAN.

1. INTRODUCTION

There is a trend in the smartcard industry to design
tamper resistant devices supporting IP connectivity [1].
As an illustration, a recent paper [2] introduces USB full
speed enabled smartcards, whose operating system
supports classical communication OSI layers, such as
Ethernet over CDC (Communication Device Class)
TCP/IP, SSL and HTTP. Although USB interfaces are
widely available in personal computers, an other class of
secure components, sometimes referred as MegaSIM 1

also offers networking facilities (e.g. TCP/IP stack)
working over MMC (MultiMedia Card) physical
interfaces. This technology is natively adapted to mobile
phones, that already include MMC memories used for the
storage of multimedia contents. However USB or MMC
interfaces only realize point to point link to hosts, and are
usually supported by peripheral devices (printers,

modems, network boards…), plugged to computers by
means of these IO ports. Therefore IP enabled smartcards
required docking hosts (see figure 1), which in most cases,
access to this devices by means of standard Ethernet
drivers (called NDIS in Windows platforms) used to
manage LAN interfaces or modems.

1 http://www.m-sys.com

Due to that, most of foreseen applications, used IP
smartcards as personal WEB servers, plugged to
computers, linked to its bearer by PIN code or biometric
identification, and possibly offering mobile WEB services.

USB Hardware Core

USB Driver

CDC
to Ethernet Driver

IP

TCP/UDP

Applications

D- D+

USB PORT

Ethernet Driver

IP

TCP/UDP

TLS

HTTPSHTTP

Applications

TLS

HTTPSHTTP

LAN PORT

Ethernet Driver

USB Enabled Smartcard Docking HOST
INTERNET

Figure 1. Example of USB Enabled Smartcard.

This paper is focused on server applications, in which
smartcard acts as standard network device that doesn’t
offer services to human bearers, but rather enhances the
security of communication infrastructures. For that, we
have designed a scalable RADIUS server, based on
smartcards. We deal with asymmetric cryptographic
which authorizes elegant solutions; every smartcard holds
an unique X509 certificate, and parallel computing
techniques balance the modest computing capacities of
smartcards. We demonstrate that our proposal is working
in today networks, and could be improved by the
introduction of components equipped with common wired
(Ethernet) or wireless LAN interface.

740-9785699-0-3/06/$20.00©2006 IEEE

This paper is organized according to the following plan.
Section 2 describes classical RADIUS servers. Section 3
introduces smartcard enabled RADIUS server. Section 4
presents experimental results. Section 5 discusses about
future directions of this work.

2. CLASSICAL RADIUS SERVERS

The RADIUS protocol [3] was introduced in the nineties,
in order to solve authentication issues induced by millions
of users, that intended to reach their Internet Service
Provider through modems, dealing with the PPP protocol.
It was then re-used by the IEEE 802.1x standard [4], that
defines access control mechanisms for wired and wireless
(IEEE 802.11) infrastructures. It deals with two entities,
the Network Access Server (NAS) and the authentication
server (AS). In a telephony context the NAS runs in a
Point Of Presence (POP) , while in Wi-Fi applications it
is located in Access Points (AP), and blocks all frames
that are sent/received by unauthenticated users. Clients
(called supplicants in IEEE 802.1x) are authenticated
before allocations of their IP addresses. Authentication
messages are exchanged between user and NAS over PPP
or LAN frames. These messages are encapsulated in
RADIUS packets exchanged between NAS and AS
entities; RADIUS works over an UDP/IP stack, and
therefore is routable through the Internet.

Access-Request -153B EAP-Identity.response - 25B

EAP-TLS.request (Start) - 6BAccess-Challenge – 90B

Access-Request -226B

Access-Challenge - 1388B

Access-Request - 172B

Access-Challenge - 234B

Access-Request - 1118B

Access-Challenge - 137B

Access-Request - 172B

Access-Accept - 172B

EAP-TLS.response (ClientHello) - 60B

EAP-TLS.request (ServerHello frag#1) - 1296B

EAP-TLS.response (ACK) - 6B

EAP-TLS.request (ServerHello frag#2) - 150B

EAP-TLS.response (ClientFinished) - 946B

EAP-TLS.request (ServerFinished) - 53B

EAP-TLS.response (ACK) - 6B

EAP-Success - 4B

GET-MSK-Key - 64B

Total: 3862B Total: 2616B

NAS AS
RADIUS

1

2

3

5

6

7

8

9

9

10

EAP
SERVER

11

Figure 2. Example of Information Exchange, During a
RADIUS Session.

The Extensible Authentication Protocol (EAP) was
introduced in 1999 [5], in order to define a flexible
authentication framework. Before its definition, it was
necessary to standardize every new authentication
procedure used by PPP (such as PAP, CHAP, MSCHAP),
what slowed down security enhancements and leaded to a
lack of interoperability. EAP is a powerful umbrella, able
to transport many authentication scenari, between EAP

client and EAP server. It basically works with three kinds
of messages; requests delivered by servers; responses
returned by clients; and notifications produced by servers
in order to indicate success or failure of authentication
procedures.

EAP packets are transparently shuttled in RADIUS
payloads [6]. RADIUS is a key player in AAA
(Authentication Authorization Accounting)
infrastructures, it is widely deployed in Wi-Fi networks
and should likely control accesses to emerging WiMax
Metropolitan Area Networks [7]. EAP protocol is in
charge of user’s authentication, it should securely manage
and store cryptographic credentials, needed by these
operations.

Figure 2 illustrates a RADIUS dialog between a NAS and
an authentication server (AS). EAP messages
received/sent from/to network client (intending to reach
Internet resources through an access point) are exchanged
with the AS according to the following scenario:

- The EAP-identity message (see figure 2, item 1),
produced by an EAP client is encapsulated by the NAS in
an Access-Request packet. In the case of the EAP-TLS
[8][9] authentication procedure, this identity is the subject
field of the user’s X509 certificate.

- AS extracts this EAP message. By analyzing the user’s
identity it deduces what class of authentication method is
needed. Typically user’s account parameters are stored in
a LDAP directory logically working with the
authentication server. This event begins an EAP session.
In usual implementations the EAP-server software is
merged with the RADIUS module. In our proposal EAP
servers run in smartcards, and EAP messages are
dispatched by the AS.

- The EAP session (see figure 2, shadowed area) is
handled via couples of Access-Challenge packets,
transporting EAP requests and Access-Request packets
carrying EAP responses.

- The EAP server ends the authentication session by a
notification (see figure 2, item 9), either Failure or
Success, giving the procedure result. Upon success, the
EAP server computes a master session key (MSK), which
is afterwards forwarded by the AS to the NAS in an
Access-Accept packet. MSK is a secret shared by access
point and network client, in order to calculate all
cryptographic materials needed for radio security
purposes.

75

RADIUS security is based on a secret (called the
RADIUS secret) shared between NAS and AS, and works
with two mechanisms.
- Firstly, Access-Challenge, Access-Reject, Access-Accept
packets include an MD5 authentication digest, calculated
from the concatenation of a packet content, the RADIUS
secret, and a random value (the authenticator field)
included in a previous Access-Request .

- Secondly an optional security attribute (the
Authenticator-Message, RADIUS attribute number 80)
e.g. an HMAC-MD5 function (whose key is the RADIUS
secret) computed over the whole packet content.

Most of RADIUS servers software implementations, use
the well known OpenSSL library, in order to support the
EAP-TLS [9] authentication procedure, a quite
transparent encapsulation of the TLS protocol [8].

We believe that EAP server smartcards enhance the
RADIUS security, specially in EAP-TLS case, for the
following reasons,

- The server private key is securely stored and used by the
smartcard.

- The client’s certificate is autonomously checked by the
EAP server.

- If the EAP client also runs in a smartcard, the EAP
session is then fully processed by a couple of tamper
resistant devices, working as Secure Access Module
(SAM), a classical paradigm deployed in highly trusted
architectures.

We will emphasis later that it’s possible to embed
RADIUS authentication servers in smartcards. But even if
they include a TCP/IP stack, the lack of Ethernet
connectivity in today components, implies the use of a
docking host, offering USB or MMC interfaces and
classical network interfaces (such IEEE 802.3 or IEEE
802.11).

However experimental results (presented in section 4)
show that EAP-servers are slower than classical, all
software based, RADIUS servers. One advantage of
EAP-TLS is to elegantly allow parallel architecture, in
which the slowness of smartcards is compensated by an
acceleration factor induced by the scheduling of
concurrent EAP sessions to multiple smartcards; each of
them independently managing a particular session.
Finally, from a security point of view, the benefits of
RADIUS processing in smartcards is reduced by the
constraint of sharing a secret with Access Points, whose

security policies are not usually well defined or even
specified.

In the next section we will introduce a smartcard enabled
RADIUS server, working with realistic performances in
today networks. Future developments are explored in
section 5.

3. SMARTCARDS ENABLED RADIUS
SERVERS

Our proposed smartcard enabled RADIUS server is made
of two parts:

- A RADIUS authentication server, running in a docking
host. It offers the Ethernet connectivity and IP services. It
receives and sends RADIUS packets over UDP sockets. It
builds or parses RADIUS messages, handles the RADIUS
secret, checks or generates authentication attributes. EAP
messages, transported by RADIUS payloads are
forwarded to smartcards, running EAP-Servers.

- EAP servers. Each smartcard runs an EAP-server, and
fully handles an EAP-TLS authentication procedure. Each
component stores an unique X509 certificate and its
associated RSA private key. It computes EAP responses
and produces EAP requests. At the end of a successful
authentication session, a MSK is calculated and delivered
to the RADIUS entity

3.1. Authentication Server Design

EAP
Messages

RADIUS packets

RADIUS
Server

NAS

AS.exe

Docking
HOST

USB smartcard readers

Java
Card

Figure 3. Practical Realization of a Smartcard
Enabled RADIUS Server.

An EAP session is a set of messages associated to an
unique Session-Id value, which is obtained by the
concatenation of two values, the NAS-Identifier
(RADIUS attribute n°32) and the Calling-Station-Id (the

76

client’s MAC address, corresponding to RADIUS
attribute n°31) as follows:

Session-Id = NAS-Identifier | Calling-Station-Id (1)

A session begins with an EAP-Identity response and ends
with an EAP notification (either Success or Failure). It is
associated to an unique smartcard. When no devices are
available, the incoming RADIUS packet (starting a
session) is silently discarded.

Due to smartcard slowness, each EAP message is handled
by a thread that forwards EAP response to the appropriate
smartcard, waits for its response, builds a RADIUS
packet and finally transmits it towards the NAS.

An EAP server processes only once a particular message.
The associated RADIUS packet is recorded, and sent
again when an incoming duplicated RADIUS packet is
detected.

AS is also in charge of session retries. If no activity is
detected during a given timeout, a retransmission occurs.
After a few retries the session is released, and its
associated smartcard is ready for new allocations.

Figure 3 shows a plug and play realization of a smartcard
enabled RADIUS server. Several USB smartcard readers,
equipped with EAP servers, are plugged to an USB hub.
A mass storage device stores the AS code. The system
works in a standalone way, and is used by the docking
host without any previous set-up.

3.2. EAP-Server design

We introduced in [10] the OpenEapSmartcard platform,
an open Javacard environment, that realizes EAP clients
in standard JC2.2 javacards [11]. Its code sources may be
freely downloaded through the WEB. This platform has
been slightly enhanced in order to support EAP servers,
and includes four main components:

1- The Engine object manages the APDUs interface (a set
of ISO 7816 [12] commands) with the AS software. The
two main offered services are input/output of EAP
messages, and MSK key reading. It is also in charge of
EAP messages segmentation and reassembly; EAP-TLS
messages maximum size is about to 1300 bytes, that is
less than the limit length of Ethernet frames (around 1500
bytes). These messages are split in ISO 7816 payloads,
whose maximum size is 255 bytes for input data and 256
for output data. As mentioned above the EAP-
Identity.response message resets the EAP-TLS state
machine.

2- The Credential object stores all credentials required by
EAP-TLS method. This includes the Certification
Authority (CA) certificate, the server certificate and its
private key. An EAP-TLS method is initialized with
appropriate credentials every time when an EAP-
Identity.response message is received.

3- The Authentication Interface object describes all
services fulfilled by EAP-TLS methods. Basic procedures
are method initialization, packet processing and MSK key
downloading.

4- The EAP-TLS object is in charge of packets processing
as specified in [9]; since TLS packets size may exceed the
Ethernet frame capacity, EAP-TLS supports internal
segmentation and reassembly mechanisms. It includes an
ASN.1 parser for certificates checking and provides all
cryptographic facilities (Pseudo Random Function,
HMAC, RC4) that not are available through standard
javacard APIs.

1

2 3

4

Figure 4. EAP Messages Encapsulation in RADIUS
Packets.

4. EXPERIMENTAL RESULTS.

We have implemented EAP-Servers on commercial SIM
cards, compatible with the JC 2.2 specification and
offering 64 KB of E2PROM space. The computing time
consumed, by an EAP session is about 5 seconds.

In [13] we made a proposal for analysis of smartcards
performances. We split the time required for EAP-TLS
operations in three categories, data transfer (TTransfer),
cryptographic resources (TCrypto) and others factors (TOther),
typically the software overhead.

TEAP-TLS = TTransfer + TCrypto + TOther (2)

77

4.1. Data Transfer

It’s the time consumed by the RADIUS application,
running on a docking host, to read and write data to/from
a smartcard. The experimental measurement of this
parameter is easy, and is the sum of multiple delays
induced by the reader crossing (if a smartcard reader is
used), IO operations handled by the virtual machine, and
finally reading and writing to memories such as RAM or
E2PROM.

TTransfer = TReader + TIO + TMemories (3)

Due to the small amount of embedded RAM, EAP-TLS
messages, whose size are typically a few KB, are stored
in the non volatile memory. A practical way to estimate
the TTransfer value is to perform a simple test that transfers
255 bytes between HOST and smartcard non volatile
memory. Figure 5 illustrates the observed results of our
SIM component, with two types of readers. It clearly
highlights that readers significantly influence the
information throughput, between computers and
smartcards. In the best case we observe a data rate of
about 0,15 ms/bytes (50 Kbits/s).

Reader A Reader A

Reader BReader B

Figure 5. Reading and Writing Operations, with Two
Different Readers.

During a TLS authentication, working with 1024 bits
RSA keys around 2600 bytes of information (see figure
2) are exchanged between HOST and EAP-Servers.
Therefore we expect a transfer duration equal to:

TTransfer = 2600 x 0,15 = 390 ms

4.2 Cryptographic resources.

Cryptographic resources are protected by various
countermeasures and are used via dedicated Application
Programmatic Interfaces (APIs). In the EAP-server entity
we need three basic facilities MD5, SHA1 and RSA.

MD5 and SHA1 are digests functions that work with
blocs, whose size is 512 bits. Therefore the computing

time is proportional to the size of the input message. In
TLS authentication scenario [8], dealing with 1024 RSA
keys sizes, approximately 266 blocs of 512 bits (about
17,000 bytes) are processed by MD5 and SHA1 functions.
If we call TDigest the average time for computing a bloc
(TMD5/2+ TSHA1/2), these calculations cost 532 times
TDigest.

Figure 6 shows the variation of digest computing times
with the size of the input messages. MD5 costs 1,4
ms/bloc, SHA1 needs 2,2 ms/bloc, which leads to an
average value of 1,8 ms/bloc and a digest computing cost
of 960 ms (532 x 1,8)

MD5

SHA1

Figure 6. MD5 & SHA1 Computing Times

During an authentication session, the EAP-Server
performs three RSA calculations.

- It checks the signature of client’s certificate with the
Certification Authority public key (public key decryption).

- It decrypts the PreMasterSecret value with its private
key (private key decryption).

- It checks the verify message, a hash value encrypted
with the client’s private key (public key decryption).

So, the total time consumed by RSA operations is

TRSA= TPubKD + TPubKE + TPrivKD = 890 ms (4)

Table 1 presents the measured RSA costs of our SIM card.

Private Key
Encryption

Public Key
Decryption

Public Key
Encryption

Private Key
Decryption

750ms 70ms 60ms 760ms

Table1. RSA Computing Times.

Finally we get the following value, for the cryptographic
costs of EAP-TLS:

TCrypto = TRSA + 532 x TDigest = 1850 ms (5)

78

4.3. Other resources

Table 2 presents delays associated with eleven messages
exchanged during the EAP-TLS authentication, which are
numbered according to figure 2. The duration of data
transfer is approximately the sum of values T4,T6 and T7
(440ms), and we notice a good agreement with our
previous evaluation.

T1- Rx; EAP-Identity.response 20ms

T2- Tx: EAP-TLS.request (Start) 10ms

T3- Rx: EAP-TLS.response (Client Hello) 90ms

T4- Tx: EAP-TLS.request (Server Hello fragment#1)) 210ms

T5- Rx; EAP-TLS.response (EAP-TLS-ACK) 30ms

T6- Tx: EAP-TLS.request (Server Hello fragment#2) 20ms

T7- Rx: EAP-TLS.response(Client-Finished) 200ms

T8- Tx: EAP-TLS.request (Server-Finished) 3946ms

T9- Rx: EAP-TLS.response(EAP-TLS-ACK) 731ms

T10- Tx: EAP-TLS.request (EAP-Success) 20ms

T11- Rx: Get-PMK-Get 29ms

Table2. Timing Measurements of an EAP Session.

The total cost of this authentication (Ti) is 5300ms,
from which we deduced the TOther parameter:

TOther = TEAP-TLS - TTransfer - TCrypto = 3050ms

As a conclusion EAP-Servers spend:

- 0,4s (8%) in data exchange with RADIUS server

- 1,9s (35%) in cryptographic APIs,

- 3,0s (57%) in other operations realized by Java software.

5. FUTURE WORK

In this first prototype we have chosen to implement EAP-
Servers in smartcards. While the observed performances
are rather slow, in comparison with classical software
solutions, it’s possible to improve them by introducing
parallel processing of simultaneous sessions.

Several architecture could be considered in future
prototypes, RADIUS smartcards, RADIUS smartcards
clusters, and full RADIUS smartcards.

5.1. RADIUS smartcards

Docking
Host

RADIUS
CARD

RADIUS
CARD

RADIUS
CARD

NAS

RADIUS
secret

RADIUS secret

USB HUB

Figure 7. Docking Host and RADIUS Smartcards.

From a security point of view, the main benefit of
(partial) implementation of RADIUS servers in
smartcards, is to handle all calculations dealing with the
RADIUS secret in a secure and trusted computing
platform. For that, RADIUS Access-Request packets,
including EAP messages, are forwarded to RADIUS
smartcards, that return appropriate RADIUS packets
(Access-Challenge, Access-Accept, …). The additional
costs compared with EAP-servers are the following:

- MD5 and HMAC-MD5 functions used for security
purposes; in a typical EAP-TLS session (dealing with key
size of 1024 bits, as illustrated in figure 2) this cost is
around 100 calculations of MD5 blocs (140 ms)

- About 4000 bytes of data are sent/received to/from the
RADIUS card. This represents of difference of 1500
bytes by comparison with EAP-Servers, and required an
estimated extra time of 225 ms (1500 x 0,15).

- RADIUS packets are parsed, checked and assembled by
the embedded software. We believe that this task should
consume less time than the EAP-TLS protocol computing
(3,0s).

Although it seems realistic to compute a RADIUS session
in less than 10s, other resources such as timeout
management (packets retransmission, sessions release…)
and physical accesses to Ethernet networks, will be still
managed by the docking host (see figure 7).

5.2. RADIUS smartcards clusters

RADIUS
CARD

RADIUS
CARD

RADIUS
CARD

PROXY
RADIUS

NAS

RADIUS
Secret

PROXY RADIUS
Secret

ETHERNET HUB

Figure 8. A Cluster of RADIUS Smartcards Based on
a RADIUS Proxy

79

In the previous section we inquired about the pertinence
and feasibility of RADIUS smartcards. Even if we foresee
devices equipped with LAN interfaces such as Ethernet
[1], we don’t solve the performances problem induced by
moderate computing capacities of smartcards. A possible
and standardized solution of this issue is to implement
RADIUS proxy server that will dispatch RADIUS
sessions to multiple RADIUS smartcards (see figure 8). It
could also manage retransmissions and timeouts and of
course it supports a full Internet access. We should notice
that in this case, the RADIUS secret (shared with the
NAS) is stored in the docking station. RADIUS cards,
logically working with the proxy, use one or several
distinct secrets.

5.3. Full RADIUS Smartcard

A full RADIUS smartcard is the Holy Grail of highly
secure and trusted RADIUS implementation. It requires
smartcards equipped with LAN interfaces; also offering a
high computing power, in order to handle multiple
authentication sessions. This mythic component doesn’t
exist today, but it seems likely that emerging System On
Chip technologies (SoC) could be used to obtain a two
chip solutions.

6. CONCLUSION

In the paper we have presented an original realization of
RADIUS server dealing with EAP servers. We observed
interested performances, compatible with today networks
constraints. Although individual authentication sessions
are computed at moderate speed, the proposed
architecture is scalable and could deal with realistic
number of users. Future prototypes could support a subset
of the RADIUS protocol, dealing with all security
processing.

REFERENCES

[1] FP6-IST, “Integrated Secure Platform for Interactive
Personal Devices”, INSPIRED project, Information
Society Technologies, 2004-2006,

[2] Tual J.P, Couchard A, Sourgen K, “USB Full Speed
enabled smart cards for Consumer Electronics
applications”, Consumer Electronics, 2005 - ISCE
2005 - Proceedings of the Ninth International
Symposium on 14-16 June 2005 Page(s):230 – 236

[3] RFC 2865, “Remote Authentication Dial In User
Service (RADIUS)”, 2000.

[4] Institute of Electrical and Electronics Engineers,
"Local and Metropolitan Area Networks: Port-Based
Network Access Control", IEEE Standard 802.1X,
September 2001.

[5] RFC 3748, "Extensible Authentication Protocol,
(EAP)", June 2004.

[6] RFC 3559, “RADIUS (Remote Authentication Dial In
User Service) Support For Extensible Authentication
Protocol (EAP)”, September 2003

[7] Institute of Electrical and Electronics
Engineers ,”Draft IEEE Standard for Local and
metropolitan area networks part 16: Air Interface for
Fixed and Mobile Broadband Wireless Access
Systems Amendment for Physical and Medium Access
Control Layers for Combined Fixed and Mobile
Operation in Licensed Bands”, IEEE 802.16e/D12,
October 2005.

[8] RFC 2246, “The TLS Protocol Version 1.0”, January
1999.

[9] RFC 2716, “PPP EAP TLS Authentication Protocol”.
October 1999.

[10] Urien, P, Dandjinou, M, “The OpenEapSmartcard
project”, short paper, Applied Cryptography and
Network Security 2005, ANCS 2005, Columbia
University, June 7th - 10th, 2005 New York, NY, USA

[11] Chen, Z “Java Card Technology for Smart Cards:
Architecture and Programmer's Guide”, ADDISON-
WESLEY Professional; 2000.

[12] ISO 7816, "Cards Identification - Integrated Circuit
Cards with Contacts".

[13] Urien P, Dandjinou M “Designing smartcards for
emerging wireless networks”, Seventh Smart Card
Research and Advanced Application IFIP Conference,
CARDIS 2006, Tarragona-Catalonia, April 19-21
2006.

80

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

