
EAP-TLS Smartcards, from Dream to Reality

1Pascal Urien, 1Mohamad Badra, 2Mesmin Dandjinou
1-ENST Paris, 2-Université Polytechnique de Bobo-Dioulasso, Burkina Faso.

Pascal.Urien@enst.fr, badra@enst.fr, mesmin.dandjinou@voila.fr

Abstract-This paper presents the first implementation of the EAP-
TLS (Extensible Authentication Protocol-Transport Layer
Security) protocol in smartcards. Tests, performed on two java
devices, are discussed and analysed. Results show that TLS
processing is slow, because smartcards are not (yet) optimized for
that purpose; however we clearly demonstrate that TLS
processing in smartcards is not today a dream, and can be
realized with existing components.

Key words Smartcard, Security, EAP, Wi-Fi, TLS.

I. INTRODUCTION

Wireless 802.11 LANs have introduced new security threats,
sometime refereed as parking lot attack [1]. User
authentication is a prerequisite, before accessing to services
available in wireless infrastructures. The extensible
authentication protocol [2, 3] is a powerful umbrella that
shelters multiple authentication scenarios. It is the cornerstone
of the IEEE 802.1x standard [4] which defines key exchange
mechanisms between the wireless user (the supplicant) and the
authentication server (see figure 1). All emerging security
architectures like WPA [6] or IEEE 802.11i [5] are based on
802.1x facilities for users’ authentication and cryptographic
material calculation. As an illustration the Internet
Authentication Server (IAS) is the Microsoft implementation
of a RADIUS server, and is natively available in new server
platforms.

Although multiple authentication methods have been
introduced, like EAP-MD5 [2], EAP-SIM [9], PEAP [10],
MSCHAPv2 [11], our paper is focused on EAP-TLS [7],
which defines a framework, that transparently transports TLS
[8] messages.

We present the first implementation of this protocol in a
smartcard. For interoperability reasons, this software was
written in java; tests were performed on two cards, offering 32
KB of storage space, and working with different
microcontrollers and operating systems.

Section 3, describes the EAP-TLS smartcard architecture,
section 4 shows results for two components, section 5 presents
final results with an optimized software.

II. ARCHITECTURE

A. The EAP smartcard

An EAP smartcard is an opened, ISO 7816 [12]
microcontroller supporting most of authentication protocols. It
is described by an internet draft [14] and a more detailed
description may be found in [15]. This innovative technology
won “The Best Technological Innovation” award at the
“cartes2003” exhibition [13].

EAP methods are computed in a trusted and tamper resistant
environment that also securely stores network credentials
(shared secrets, RSA private keys, etc.). Smartcard benefits
include the following features:

- Scalability. One billion smartcards were produced in 2003;
multiple form factors are available like credit cards, SIM
modules and USB interfaces.

- Sufficient performances. RSA 2048 bits computations are
done in less than 500 ms, memory sizes (available for the java
applications) are around 64 KB, but one megabyte is already
available thanks to the FLASH technology.

EEAAPP // RRAADDIIUUSS EEAAPP // LLAANN

RADIUS 802.1x/WPA/802.11i

Supplicant Access Point Authentication Server

EEAAPP--TTLLSS Packets
Filtering

NNAASS

ISO 7816

Smartcard

User’s Private Key
User’s X509 Certificate
CA Public Key

Server’s Private Key
Server’s Certificate
CA public Key

EAP over
802.11 Frame

EAP over
7816 APDU

EAP over
RADIUS

Figure 1. EAP-TLS functional architecture.

The EAP smartcard offers four classes of services,

- Network interface. EAP messages (requests and

notifications) are transported by ISO 7816 APDUs and
processed by a secure microcontroller. If session keys
(Pairwise Master Key, etc.) are needed by radio security
protocols (WPA, 802.11i), the smartcard computes and
delivers these keys to the supplicant operating system.

- Operating System interface. Multiple triplets (EAP-ID,
EAP-Type, cryptographic keys) are stored in smartcard and
identified by a parameter called Identity. Each Identity may be
associated to a profile that for example stores a list of preferred
SSIDs or an X509 certificate.

- Management/Personalization interface. This service
provides smartcards personalization (identity update, etc.) and
management facilities.

- User/Issuer Interface. Two Personal Identification Number
(PIN) codes are available. The first one authenticates the
smartcard bearer whereas the second one protects data
(identity triplets, etc.) and is managed by card issuers.

B. Integrating Smartcards with the Extensible Authentication
Protocol

According to [2], EAP implementation conceptually consists
of the three following components (see figure 2):

- Lower layer. The lower layer is responsible for
transmitting and receiving EAP frames between the peer and
authenticator

- EAP multiplexing layer. The EAP layer receives and
transmits EAP packets via the lower layer, implements
duplicate detection and retransmission and delivers and
receives EAP messages to and from EAP methods.

- EAP method. EAP methods implement the authentication
algorithms and receive and transmit EAP messages via the
EAP layer. Since fragmentation support is not provided by
EAP itself, this is the responsibility of EAP methods.

EAP Multiplexing Layer

Lower Layer

Smartcard
Interface
Type=X

EAP
Method
Type=Y

EAP
Smartcard

EAP Multiplexing Layer

Lower Layer

EAP
Method
Type=X

EAP
Method
Type=Y

Authentication Server Supplicant

Figure 2. Smartcard role in an EAP implementation.

An EAP smartcard implements an EAP method and works

in cooperation with a smartcard interface entity, which sends
and receives EAP messages to/from this component. The
simplest form of this interface is a software bridge that

transparently forwards EAP messages to smartcard. According
to EAP methods complexity and smartcard computing
capacities, protocol sub-sets, which do not deal with security
features may be computed by the smartcard interface entity.

C. EAP-TLS Segmentation Issues

According to [7] a TLS record may be up to 16384 bytes in

length, a TLS message may span multiple TLS records, and a
TLS certificate message may in principle be as long as 16MB.
Furthermore the group of EAP-TLS messages sent in a single
round may thus be larger than the maximum LAN frame size.
Therefore EAP-TLS [6] introduces a segmentation process that
splits TLS messages in smaller blocs, acknowledged by the
recipient.

The RADIUS server generates acknowledgement requests
and the supplicant acknowledgment responses.

A double segmentation mechanism (see figure 3) is
necessary in order to forward TLS packets to smartcard. These
messages are divided in smaller segments, whose size is
typically 1400 bytes, and than encapsulated in EAP-TLS
packets. Each block is again split in a collection of APDUs
(ISO7816 commands), whose size is around 240 bytes, and
that are forwarded to the smartcard.

TLS messages produced by smartcard are transported by
EAP-TLS (response) fragments whose length is around 240
bytes. These blocs are directly encapsulated in APDU
responses. The smartcard interface, running on the supplicant
side, can reassembly these information and choose another
segment size.

Recv: TLS
Message#1

EAP-TLS
fragment #1
(1400 bytes)

EAP-TLS
fragment #1

240 bytes

EAP-TLS
ack#1

Send: TLS
Message#1

EAP-TLS
fragment #2

EAP-TLS
fragment #2

Authentication
Server

Supplicant
Smartcard Interface

EAP-TLS
Smartcard

Send: TLS
Message#2

EAP-TLS TLS

EAP-TLS
ack#1

Recv: TLS
Message#2

APDU
fragment#1
(240 bytes)

ack#1

APDU
fragment#1

ack#1 APDU
fragment#n

ack#1

EAP-TLS TLS

APDU
fragment#n

ack#1

Figure 3. The double segmentation process

D. Smartcard benefits for EAP-TLS protocol

Mutual authentication is a prerequisite for security of

wireless LANs. From the network point of view, user’s
authentication establishes its authorizations and privileges.
From the user’s point of view, the access network must be
authenticated in order to avoid associations to rogue access
points.

As defined in the TLS specification [7], server is
authenticated by its X509 certificate and client by the RSA
encryption (with its private key) of a dual digest (MD5 +
SHA1) of all previous handshake messages.

There are two ways for using smartcards in the EAP-TLS
protocol. In the first mode, smartcard stores a certificate and
performs an RSA encryption with its private key. It is a kind of
blind signature because smartcard does not check the server
certificate. This mode is supported by [14] thanks to
appropriate procedures named method functions.

In the second mode, smartcard processes all TLS messages.
In particular, the server certificate is checked and the RSA
signature is delivered only upon success of this operation. Our
experimental smartcard supports these two modes, but for
obvious security reasons we focus our work on the second one.

E. EAP-TLS smartcard architecture

Our EAP-TLS smartcard (see figure 4) is organized around

two software entities instanced by two java classes.
- The first layer (EAP.class) implements basic EAP facilities

as described in [14, 15]; especially the identity management
and the PIN code verification.

- The second layer (TLSUtil.class) implements EAP-TLS
and TLS services. It realizes all segmentation and re-assembly
operations. It also analyses and produces TLS messages. It two
main components are the handshake protocol entity, that
processes the mutual authentication protocol, and the record

layer which encrypts and signs TLS messages. A dedicated
module (Certificates Management) checks incoming server
certificates.

The smartcard contains the Certificate Authority (CA)
public key (2048 bits), the client private key (1024 bits) and its
X509 certificate.

The total code byte size is around 22 KB including about
10KB of data stored in the non volatile memory (E2PROM).
Therefore, it was possible to download this package on
different JavaCard (JC) platforms, offering at least 32 KB of
storage space.

JavaCard 2.1 [16] platform natively provides essential
cryptographic services that are required by the TLS protocols;
in particular:

- Random number generation.
- MD5 and SHA1 digest functions.
- RSA public key encryption and decryption.
- RSA private key encryption and decryption.
- DES or 3DES ciphering.
However some additional facilities that are not currently

available in JC platforms are provided by the EAP-TLS
application. For example:

- Keyed-hashing procedures ([17] HMAC-MD5 and
HMAC-SHA1).

- The pseudo random function (PRF) defined by the TLS
protocol.

- The RC4 algorithm, which is often used by the TLS record
layer.

- An X509 certificate parser required for signature analysis
and public key extraction.

Java procedures, which are interpreted by the java virtual
machine, are obviously slowest than those that are directly
handled by the smartcard operating system. Next generation of
JavaCard could support these facilities if there is a strong
market requirement.

EAP-Support-In-Smartcard
Fragmentation Management

Smartcard Interface

Supplicant EAP Method Layer

EAP-TLS
Fragmentation Management

TLS

Certificates
Management

TLSUtil.class

Client CA

PUB
PRIV

EAP.class

Record Layer

Handshake Protocol

Cryptographic
library

Security
Management

IO
Management

Smartcard
OS

JAVA Virtual Machine

Java Card Run time
Environment

JCRE

JC2.1
Framework

MD5 SHA1 RSA

EAP-TLS
Application

HMAC-MD5(key,msg)

HMAC-SHA1(key,msg)
PRF(key,seed,msg)

HMAC-MD5

X509 Certificate
Parser

ISO 7816
APDUs

RC4(key,msg)

RNG

Figure 4. Software architecture (left side), relationship with the JavaCard platform (right side)

III. RESULTS

A. Benchmark realization

First we built a Certification Authority and delivered X509
certificates for both a RADIUS authentication server and a
Windows Wi-Fi equipped terminal. Then, we recorded an
EAP-TLS authentication scenario between these two entities.
This trace was reverse-engineered and all cryptographic
calculations were checked. EAP-TLS messages, issued by the
authentication server, were encapsulated in a reference list of
7816 APDUs.

B. EAP-TLS authentication scenario

Schematically at TLS level, the authentication scenario

works according to a four-way handshake.
Step1. A client (the EAP-TLS smartcard) sends a first

message named ClientHello that includes a 32 bytes random
number. The message size is quite small (70 bytes in our
benchmark). The first four bytes of the nonce represent the
UNIX time encoded value. As the smartcard is not able to
maintain a clock, the supplicant interface adds this parameter
to the EAP-TLS Start message.

Step2. The authentication server produces a message (4710
bytes in our benchmark) including a random number (32 bytes)
and a list of certificates.

Step3. According to the TLS protocol, the smartcard client
checks server certificates and performs additional
cryptographic calculations. Finally, it delivers a response
(1825 bytes in our benchmark) signed with its private key. We
divide this process in 13 sub parts:

a- Message Transfer. Thanks to a double segmentation
mechanism, the TLS message (4710 bytes, transported by four
EAP-TLS segments) is downloaded by the smartcard.

b- Server Certificate Analysis. The signature included in the
certificate is checked with the CA public key. Server public
key is extracted.

c- Pre-Master-Secret Generation. Smartcard generates a 48
bytes nonce (pre master secret) and encrypts this value with
the server public key.

d- Verify Digest. The Smartcard (SC) computes a dual digest
(MD5+SHA1) of previously received data (as required by the
verify protocol).

e- Verify RSA Encryption. The dual digest is encrypted with
the client private key.

f- Master Secret Calculation. The SC computes a master
secret by applying the PRF function to the pre master secret
and the random values.

g- Key block generation. Cryptographic material is
generated by applying the PRF function to the master secret
and the random values.

h- Client Finished Calculation. The SC performs a dual
digest (MD5+SHA1) of previously received messages and
applies the PRF function to the result before computes data
transported by the finished protocol.

i- Server Finished Calculation. The SC performs a dual
digest (MD5+SHA1) of previously received messages. This
value should be included in the server finished message that
will end the TLS handshake phase.

j- MAC Record Calculation. The Record layer computes the
HMAC value appended to the finished message with an
integrity key extracted from the key block.

k- RC4 Initialization. The SC initializes the RC4 algorithm
with the encryption key extracted from the key block.

l- Record Enciphering. The SC encrypts using RC4 the
finished message and its associated HMAC.

m- Response Transfer. TLS response (1825 bytes,
transported by eight EAP-TLS messages) is sent to the
authentication server.

Step4. The server produces the last message (43 bytes in our
benchmark) which is verified by the EAP-TLS smartcard that
finally computes a master key (PMK, Pairwise Master Key,
etc.). The supplicant uses this key for security protocols
(801.1x, WPA, etc.) initialization. We divide this process in
five sub parts:

a- Record Decryption. The SC initializes the RC4 algorithm
with the encryption key extracted from the key block. It
decrypts the incoming record block, containing the server
finished message.

b- MAC Record Checking. The record layer computes the
HMAC value appended to the finished message using the
appropriate integrity key extracted from the key block.

c- Server Finished Calculation. The SC uses the PRF
function for computing and checking the data transported by
the finished protocol.

d- PMK Calculation. The SC uses the PRF function in order
to compute the PMK key, as defined in [7].

e- Acknowledgment Generation. The SC produces an EAP-
TLS acknowledgment message.

C. Microcontrollers characteristics.

The EAP-TLS application was downloaded on two 32 KB

JavaCard, whose physical characteristics are very close (see
Table I). The two components include a cryptographic co-
processor able to compute RSA algorithm (1024 or 2048 bits)
in less than 500ms.

Figure 5 presents the device A functional diagram and a die
picture of the component B.

RAM

E2PROM

ROM

CPU

5 mm

Figure 5. Device B functional diagram (left side) and device A die (right side)

TABLE I

MICROCONTROLLERS CHARACTERISTICS
Device CPU RAM

bytes
ROM

Kbytes
E2PROM
Kbytes

Max. Clock Max Data Rate RSA
Processor

RNG

A 8 bits 2304 96 32 10 MHz 424 kbit/s 1088 bits yes
B 8 bits 4096 96 34 8 MHz 1000 kbit/s 4032 bits no

D. Basic performances.

We performed two basic tests in order to evaluate chips and
operating systems performances. EAP-TLS application
supports a family of Method Functions (as described in [12])
that are very practical in order to execute basic cryptographic
operations like RSA calculations (encryption and decryption)
or digest procedures (MD5 and SHA1).

As for both components, the RSA algorithm is handled by a
co-processor, we observed short computing times, ranging
between 100ms and 500 ms (see figure 6). Because TLS
performs only three RSA calculations (with the CA public key,
the server public key and the client private key), these
operations consume around one second.

Digest algorithms are performed on blocks, whose size is 64
bytes for MD5 and SHA1 algorithms. Therefore, the
computing time is dependant on the input data size. These
functions are not hold by a co-processor, but stored in

cryptographic libraries and executed by the smartcard CPU.
Figure 6 shows that device B is two time faster than device A.
We also notice that for both components, MD5 is faster than
SHA1 (about 2 times). The average computing times (dual
digests, MD5 & SHA1) are respectively (for device A and B):

- 155 and 120 ms for small input size (128 bytes)
- 2350 and 1100 ms for larger input size (6 Kbytes).
The handshake protocol performs three dual hashes (MD5 &

SHA1) of which input size is around 6kB. Therefore these
digests computing times are estimated respectively (for device
A and B) to 14.1 and 6.6 seconds.

E. Other cryptographic facilities.

As we mentioned it above, cryptographic facilities that are
not natively supported by JavaCard APIs are delivered by the
EAP-TLS application. The following cryptographic functions
have been added:

 MD5
128 bytes

MD5
6194 bytes

SHA1
128 bytes

SHA
6194 bytes

A 130 1500 180 3200
B 110 800 130 1400

Figure 6. Basic performances, RSA computing times (left part), digest functions computing times (right part)

Figure 7. Performances measurement for step 2 (left part) and step 3 (right part)

- Two HMAC algorithms [17] for MD5 and SHA1 digests.

These procedures work with two parameters: a key whose size
is less than 64 bytes (in our TLS context) and a message whose
size is less than 128 bytes. In these conditions, HMAC uses
two digest functions and some additive operations. Computing
time is about 2s for device A and 1s for device B.

- A TLS pseudo random function (PRF). When this
algorithm outputs 80 bytes, it deals with 11 HMAC-MD5 and
9 HMAC-SHA1 procedures, whose key size is less than 64
bytes and message length less than 128 bytes. Consequently,
execution time is about 40 sec for device A and 20 sec for
device B. An EAP-TLS session invokes this algorithm 5 times,
what respectively costs 200s and 100s.

- An RC4 procedure. This method is expansive because it
deals with an array of 2048 bits stored in the E2PROM. The
encryption/decryption (plus key initialization) of 32 bytes
respectively costs 21 and 12.5 sec. This function is called two
times by the record layer, what respectively requires 42 and 23
sec.

F. Global performances

Figure 7 shows the repartition of computing times during

step2 and step3. Device A processes the EAP-TLS protocol in
about 266 sec (166 + 100) and device B in 151 sec (97 + 54).

The time spent to transfer data to/from smartcard is
respectively 4.5 and 12 sec.

As demonstrated by figure 8, most of computing time is
consumed by the PRF function. It clearly appears that digest
algorithms are the main issue for fast processing of the EAP-
TLS protocol in smartcards.

Figure 8. Repartition of computing times for device A and B

V. SOFTWARE OPTIMIZATION

As demonstrated before, the PRF function is a critical

component for the EAP-TLS smartcard, therefore we tried to
carefully optimize it.

The javacard language supports two kind of objects,
- persistent objects, stored in non volatile memory

(E2PROM) and associated with “slow” writing operations.
- transient objects, stored in volatile memory (RAM),

associated with “fast” writing operations.
We introduced a transient byte array, and used it as often as

possible in the TLS class. We observed a strong decrease of
processing time, for device B it was reduced by a factor three
(from 151s to 45s), and we measured the following
performances,

- Step1, hello message transfer to smartcard, 10s
- Step2, processing of the server hello message, 24s
- Step3, smartcard response transfer, 2,5s
- Step4, processing of last server (TLS) message, 8,5s

It is important to notice that in the optimized

implementation, each EAP message is processed in less than
30s, the maximum default value specified in [4]. Although
performances should be improved, it clearly appears that today
smartcards are able to fully compute the EAP-TLS protocol, in
a duration compatible with the IEEE 802.1X constraints.

Figure 9. computing times distribution for device B (optimized software)

Figure 9 shows the observed repartition of computing times

for the optimized applet.
PRF functions require 46 HMAC calculations (which should

cost, according to section III.D, around 46x0,12 = 5,5s); the
measured time (15s) clearly illustrates the software additive
cost for this facility.

Three dual hash functions, operating on about 21 Kbytes
(3x7) of data require 9 seconds (which should be equal,
according to III.D, to 0,00018x6x7000 = 7,6 s).

RC4 algorithm performance has been greatly improved by
the use of transient objects, that speed up memory accesses.

The data transfer factor depends on three factors, the data
size (around 7 Kbytes), the serial link speed (at least 9600
baud/s) and the writing time needed for by non volatile
memory.

VI. CONCLUSION

This paper describes the first prototype of an EAP-TLS

smartcard. It demonstrates that today smartcards capacities, in
terms of memory sizes and computing power, are sufficient for
designing standalone TLS applications. However, it is
necessary to improve performances; for example by

introducing new Java APIs and by incorporating digests
functions in smartcards cryptographic co-processors.

REFERENCES

[1] Arbaugh W, Shankar N, and Wan Y, "Your 802.11 Wireless Network

has No Clothe" http://www.cs.umd.edu/~waa/wireless.pdf, 2001.
[2] RFC 2284, "Extensible PPP Authentication Protocol (EAP)", March

1998.
[3] Extensible Authentication Protocol (EAP), draft-ietf-eap-rfc2284bis-

09.txt.
[4] IEEE P802.1X Approved Draft, "Port based Network Access Control",

June 2001
[5] IEEE Std 802.11i/D5.0 (2003), "Draft Supplement to standard for

Telecommunications and Information Exchange, Between Systems
LAN/MAN Specific Requirements Part 11: Wireless Medium Access
Control (MAC) and physical layer (PHY) specifications: Specification
for Enhanced Security"

[6] "Wi-Fi Protected Access (WPA) ", version 2.0, April 29 2003.
[7] RFC 2716, "PPP EAP TLS Authentication Protocol", October 1999.
[8] RFC 2246, "The TLS Protocol Version 1.0", January 1999
[9] "EAP SIM Authentication" draft-haverinen-pppext-eap-sim-12.txt,

October 2003
[10] "Protected EAP Protocol (PEAP) Version 2", draft-josefsson-pppext-eap-

tls-eap-07.txt, October 2003
[11] "Microsoft EAP CHAP Extensions", draft-kamath-pppext-eap-

mschapv2-00.txt, September 2002
[12] ISO 7816, "Cards Identification - Integrated Circuit Cards with

Contacts".
[13] http://www.cartes.com/en/frameset_dyn.htm?URL=I_trophee/I4_gagnan

ts.htm
[14] "EAP support in smartcards”, draft-urien-eap-smartcards-05.txt, May

2004.
[15] P. Urien, M. Loutrel, "The EAP Smartcard, has tamper resistant device

dedicated to 802.11 wireless networks.", ASWN’2003, Berne,
Switzerland, July 2003.

[16] Zhiqun Chen, "Java Card Technology for Smart Cards”, ADDISON-
WESLEY.

[17] RFC 2104, "HMAC: Keyed-Hashing for Message Authentication",
September 1997.

