Openfgap
Smartcard. NET

1. Summary.

he goal of this project is to release a dotnet smartcard providing authentication services
for network resources such as PPP, Wi-Fi and VPN (Virtual Private Network).
The Extensible Authentication Protocol is an IETF standard® which is widely used in personal
computers. It is a flexible framework, that supports multiple authentication scenari such as
- EAP-TLS?, a quite transparent transport of the well known SSL protocol.
- EAP-SIM® (or EAP-AKA®), an extension of SIM (or USIM) services for Wi-Fi
infrastructures. As an illustration this authentication method is used in the emerging UMA®
architecture, a VVolP service over Wi-Fi, in order to establish a secure (IPSEC) tunnel with an
operator gateway.

An open software, OpenEapSmartcard® was previously released for javacards.
OpenEapSmartcard.NET is an adaptation of this earlier work to dotnet smartcards.

Due to Cryptoflex.NET facilities, the OpenEapSmartcard.NET card offers two kind of
interfaces

- A classical 1SO7816 interface, which enables the deployment of this trusted device in
existing software environments (an EAP DLL’ working with smartcards) that cooperate with
smartcards through legacy APDUSs.

- An API interface that allows to any .NET developer, to transparently import the
OpenEapSmartcard.NET highly secure services.

In this first prototype, two authentication methods are supported. The first is a simple, but still
working, one way authentication method (based on the SHAL algorithm), developed for
education purposes. The second is more complex and is an open implementation of the EAP-
TLS method, that fully processes the TLS protocol and that autonomously manages an
embedded certificates store.

The OpenEapSmartcard.NET card is working in XP platform, it may be used in every
network connection dealing with EAP, for advanced security features.

A demonstration is available in which the OpenEapSmartcard.NET device is used as an
authentication token, controlling the access to a Wi-Fi network.

2. OpenEapSmartcard.NET services

he EAP smartcard services are described by an internet draft®, whose twelfth version was
issued in March 2006., they are classified in four categories,

! RFC 3748, 2004. Extensible Authentication Protocol, (EAP). Internet Engineering Task Force, IETF.

2 RFC 2716, 1999. PPP EAP TLS Authentication Protocol. Internet Engineering Task Force, IETF.

® RFC 4186, " Extensible Authentication Protocol Method for Global System for Mobile Communications
(GSM) Subscriber Identity Modules (EAP-SIM) ", 2006

* RFC 4187, 2006. Extensible Authentication Protocol Method for 3" Generation Authentication and Key
Agreement (EAP-AKA); Internet Engineering Task Force, IETF

® Unlicensed Mobile Access (UMA), http://www.umatechnology.org

® http://www.enst.fr/~urien/openeapsmartcard

" http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/eap/eap/about_extensible_authentication_protocol.asp

8 http://www.ietf.org/internet-drafts/draft-urien-eap-smartcard-11.txt

- The identity service. A smartcard manages several network accounts; the terminal
operating system performs an identity discovery process in order to browse its contents.

- The Network service. EAP messages are processed by the smartcard. At the end of the
authentication method, a session key is computed.

- The security service. This service essentially manages PIN codes (Personal Identification
Number) that are needed for security purposes.

- The personalization service. This service updates information stored in the smartcard.

Authentication Methods

Identity List = EAP o
SHA1| | TLS er
Identity EAP-ID TEYAPF; Credentials = -
My-Home| dad SHAL | password | [[
P -l

My-Office] dad@dot.com | TLS CR%\ﬁ’ég
Get-Next-ldentity() i Process-| EAP()
Get-Current-ldentity() Ident.’ty Netwqu Get-Session-Key
Set-Identity() Service Service Reset()

[

Add-Identity(Personalization Security ety PIND
Delete-Identity() Service Service Y

Figure 1. OpenEapSmartcard.NET services definition

2.1 Identity Service.
An EAP authentication scenario works with a set of three parameters,

- the EAP-ID, a user’s identifier, transmitted in the EAP-Identity.Response message.

- the type (EAP-Type) of the authentication protocol (EAP-MD5, EAP-SIM, EAP-TLS....)

- a set of cryptographic credentials (shared secret, X509 certificates, RSA keys...) used by the
authentication method.

Identity is a pointer to an authentication triplet, similar to the primary key of a relational table.
The Get-Next-Identity command extracts an identity from a circular list. The operating system
discovers all available identities, and selects one of them, or prompts a choice to the user. The
Set-ldentity command fixes the current identity managed by the card. Other primitives, like
Get-Current-ldentity provide additional facilities.

2.2 Network Service.

An EAP message (request or notification) is encapsulated in the Process-EAP command. The
software which manages a state machine according to the selected type, delivers if necessary
an EAP response message. At the end of the authentication protocol a session key (Master
Session Key, MSK) is computed and read through the Get-Session-Key request.

2.3 Security Service

The embedded application manages two PIN codes, one is hold by the card bearer and the
other by the card issuer. For example if the user’s PIN is activated, the smartcard is locked
(and can’t be used) after three wrong PIN values presentation. PIN management facilities are
similar to those described in the GSM 11.11 specification.

2.4 Personalization Service.

The Add-ldentity and Delete-lIdentity commands personalize EAP applications or modify
embedded credentials.

3. OpenEapSmartcard.NET integration in .NET platforms

he win32 platform introduced the notion of EAP Provider, e.g. a software dynamic

library (DLL) that implements EAP authentication methods. We developed an
EAPCARD.DLL component that is freely available on the OpenEapSmartcard WEB site. The
Remote Access Service entity (RAS) manages all resident EAP provider objects.

-Upon system boot (1), the EAP provider object is invoked via the method RasEapGetinfo
that returns three pointers to additional procedures named, RasEapBegin,
RasEapMakeMessage and RasEapEnd.

- Human user interacts with the EAP provider through a dialog box, started by the
RasEaplnvokeConfigUl procedure. In our experimental implementation this graphical
interface is used to get the smartcard identity list and to select the appropriate one.

- When the operating system detects a wireless cell, identified by its SSID, it performs the
association process with the access point, sends an EAP-Start frame and activates the EAP
provider that had been previously associated to this particular SSID. Then it calls the
RasEapGetldentity (2) method, which in turn, sends an identity request message to the EAP
smartcard.

- When the EAP identity request message is received, an EAP session is started and the
system calls the RasEapBegin (3) function. At this point the smartcard application is selected
and the bearer enters his PIN code.

-During an EAP session all EAP requests or notifications are sent to the
RasEapMakeMessage (4) method, which forwards them to the EAP smartcard.

- At the end of the authentication scenario the RasEapEnd (5) method is invoked.

=8

&5 A
Qeencar ET E’,““ RasEaplnvokeConfigUl JELECOM PARES X
martcar EAP

RasEapEnd Get-Current-ldentity [oone |
_ . | Process-EAP Get-Next-ldentity ATR —
’q Get-Session-Key Set-ldentity 3B1636417374726964
=il Curentidentty, merc
Request - .
ntity-List
Notification =
RasEapMakeMessage c—@—» -<—®—. RasEapGetidentity EAPPocker
r 01 A50005 01
v
Get Smartcard Identity [lAskForP [Tes)
/ l? Via EAP-ldentity-Request
Message
| RasEapGetinfo | ‘ RasEapBegin |
EAPPl g | RasEaplnvokelnteractiveUl | Verify-PIN |
rovider
Initialization \EE

Figure 2. OpenEapSmartcard.NET interaction with a dedicated EAP provider DLL

4. OpenEapSmartCard.NET Architecture

EapEngine.cs 1
/ 0 @Method.cx

Credential.cs

Methods Identity
Credentia Management |[—=) a

EAP-TLS

2,
E°PROM Credential)
Security Network = Authentication™
Management Interface Interface

el e [
NET Standard NET Smartcard Cryptographic
Libraries Libraries Libraries

NET Virtual Machine ‘

& dmff—eu;—;marfcard ‘ @E/

@ EAP services

Figure 3. OpenEapSmartcard.NET Architecture

The software architecture mainly comprises four .NET components,

1- The EapEngine which implements the EAP core, and acts as a router that sends and
receives packets to/from authentication methods

2- An Authentication Interface that defines all services offered by EAP methods

3- A Credential Object which stores information needed for method initialization.

4- One or more Methods that instantiate authentication scenari like EAP-TLS or EAP-SHA1

4.1 EapEngine

This object manages several methods and multiple instances of a given method. It implements
the EAP core and acts as a router that sends and receives packets to/from methods. At the end
of an authentication session, each method computes a master cryptographic key which is
collected by the terminal operating system.

4.2 Authentication Interface

This component defines all services that are mandatory in EAP methods in order to
collaborate with the EapEngine. The two main functions are Init() and Process-Eap(). The
first initializes method and returns an Authentication Interface; the second processes incoming
EAP packets. Methods may provide additional facilities (fct()) dedicated to performances
evaluations.

4.3 Credential Objects

Every method is associated to a Credential Object that encapsulates all information required
to process a particular authentication scenario (shared secret, X509 certificates, RSA keys,...)

4.4 Methods

Each authentication method is processed by a specific class. Once initialized, this object
analyses and processes each incoming EAP packet and delivers corresponding response.

5. Implementation details

5.1 Classes diagram.

MyService 3

Oass Method B Credential
+ Mardhaliphafobgect Mags Clagt
champs gl.:x-ngiw =3 ® Champs chamgs
W Eapengire ’ = Méthodes ¢ hxh
Méthodes = Champs v chent @ key
& MySerdce ¢ MR © fet ¥ Fey_Length

% ResdMemory " v gathey @ ey _Offset
W Wi ory 3 @ Int @ Fh v
W Getlderiny — T % kentity % IsFragmented @ PME_Key

¢ _Key_Leng
¢ @mlem-jent‘:/ @ VerifyPn @ process_ep ¢ PMK_Key_Offset
Setldentity / ¢ ModfyPin W resst ¢ mgcsP
v .

“
% WVerifyPin / Process EAP ¢ server o st
% ModfyFin / R Sy
L] -"l-x.-.';';EAf/ g
% reset / @ Get_Masterkey
Y Getiey eopth
Clate
auth E
Iritertace i Champs
= Méthodes
= hettncey “ CheckiCertScate
v £ &t

@ FME_Key

@ PME_Key_|ength
¢ PMI_Key_Offset
@ rea_PrivataCriiey

ey & getkey

o it % Init

% [efragmantad % [sFragmented
v oocersea " proceis_sap
@ resot % resst

v status % stabus

@ rsa_PublickeyCA
@ test

Figure 4. Classes diagram of the OpenEapSmartcard.NET software implementation

The embedded software comprises the eapengine (eapengine.cs), the authentication interface
(auth.cs), and two authentication methods

- Method.cs and its associated credential object (Credential.cs) realizes a simple one way
authentication scenario based on the SHAL algorithm. This class comprises the EAP client
entity (client) and the EAP server entity (server). This allows to perform a complete dialog
between server and client parts, within a single smartcard.

- eaptls.cs and its associated credential object (credentialtls.cs) is a standalone
implementation of the EAP-TLS method. Certificates are verified thanks to the
CheckCertificate procedure. With this first implementation, which is not yet optimized, the
processing of a full EAP-TLS authentication scenario costs about 18 seconds.

5.2 Remote services.

5.2.1 APl Interface
The "openeapdotnet.uri” service supports the following procedures:

- public bool VerifyPin(byte[] pin), checks the user’s PIN code

- public bool ModifyPin(byte[] oldpin, byte[] newpin), modifies the user’s PIN code

- public byte[] ReadMemory(short offset, short length), reading of the smartcard memory that
stores the bearer’s credentials.

- public bool WriteMemory(short offset,byte[] data), writing of the smartcard memory that
stores the bearer’s credentials.

- public byte[] GetNextldentity(), gets the next available identity managed by the smartcard
- public byte[] Getldentity(byte[] idt), retrieves the current identity.

- public byte[] Setldentity(byte[] idt), sets the new identity

- public bool reset(), resets the current authentication method.

- public byte[] GetKey(), collects the master session key, upon a successful authentication.

- public byte[] ProcessEAP(bool more,byte[] msg), processes an EAP packet, returns an EAP
message.

5.3 Legacy ISO7816 interface
The "A0000000300002FFFFFFFF8931323800" service supports the following procedures,

[APDU("A0200000", Mask = "FOO0OFFFF")],
public void VerifyPin(...), checks the user’s PIN code.

[APDU("A0240000", Mask = "FO00FFFF™)]
public void ChangePin(...), modifies the user’s PIN code.

[APDU("A0B00000", Mask = "FCOOFFFF")]
public byte[] Read(...), reading of the smartcard memory that stores the bearer’s credentials.

[APDU("A0D00000", Mask = "FCOOFFFF")]
public void Write(...), writing of the smartcard memory that stores the bearer’s credentials.

[APDU("A0170001", Mask = "FOO0FF00")]
public byte[] GetNextldentity(...), gets the next available identity managed by the smartcard

[APDU("A0180000", Mask = "FO00FF00")]
public byte[] Getldentity(...), retrieves the current identity.

[APDU("A0160080", Mask = "FO00FF00")]
public byte[] Setldentity(...), sets the new identity

[APDU("A0191000", Mask = "FOOOOOFFH)]
public void Reset(...), resets the current authentication method.

[APDU("AO0AG0000", Mask = "FOOOFFFF")]
public byte[] GetKey(), collects the master session key, upon a successful authentication.

[APDU("A0800000", Mask = "FOOOFFFF™)]
public byte[] ProcessEAP(...), processes an EAP packet, returns an EAP message.

& .NET Card expl.. [T B3] &= .NET card expl... O

& NeT card expl... [[T &= NET card expl... COx

R (@R E 8 ke QR 8k e R (RE 8 ke
:_E_?_‘P_!__D[?"_f Senvices EXP|DTET Senvices Explorer || Senvices |
= @B NET Smart Card = BB MNET Smart Card Contenttanager
=2 C +=2C ANONN00N300002FFFFFFFFE31323800
1 Axalta SampleAccessManager 1 Avalto SampleAccessManager
= (11 Pub = 1 Pub
™ netCard ServerS.exe [netCard Senverd exe
1 System 1 System
== D: == D
=1 Pub =1 Pub
CardConfigxml CardConfigxml
axalto reflex ush+ guest 504248 axalto reflex ush guest 50424 axalto reflex ush s guest 44896 axalto reflex ush+ guest 448496

Figure 5. OpenEapSmartcard services using, APIs (left side) or legacy APDUs (right side)

6. Demonstrations

6.1 APl interface

The smartcard service is named server5.exe, the .NET program is called console3.exe and

tests the remote used of EAP services (EAP-

OpenEapSmartCard.NET device.

SHA1l and EAP-TLS) offered by

the

done = service.VerifyPin(s2b("0000")) s
done service.WriteMemory (-2, aZb("80"));
le.WriteLine ("WRITE (Offset=-2, value=x80)");

bin service.ReadMemory (-3, 3):
& le . Writeline ("READ(Offset=-3, Length=3): " + bZs(bin)):
for (1 =0; 1 <€ T; i++4)
{ id = service.GetNextIdentity():
onsole.WriteLine ("GETNEXT: " + b2a(id)):}
id service.SetIdentity(s2b{"marc™));

Conscle.Writeline ("SET: ™ + b2Za(id}) ;

service.GetIdentity!) H
le.Weiteline("GET: ™ + bZa(id)):

file:///D:/Documents and Settings/urien/Mes documents/Visual Studio 2005/Proje:

WRITE (Offset=-2, value:=x80)
EAD(Offset=-3, Length=3): ff8054
GETNEXT: a

GETNEXT: test

GETNEXT: ¢

GETNEXT: marc

GETNEXT: abe

GETNEXT: aaa

GETNEXT: a

SET: marc

GET: marc

REQ : 91a5800501

RESP: 92a50009016d617263

REQ : 01a26001a071483d972d101Ff40973decBe32068b1de581641eate

eapreg = aZh("0l 3
' le . WriteLine ("RE

" + b2s{eapreq)};

eapresp = service.ProcessEAF(false, eapredg);
Console . WriteLine("RESP: " + b2s(eapresp)):
egpreg = service.ProcessEAP(false, eapresp);

Console . Writeline("REQ : " + bi2s(eapreq))s
eaprec) ;

eapresp = service.ProcessEAP (false,
=0l + bZs(eapresp));

L @ .WriteLine("RESP: "
v = service.GetKey();
Console.WritelLine ("MSK_Client " + b2s(mkey));

= service.ProcessEAP(falss,
WritelLine("REQ:
service,GetKey();
onsole Writeline ("MSK_Server ™

eapresp) §
+ b2z (eapreq)) ;

+ bis{mkey)):

FEEELETEE PRI LE i i iiiditititisiriiiiiifisisy
I Test eap-tls

FELEREEELT LTS EE AT Ei i i ddiiidfiiiiririsi

id = service.SetIdentity(s2b("abc™));

Censole.WriteLine ("SET: " + bZa(id));
eapreq = aZb(pktl):

Console.Writeline("REDQ : " + bZs(eapreq)):
eapresp = service.ProcessERP(false, eapred);

Console.WritelLine ("RESP: " + bZs(eapresp)) !

RESP: 02a6001a0714f23eedcfcf2ecard5390435769d625a35624612¢

18TeT3fe159cffSc821deObfi4Th4f Tf3f4aBTcIddE0EDb3ISaecd42cibisd
REQ: 03a60004%

187e73fe159cff5c821deObfi ThUf7F3Ff4aBTc9dd606b35aecdd2cibisd
SET: abecd
REQ : ©11409060d20

FBSFelS3fes8f3a9e0 7 F397cd653922000016

MSK_Client f98d3ad3b6de88f21679523837Fba230825¢19220de75d5¢01b3¢116931593206214¢

MSK_Server f98d3ad3b6de88f21679523837fba230825¢19220de75d5e01b3c116931593206214¢

RESP: 021400500¢4800000004616030100410100003d03013faa2h6a08bdd285b43d1F3becIT15Fc9

10805000,
630100
ol B ; |

2000

13001200

Figure 6. Basic tests of the OpenEapSmartcard.NET services

6.2 Wi-Fi deployment

The smartcard service is named serverd.exe, and is associated to the AID
"A0000000300002FFFFFFFF8931323800". In this demonstration the smartcard works with
an associated DLL (eapcard.dll) that is not written in .NET. Therefore this component
communicates with the smartcard via legacy 1SO7816 commands.

The OpenEapSmartcard.NET device processes all EAP message and computes the MPPE-
Recv-Key and MPPE-Send-Key that are collected by the operating system in order to ensure
the radio security.

L OX)

@ (Untitled) - Ethereal
Eile Edit View Go Capture Analyze Statistics Help

BEoee PRxRE Res0F e BE QQAAH FUE X

Eilter: Ieapol ~ Expression.. Clear Apply
No. Time Source Destination Protocol | Info - A
7 8.113334 D-Link_Ze:0d:40 Cisco-Li_8b:00:a4 EAPOL Start
8 8.115009 Cisco-Li_8b:00:a4 D-Link_2e:0d:40 EAP Request, Identity [RFC3748]
10 16.636952 D-Link_2e:0d:40 Cisco-Li_8b:00:a4 EAP Response, Identity [RFC3748]
11 16.710191 Cisco-Li_8hb:00:24 D-Link_2e:0d:40 EAP Request, EAP-TLS [RFC2716] [Abobal
12 18.002113 D-Link_2e:0d:40 Cisco-Li_8b:00:a4 TLS Client Hello
13 19.438502 Cisco-Li_8b:00:a4 D-Link_2e:0d:40 TLS Server Hello, Certificate[Malformed Packet]
17 23.926132 D-Link_2e:0d:40 Cisco-Li_8b:00:a4 EAP Response, EAP-TLS [RFC2716] [Aboba]
18 23.985581 Cisco-Li_8b:00:a4 D-Link_2e:0d:40 TLS Server Hello, Certificate[Malformed Packet]
19 33.837465 D-Link_2e:0d:40 Cisco-Li_8b:00:a4 TLS Certificate, Client Key Exchange, Certificate verify, Change ¢
21 37.713078 Cisco-Li_8b:00:a4 D-Link_2e:0d:40 TLS Server Hello, Certificate[Malformed Packet]
22 41.597157 i EAP Response, EAP-TLS [RFC2716] [Abobal

D-Link_2e:0d:40 Cisco-Li_8b:00:a4

3 42.286969) D-L1nk_2e:
24 42287766 Cisco-Li_8 a4 D-Link_2e:0d:40 EAPOL Key
25 42.288769 Cisco-Li_8b:00:a4 D-Link_2e:0d:40 EAPOL Key

[P: 38 D: 14 M: D Drops: 0

Pl NET

RID: v PIN:
AO0D00000200002FFFFFFFEB931323800 LTy
RTR: Protocol: T=0
‘351596417314?26964
Axalto Reflex USBE v3 0 v Readers
Cgap
CARD] OK

Figure 7. OpenEapSmartcard.NET demonstration in a Wi-Fi environment.

7. Conclusion and further work

This work is the first release of the OpenEapSmartcard.NET software that autonomously
processes EAP methods in dotnet smartcards. Although it is not yet optimized, performances
are sufficient for real Wi-Fi networks. The EAP-TLS support, in a tamper resistant device,
introduces the notion of the pocket PKI, that manages an embedded certificate store, and that
safely computes the TLS protocols and its associated private keys.

