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Introduction

o Historical background

- Probability theory for physical phenomena (crystal structure)
- Geman and Geman article (84)

o Main idea of MRF
contextual relations are necessary to model images

a local neighborhood is enough for natural images



A prior for natural images : local context




Introduction

o Low-level applications

Restoration

Segmentation

Edge detection

Compression

o Higher-level applications
- Object recognition
- Graph matching



Markov random field

o Probabilitic model

S = {s} C Z% set of sites (discrete and finite)
xrs € F space of the “gray-levels”

(E = {0..255} {0..g — 1} (labels) R)

X, random variable associated to s

X = {X;s}ses random field

r ={xs}ses = {xs} Ux® configuration (image)

Q) = E!S! space of configurations

o probabilities

P(Xs = z4) local probability

P X=x2)=P(Xy=x1,Xo=125... X5 =x,...) joint probability
Pr(Xs = xs / X¢ = x¢,t # s)conditional probability
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Spatial context in natural images

S : site

Vs 1 (spatial) neighborhood of s

o homogeneous regions

xs <> radiometries of neighborhing pixels mean

o textured regions

xs <> radiometries of neighborhing (!!) pixels local pattern function

global image & local neighborhood
global probability < local [conditional] probability
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Topology for Markov Random Fields

o neighborhood system - definition (mutual relationship)

neighborhood of site s :

properties : s¢Vs seV, & rel L

V = {Vs}scs neighborhing system

x — Vs = {x,},reyp, local configuration of the neigh-
borhood

o cliques

c C Sisaclique / Viff :
— card (¢) =1 (single-site)
— card (¢) > 2 and V r # s € ¢ = 1, s neigh-
bors

o notations c¢= (r,s,t,...); C ={c}
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Topology for Markov Random Fields (2)

o 4-connexity

4-connexité

L ordre 1

I o ordre 2
o 8-connexity

8-connexite

° ordre 1

I oo ./. .\. ordre 2

AT N o
I:I ordre 4



MRYF : definition

S : site

Vs :  voisinage (spatial) de s

Pr(Xs=xs /{ X, =2}, r#s) = Pr(Xs=uxs /{ X, =2}, reVy)
= Pr(Xs=x5 / V)

Global Local
Probability Probability

o MRF = 2D extension of Markov chain

VAN
(n-1) (n)
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Hammersley-Clifford theorem :

P(X =x)>0 VxeQisa MRF iff
- U
P(X =x) = =P 7 () Gibbs distribution
— Z Ve(x) global energy
ceC
Ve(z) =V, (:I;S, s € c) clique potential
Z = Z exp — partition function
ye
r
r
AR A S AN
o Example : cliques S

=A Zf(ms)+B Zg(:{}r,ws)%—C Z h(x,, xs,xt)

seSs

possible non-stationarity : A - A, , B — B, ...

o important :

low energy U(x)

(7,5)
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Conditional probability

1
Pr(Xs =25 / V) = 75 exp —Us(zs, V)

with

Us(xs,Vs) = Z Ve(zs,Vs) local conditional energy
cCC,sec

Z° = Z exp — Us(&, V) local partition function

: ;_. |
\ S / VS
o = local form of the Gibbs distribution
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Local conditional probability (2)

o demonstration
Pr(Xs — T, X® = :Es)
Pr(Xs = x%)
_ Pr(Xy=1,, X°=2") = Pr(X =ux)
d Pr(X,=¢ X*=2%) ) Pr(X=4a)

E€E ek

Pr(Xs =25 /] X? =2°%) =

o —Let U)=Ulz, / Vo) + > Vela)
ceC,sédc

W

exp —Ul(xs / Vy)

i m e A R ) S exp — U(E / Vi)

ek

ZS
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Local conditional probability : example
binary field (E = {0,1})
o Neighborhood 4-connexity

o Clique potentials

cliques of order 2
Vc:(s,t) (xsamt) — les;éxt (0 if Lsg = T¢, 5 if IlOt)

o Local conditional probabilities

U(:I:S =0,V, = (0,0,0,l)) =0
U(xs =1,Vs = ((0,0,0,1)) = 38
B B exp(—/3)
PIXs = 0WVe) = C028) + exn(=35)
P(X, = 1V,) = 2P

exp(—f3) + exp(—30)
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Sampling of MRF

o problem
X (P(X=x)) being defined (neighborhood system, clique potentials)

how sampling a configuration following P(X) ?

o solutions
two possible algorithms :

— Gibbs sampler
— Metropolis algorithm
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Gibbs sampler

o principle building a sequence of configurations x(n) by visiting each site

(randomly sampled)

o local change : z = {z,, z°} — ' ={¢, =%}
Pr(X =2") Pr(X,=¢§/X°=2°)Pr(X°=2°) Pr(X;=¢(/V)
Pr( X =2) Pr(X;=2,/Xs=2%)Pr(Xs=2%5) Pr(X;,=2,/V,)

o = sampling of the new stats according to the conditional

probability
b exp - U(E / \4 )
BN Pr(X;=¢ /I V) = T
_ ZS%
E 3



Metropolis sampling

o principle
sampling of a site s and a new state x’,

computation of the energy variation between the two states x = (xg, x¢,t # s)
and ' = (2, x4, # 5)

— if AU =U(2') — U(x) < 0 accept the new state
— else, accept (reject) the new state with the probability p = exp(—AU)

(1—p)
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Sampling of a MRF

o Markov chain

/N
(n-1) (n)

Pr( XM =z / X0 = g0 x(1) =21 X" = gn-1)
_ Pr(X() = g/ X1 Z yn-1)

o transition kernel

Qun(z, y) =Pr(X™W =y / XV =g) 2y
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o homogeneous Markov chain : ), (z, y) independant of n

o Sampling : Markov chain of images!
0 1 -1
(0) 1 X(n ) X(n)

A s
/ /
x (1)

~—b}1

" =

Lo X(=h) o x () xe ()
o homogeneous sampling : finding Q(x, y) such that

lim Pr(X" =2)=P(X =z)

n——+oo

19



Examples of Markov models

o Ising model

= -0 Z Ts Tp — BZQ?S E={-1+1}
c=(s,t) sesS

c=(s,t)
o Potts model
c=(s,t)
o (Gaussian Markov model

8 Y @-w)?+aY @ -n)?  E=R
c=(s,t)

seS
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Ising model in 4-connexity and B = 0

- A : random image : B =0 - B : weak reqularization : § = 0.2

- C : “critical” reqularization : 0~ 0.44 - D : strong reqularization : 5 = 4.0
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- A : random image : B =0 - B : weak reqularization : g = 0.2

- C: “cnitical” reqularization : B~ 1,099 - D : strong regularization : 8 = 4.0
22



Gaussian Markov model in 4-connexity

“A:a=510"* -B:a=5.10"3

-C:a=210"° -D:a=o00 (u=127 for all simulations)
23



Gaussian Markov models

o model with independent pixels

Pr(X =) = [\/gl : [[e (x5 — p)” o, OXP —ZU(fB)

sesS

with U(x) = « Z

seSs

o (General case - auto-normal model

= o) (s —ps) + B Y (s — )

se€S c=(s,t)
3 3
local mean coupling

- variable illumination g

- constant illumination us = p = 128
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Conditional probability for v connexity : gaussian

Pr(Xs = T / V:S) — % eXp — Oé(il?s — N8)2 =+ 6 Z (xS T xt)Q

c=(s,t), tEV,

I s + 6 Z Xt |
_ \/2(a+57) exp— (a+B7) |zs — teVs

7T ' i a+ By

o conditional expectation
o s + 3 Zil?t ap+ B Z«It
tey tey .
E| X,/ V| = - = i — gravity center (us =
Xs / Vs P P gravity (ks = 1)
o conditional variance
1
var( X, / Vi) = — independent of us and x4, t € Vg
(Xs /[ Vs) =3 o1 B D p ¢

o = statistics computation for fixed Xy = Z T4

teVs
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Sampling versus optimization

o Finding the configuration with highest probabibility

equivalent to searching for the global minimum of the energy

o Problem categorization

— global / local inima
— continuous / discrete labels

— convex / non convex energy
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ICM - Iterated Conditional Modes

o Discrete labels and local minimum

Sequential update of each site :
— choice of a site
— computation of the conditional probabilities (conditional local energies)
for the fixed local neighborhood
— choice of the state maximizing (minimizing) the conditional probability

(conditional local energy)

o ICM algorithm
— converges to a local minimum
— depends very much of the initial configuration

— very fast

— similar to a “gradient descent” with continuous labels
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Gibbs distribution with temperature parameter

1 U
Pr(X =z)= 7 exp — (T:E)
U(z) = Z U.(x) global energy
ceC [
Zp = % exp —# partition function
y
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Behaviour for extreme temperatures

o intuition

PUC=0) _ oy WU e
T — oo exp—[U(y);U(m)] — 1 Vz,y € () fini
T—0 exp— Uly) ;U(x)] —0 siU(y) >U(x)

o demonstration for 7' — oo

exXp — U(:C) 1
Pr(X =z) = = —
(v) U(y) — U()]
<4 exXp — T y;) exXp — T

Ve € 0  equidistribution on ()
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Gibbs distribution with temperature parameter (2)

o deemonstration for 7' — 0

U =minU(x) Q*={xecQ|U(x)=U"}

e
U(x)—U" U(x) —U*
exp — U(z) | exp — U(z) ]
it e T =0 - GO
Z exp — T Card Q7 + Z exp — 7
ye yeQ,ydQ*
( ! i x e QF
si x
— ¢ Card O equidistribution on Q*
0 six & QF
U(y) —U(x)]

(Recall : exp —

»0siU(y) >U(x) )
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Gibbs distribution with temperature parameter(3)
P ()

U(x)
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Simulated Annealing

o theorem (Geman and Geman 1984)

— building a sequence of images with sampling for Pp (X)
with T, decreasing slowly and initializing the sampler with the current
configuration

— the configuration obtained when the temperature is close to 0 is a global
minimum of the energy

— Conditions : temperature decrease should be very low (cooling schedule

with logarithmic rate) and initial temperature should be high enough

32



Simulated Annealing

o theorem (Geman and Geman 1984)

1o

if n (T, ith T,, \ O , T, >

1
then lirf Pr(X"™ =gz) = O d(x € QF) < energy global minimum
n—-—+0oo

building a sequence of images with samplers for Pr_ (X)

and T,, following a logarithmic decreasing

o theoretical condition

To = A U,paz Metropolis — Ty = Z(S U(./ Vs),. ., Gibbs

seS
o in practice : T,, =Ty o™ with :

max
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Simulated Annealing

U
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