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Why using graphs ?

P Interest: they give a compact, structured and complete
representation, easy to handle
» Applications:
» Image processing: segmentation, boundary detection
> Pattern recognition: printed characters, objects (buildings 2D
ou 3D, brain structures, ...), faces, ...
P Image registration

» Understanding of structured scenes
> .



Definitions Graph: G = (X,E)

X set of nodes (|X| order of the graph)
E set of edges (|E| size of the graph)

>
>
» complete graph (size @)
» partial graph G = (X, E’) with E’ part of E
» subgraph F =(Y,E’), YC X et E' CE
» degree of a node x : d(x) = number of edges
» connected graph: for each pair of nodes you find a path
linking them
tree: connected graph without cycle
clique: complete subgraph
dual graph (face — node)

>

>

>

> segment graph (edge — node)
» hypergraph (n-ary relations)
>

weighted graphs: weights on the edges



Notations Graph: G = (X,E)

» weight of an edge linking i et j : w;;
» adjacency matrix W of size | X| x | X| defined by

- Wi if €jj cE
Wi = { 0 else

for undirected edges W is symetric

» Laplacian matrix of an undirected graph

di =2 c,cE Wil
d if i=j
L;j = —Wjj if ejj € E
0 else
L=D-W

with Dj; = d; (D degree matrix)



Representation

Adjacency matrix, adjacency lists
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Representation

Adjacency matrix, adjacency lists
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FIGURE 1.4

From top-left to bottom-right: a weighted directed graph, its adjacency list, its adja-
cency matrix, and its (transposed) incidence matrix representations.

(figure from “Image processing and analysis with graphs”, Lezoray
- Grady)



Which graphs for images ?



Examples of graphs

» Attributed graph : G = (X, E, u,v)
» 1 X — Lx nodes interpreter (Lx = attributes of nodes)
» v E — L edges interpreter (Lg = attributes of edges)

Exemples :
» graph of pixels
> region adjacency graph (RAG)
» Voronogions / Delaunay triangulation
» graph of primitives with complex relationships

> Random graph : edges and nodes = random variables
» Fuzzy graph : G = (X, E = X x X, s, vf)
> ur: X —=[0,1]
> vr: E—[0,1]
> avec Y(u,v) € X x X ve(u,v) < pe(u)pe(v) or
ve(u,v) < minfue(u)ue(v)]



Examples of image graphs

uz uz
u; uy
FIGURE 1.11
The rectangular (left) and hexagonal (right) lattices and their associated Voronoi
cells.
| | | | 4.4.!!
| [ | | mﬁ !!
(a) 6-adjacency. (b) 18-adjacency. (c) 26-adjacency.

FIGURE 1.12



Examples of image graphs

RAG (Region Adjacency Graph)



Examples of image graphs




Examples of imace oranhe

(a) Initial sct of pointx

<7

b
(d) Euclidean Minimum Sponning  (¢) 3-Ncarest-Neighbor Graph. () Relative Neighborhood Graph.
Tree

(h) A-Skeketon Graph, 5 = 1.1: (i) Delaunay Triangulation Graph.
black edges, 8 = 0.9: grey edges.

FIGURE 1.14
Examples of proximity graphs from a set of 100 points in Z.

(figure from “Image processing and analysis with graphs”, Lezoray
- Grady)



Examples of graphs

» Graph of fuzzy attributes : attributed graph with fuzzy value
for each attribute

» Hierarchical graph :

multi-level graph and and bi-partite graph between 2 levels
(multi-level approaches, object grouping, ...)

Exemples :
» quadtrees, octrees
» hierarchical representation of the brain
» Graph for reasoning
decision tree, matching graph



Graph example T
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FIGURE 1.13
(a) An image with the quadtree tessellation, (h) the associated partition tree, (c) a
real image with the quadtree ion, (d) the region adj; graph i

to the quadtree partition, (e) and (f) two different iregular tessellations of an image
using image-dependent superpixel segmentation methods: Watershed [23] and SLIC
superpixels [24].
(figure from “Image processing and analysis with graphs”, Lezoray

- Grady)



Graph examples

Figure 2 — Représentation de variété des points clés de Sm2%() (en rouge) et S (I) (en bleu
image Pléiades ayant des textures locales différentes.

(figure from M.T. Pham PhD)



(a) Image initiale 512 x 512 (b) Extrema locaux

(c) Détecteur de Harris (d) Détecteur SIFT
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Graph examples

Understudied
vertex

Understudied pixel

K closest local
maximum pixels

Geometrical vector
formed by pandgq

Figure 5 — Vecteur de description proposé pour T'analyse ponctuelle de la texture.
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Graph examples - BPT Binary Partition Tree
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Which algorithms from graph theory ?



Some classical algorithms

Search of the minimum spanning tree
» Kruskal algorithm O(n? + mlogx(m))
» Prim algorithm O(n?)
Shortest path problems
» positive weights: Dijkstra algorithm O(n?)
> arbitrary weights but without cycle: Bellman algorithm O(n?)
Max flow and Min cut
> G =(X,E)
> partitioning in two sets Aet B (AUB =X, AN B =10)
> cut(A B) = erA,yeB w(x,y)
» Ford and Fulkerson algorithm
Search of maximal clique in a graph
> decision tree

P cut of already explored branches



Overview
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Segmentation by minimum spanning tree

How can we segment this image using a minimum spanning tree ?



Segmentation by minimum spanning tree

Constantinides (1986)
» graph of pixels weighted by the gray levels (or colors) (weights
= distances)
» search of the minimum spanning tree

P spanning tree = partitioning by suppressing the most costly

edges
25! 255 o
0 5 0 0 5. 0 P
ﬂ 25| 2ss| O 128 0
*—o o ° *—o o [ ]
0 0 128 0 0 128
image graphe des pixels attribué arbre couvrant de poids minimal suppression des arétes

les plus coliteuses



Computation of the minimum spanning tree

Kruskal algorithm

» Starting from a partial graph without any edge, iterate (n — 1)
times : choose the edge of minimum weight creating no cycle
in the graph with the previsouly chosen edges

P In practice:

1. sorting of edges by increasing weights
2. while the number of edges is less than (n — 1) do:

P select the first edge not already examined
> if cycle, reject
> else, add the edge in the graph

» Complexity: O(n? + mlogs(m))

Prim algorithm
» Extension from near to near of the current tree
» Complexity: O(n?)



Constantinides (1986)




Segmentation by graph-cut

Graph-cut definition:
» graph G = (X, E)
» partitioning in 2 parts Aet B(AUB =X, ANB =)
> cut(A,B) = ZieA,jeB wij




Segmentation by graph clustering

Clustering : partitioning of the graph in groups of nodes based on
their similarities [Each cluster : a closely connected component]

The clustering corresponds to:
> edges between different groups have low weights (weak
similarities)
> edges inside a group have high weights (high similarities)

Possible cost functions for the cut:
> minimum cut Cut(Ay, ..., Ax) = S2i=8 Cut(A;, A;)
» minimum cut normalized by the size of each part (RatioCut)
RatioCut(Ar, ..., Ax) = Y=t ra7 Cut(Ai, Aj)
(|Ai| number of vertices in Aj)

> minimum cut normalized by the connectivity of each part

(NCut) NCut(Ar, ..., Ax) = Sit vartay Cut(Ai A)

(vol( i) = ZkeA di sum of the weight of all edges of



Toy example

Wu and Leavy (93): search for the MinCut

255 0 255

': ° PY
ﬂ ’ ’ T . el g
Py Py

255 255 128

image graphe des pixels attribué coupe de capacité minimale partition

Influence of the number of edges: Cut(A, B) = 4b,
Cut(A',B') =3b

Cut(A.B)

= normalized cut (NCut)



Normalized cut

» Principle: graph clustering
» + suppression of the influence of the number of edges:
normalized cut
cut(A, B) cut(A, B)
assoc(A, X)  assoc(B, X)

Ncut(A, B) =

assoc(A, X) = Z w(a, x) = vol(A)
acA,xeX

» Measuring the connectivity of a cluster:

assoc(A, A) N assoc(B, B)

N A, B) =
assoc(A, B) assoc(A, X) ' assoc(B, X)

Ncut(A, B) = 2 — Nassoc(A, B)

minimizing the cut < maximizing group connectivity‘




Toy example

Influence of the number of edges: Cut(A, B) = 4b,
Cut(A',B') =3b

Cut(AB)
= normalized cut (NCut)

vol(A) =
vol(B) =
NCut(A, B) =

vol(A') =
vol(B') =
NCut(A', B') =



Graph theory and cuts

MinCut by combinatorial optimization
> Stoer-Wagner algorithm

» Principle: iterative reducing of the graph by fusion of the
nodes linked by the maximal weights

Min K-cut by combinatorial optimization

» Partitioning the (un-oriented graph) graph in many
components

» Gomory-Hu algorithm
minCut in oriented graph by combinatorial optimization

» Ford-Fulkerson algorithm (oriented graph with two terminal
nodes (sink / tank)

» Principle: MaxFlow search (MinCut equivalence) by search for
an augmenting chain to increase the flow



Graph theory and cuts

Laplacian matrices

D =

diag(d,-) with d; = Zj Wijj

W = (wy)

>

>

Graph Laplacian matrix
L=D-W

Normalized graph Laplacian matrix
L,=DilD2=|—D i WDz

Spectral clustering algorithms and cuts

| 2

>

v

Computation of the eigen-values and eigen-vectors of some
matrix (L, L,, or generalized eigen problems Lu = A\Du)
selection of the k smallest eigen-values and associated k
eigen-vectors uy

U= (ul, ceey Uk) € RNk

let y; € R* be the ith row of U (i = 1,...,n)

cluster the points (y;)1<i<n with the k-means algorithm into
clusters Cy, ..., Ck

clusters A1, ..., A with A; = {jly; € C;}



Examples (univ. Berkeley)

http://www.cs.berkeley.edu/projects/vision/Grouping/



Examples (univ. Berkeley)

http://www.cs.berkeley.edu/projects/vision /Grouping/




Examples (univ. Berkeley)
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http:/ /www.cs.berkeley.edu/projects/vision/Grouping/



Examples (univ. Alberta) with linear constraints

(d)




Examples (Mean Shift et Normalized Cut)




Examples (texture classification with point-wise graph)

(a) Image originale (b) Vérité terrain

(j) Vecteur de signature (k) Classification spectrale des
vecteurs de signature
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Figure from Farabet et al., PAMI
Tenenbaum and Barrow (1977)
» Segmentation in regions
» Building of the Region Adjacency Graph
» Labeling using a set of rules (expert system) :
1. on objects (size, color, texture,...)
2. on contextual relationships between objects (above, inside,
near ...)
Generalization with fuzzy attributed graphs



Markovian labeling (random graphs)
E(y=>"&(d, h)+ 8> w(h1])
j ij

> Low-level applications:
» pixel graphs
P segmentation, classification, restoration

» High-level applications:
» graph of super-pixels (SLIC, watershed, ...)
> graph of primitives (edges, key-points, lines,...)

» CRF (Conditional Random Field) / MRF (Markov Random
Field):
» MRF: W does not depend on d (“pure” prior)
» CRF: W depends on d (usually based on image gradient values)

= pattern recognition, full scene labeling



Example on a 3D RAG (T. Gud)

nuclei
segmentation

3D over-segmentation result of graph labeling

Markovian relaxation

20,

p{ S S, ., J}

=)




Example on a line graph




Example on a region adjacency graph




MRF and graph-cut optimization

Binary labeling (Greig et al. 89) :

E(1) =" _o(dilh)+ > Bl — 1)
i (i)

> efficient way of finding the global minimum by min-cut search



MRF and graph-cut optimization

(@) (b) (©

FIGURE 2.5

(a) The graph for binary MRF minimization. The edges in the cut are depicted as
thick arrows. Each node other than v, and v; corresponds to a site. If a cut (8,7)
places a node in 8, the corresponding site is labeled 0; if it is in T, the site is labeled
1. The 0’s and 1’s at the bottom indicate the label each site is assigned. Here, the
sites are arranged in 1D; but according to the neighborhood structure this can be any
dimension as shown in (b) and (c).

(figure from “Image processing and analysis with graphs”, Lezoray
- Grady)



MRF /CRF and graph-cut optimization
Multi-level labeling (Boykov, Veksler) :

= generalization of the binary labeling
Definition of two space moves (to go back to the binary labeling)

» q-expansion : source S and sink P correspond to label o and
the current label @ (W should be a metric)

» « — 3 swap: source S for « and sink P for 3 (VW should be a
semi-metric)

Optimization by iterative mincut search:

» graph: nodes for super-pixels

> weights: depending on the current labeling

» good trade off time / efficiency compared to simulated
annealing or ICM

But for multi-labeling no garantee on optimality of the solution



Interactive segmentation: “hard” constraints

Principle Background and object manually defined

= finding of a binary labeling minimizing an energy including
“hard” constraints

Method Mincut search and edges with high weights (should not be
cut)

Advantages
» easy introduction of “hard” constraints

» the manually defined areas permit to do a fast learning

> iterative algorithm



[[lustrations

\Ij

(a) Original B&W photo (b) Segmentation results

|




Interactive methods with mincut

Grab-cut

| 2
| 2

take into account color

two labels (background and object but with a Gaussian
Mixture Model)

CRF (conditional random field): regularization term weighted
by the image gradient

iterative semi-supervised learning of the GMM parameters
(after manual initialization and after each cut)



[llustrations -GrabCut-




Deep learning and graph labeling for full scene labeling




Deep learning and graph labeling for full scene labeling
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a-expansion




Pattern recognition

» Object: defined by a set of primitives (nodes of the graph)

» Binary relationship of compatibility between nodes (edges of
the graph)

» Clique: sub-set of primitives all compatible between each other
= possible object configuration

P recognition by maximal clique detection

Search of maximal cliques :

» NP-hard problem

» Building of a decision tree: a node of the tree = 1 clique of
the graph

» pruning of the tree to suppress already found cliques

> Theorem: let S be a node of the search tree T, and let x be
the first unexplored child of S to be explored. If all the
sub-trees of S U {x} have been generated, only the sons S not
adjacent to x have to be explored.



Example:maximal clique search




Example: buiding reconstruction by the maximal clique
search (IGN)

Amiens (Résolution : 20cm) Echelle 1:1000

Données




Example: buiding reconstruction by the maximal clique
search (IGN)

€N
% A
Graphe Graphe de Meilleure clique
Graphe 3D | B| , * Gible 3D |= compatibilité S




Example: buiding reconstruction by the maximal clique

search (IGN)

jraphe Admissible 3D

Algorithme :

Eliminer récursivement toute facette localement inadmissible

///

N

Fac&tesilovalement gragin Sibles



Example: buiding reconstruction by the maximal clique
search (IGN)

Algorithme :

Eliminer récursivement toute facette localement inadmissible

2
pe

Surfaarfatdionestoppesudavs sidioissible



Example: buiding reconstruction by the maximal clique
search (IGN)

Facettes incompatibles



Example: buiding reconstruction by the maximal clique
search (IGN)

(21G Facettes incompatibles



Example: buiding reconstruction by the maximal clique
search (IGN)
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Graph matching

Correspondance problem:
» Graph(s) of the model (atlas, map, model of object)
» Graph built from the data
» Graph matching:

G=(X,E,u,v) —=? G =X, E u V)

Graph isomorphism: bijective function f : X — X’

> u(x) = 1(F(x))
> Ve = (x1,x), 3 = (f(x1),f(x2)) / v(e) =7'(¢) and
conversely

Too strict = isomorphisms of sub-graphs



Sub-graph isomorphisms

» There exists a sub-graph S’ of G’ such that f is an
isomorphism from G to S’

L SR
i

» There exists a sub-graph S of G and a sub-graph S’ of G’
such that f is an isomorphism from S to S’



Graph isomorphisms: searching the maximal clique

search of the maximal clique of the association graph
» principle: building of the association graph

> maximal clique: sub-graph isomorphism

2 OF (el

1 (D4 r® 9‘0



Graph isomorphisms: searching the maximal clique

search of the maximal clique of the association graph
» principle: building of the association graph

» maximal clique: sub-graph isomorphism

2@ OF

(4.47)
2.2

4.27)




Sub-graph isomorphism: Ullman algorithm

» Principle : extension of the association set (v;, wy;) until the
G graph has been fully explored. In case of failure, go back in
the association graph (“backtrack™).

Acceleration: “forward checking” before adding an
association.

» Algorithm:

P matrix of node associations

» matrix of future possible associations for a given set of
associations matrice

» list of updated associations by “Backtrack” et
“ForwardChecking”

» Complexity : worst case O(m"n?) (n ordre de X, m de X/,
n < m)
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Error tolerant graph-matching

v

Real world: noisy graphs, incomplete graphs, distorsions
Distance between graphs (editing, cost function,...)

Sub-graph isomorphism with error tolerance: search of the
sub-graph G’ with the minimum distance to G

Optimal algorithms: A*

Approximate matching: genetic algorithms, simulated

annealing, neural networks, probablistic relaxation,...
» iterative minimistion of an objective function

» better adapted for big graphs
» problem of convergence and local minima



Decomposition in common sub-graphs

Messmer, Bunke

Gl
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Example

3D reconstruction by graph matching between a graph (data) and
a library of model graphs (IGN)




Example - building reconstruction

Model graph

\O L (v) = (portion de plan)

‘, I (v) = (segment de droite, horizontal=1)
Vv (e) = (borde=1, plus haut que=1, moins haut que = 0)

\_»

\, \/




Example - building reconstruction

Model graph and data graph matching
Graphe modele

Edition
de cout minimal
(-

Isomorphisme

(strict) de sous-graphe

Isomorphime
de sous-graphe
avec tolérance

d "erreur

appariement



Example - building reconstruction
Model graph and data graph_ matching

Modele 4 pans Ean
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Matching with geometric transformation

» Graph = representation of the spatial information

» Matching = computation of the geometric transformation
» polynomial deformation
> elastic transformation (morphing)

» Matching approaches :

> translation: maximum of correlation

» Hough transform (in the parameter space)

»> RANSAC method: select randomly a set of matching points,
compute the transformation, compute the score (depends on
the number of matched pairs for the transformation)

> AC-RANSAC: RANSAC + a contrario framework reducing the
number of parameters (NFA to be set)



Example - MAC-RANSAC (PhD Julien Rabin)

(a) Paire d'images analysée.

(b) Reconnaissance de chacun des objets superposés.






Inexact matching
Optimization of a cost function
» Dissimilarity cost beween nodes

aD,aM E ad aD, , Za,—l

» Dissimilarity cost between edges

((aD, aD) Zﬁj 3D73D) A(a}\/la 3%//)) Zﬁj :
» Matching cost function h :
o 1-a
f(h) = m Z CN(aD7h(aD))+ E ’ Z CE((alD7a2D)a(h(alD)7‘
apeNp (31D732D)€ED

Optimization methods:
» Tree search
» Expectation Maximization
» Genetic algorithms
> ...



W 2P
L .JW.A"A/
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Example: brain structures (A. Perchant)



Example : face structures (R. Cesar et al.)
*1




Spectral method for graph matching (1)
Optimization of a cost function

P> weighted adjacency matrix M

» nodes = potential assignments a = (i, /") (can be selected by
descriptor matching)

» edges = M(a, b) agreement between the pairwise matchings a
and b (geometric constraints)

» correspondance problem = finding a cluster C of assigments
maximizing the inter-cluster score S =3, M(a, b) with
additional constraints

» cluster C = vector x (with x(a) =1 if a€ C and 0 else)

S= Z M(a, b) = xT Mx
a,beC

x* = argmax(x " Mx)

+ constraints (one to one mapping)



Spectral method for graph matching (2)

Search of the optimal cluster

» number of assigments
P inter-connection between the assignments

> weights of the assignment
Spectral method: relaxation of the constraints on x
x* = principal eigenvector(x T Mx)

+ introduction of the one-to-one correspondance constraints
(iterative selection of a* = argmax,e; (x*(a))
and suppression in x* of the incompatible assignments)



Example: point matching (Leordeanu, Hebert)

25 inliers
0 0 £3 o
* u % * *
w T T = * 5 #* Hy g
* * #E x *g * T * * w¥
100F *, - 100 * =ty w EEER *
s *F *

dj
d, itd

b = dyy+q
«zp = angle between the matchings
(with centring and normalization)

M(a, b) = (1 — v)ca +vcq




Example:feature matching (Leordeanu, Hebert)




Example:factorized graph matching (Zhou, de la Torre)




Spatial reasoning in images

==== Sea:R1

— == Boat:R7

== Boat:R2

_——=Boat:R4
-

Dock:R5

S=~~ship:R3

= Dock:R6

(a) Example image. (b) Labeled image: The blue regions represent the
sea, the red and orange represent ships or boats and
the yellow regions represent the docks.

Water Harbour_Structures Ship

‘ Boat:R2 ‘

(c) Concept hierarchy Te in the context of  (d) Conceptual graph representing the spatial orga-
harbors. nization of some elements of Figure 5.8(h).

Sea Quay  Dock ety Boat



Spatial reasoning in images




