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Why using graphs ?

I Interest: they give a compact, structured and complete
representation, easy to handle

I Applications:
I Image processing: segmentation, boundary detection
I Pattern recognition: printed characters, objects (buildings 2D

ou 3D, brain structures, ...), faces, ...
I Image registration
I Understanding of structured scenes
I ...



Definitions Graph : G = (X ,E )

I X set of nodes (|X | order of the graph)

I E set of edges (|E | size of the graph)

I complete graph (size n(n−1)
2 )

I partial graph G = (X ,E ′) with E ′ part of E

I subgraph F = (Y ,E ′), Y ⊆ X et E ′ ⊆ E

I degree of a node x : d(x) = number of edges

I connected graph: for each pair of nodes you find a path
linking them

I tree: connected graph without cycle

I clique: complete subgraph

I dual graph (face → node)

I segment graph (edge → node)

I hypergraph (n-ary relations)

I weighted graphs: weights on the edges



Notations Graph : G = (X ,E )

I weight of an edge linking i et j : wij

I adjacency matrix W of size |X | × |X | defined by

Wij =

{
wij if eij ∈ E

0 else

for undirected edges W is symetric

I Laplacian matrix of an undirected graph
di =

∑
eij∈E wij

Lij =


di if i = j

−wij if eij ∈ E
0 else

L = D −W

with Dii = di (D degree matrix)



Representation

Adjacency matrix, adjacency lists

a

d

f c e

b

a b c d e f

a 0 1 1 1 0 0

b 1 0 0 0 0 0

c 1 0 0 0 1 1

d 1 0 0 0 1 0

e 0 0 1 1 0 0

f 0 0 1 0 0 0



Representation
Adjacency matrix, adjacency lists

(figure from “Image processing and analysis with graphs”, Lezoray
- Grady)



Which graphs for images ?



Examples of graphs

I Attributed graph : G = (X ,E , µ, ν)
I µ : X → LX nodes interpreter (LX = attributes of nodes)
I ν : E → LE edges interpreter (LE = attributes of edges)

Exemples :
I graph of pixels
I region adjacency graph (RAG)
I Voronogions / Delaunay triangulation
I graph of primitives with complex relationships

I Random graph : edges and nodes = random variables
I Fuzzy graph : G = (X ,E = X × X , µf , νf )

I µf : X → [0, 1]
I νf : E → [0, 1]
I avec ∀(u, v) ∈ X × X νf (u, v) ≤ µf (u)µf (v) or

νf (u, v) ≤ min[µf (u)µf (v)]



Examples of image graphs

(figure from “Image processing and analysis with graphs”, Lezoray
- Grady)
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Examples of image graphs

Voronoagram (in blue) and Delaunay triangulation (pink)



Examples of image graphs

(figure from “Image processing and analysis with graphs”, Lezoray
- Grady)



Examples of graphs

I Graph of fuzzy attributes : attributed graph with fuzzy value
for each attribute

I Hierarchical graph :
multi-level graph and and bi-partite graph between 2 levels
(multi-level approaches, object grouping, ...)

Exemples :
I quadtrees, octrees
I hierarchical representation of the brain

I Graph for reasoning
decision tree, matching graph



Graph examples

(figure from “Image processing and analysis with graphs”, Lezoray
- Grady)



Graph examples

(figure from M.T. Pham PhD)



Graph examples

(figure from M.T. Pham PhD)



Graph examples

(figure from M.T. Pham PhD)



Graph examples - BPT Binary Partition Tree



Which algorithms from graph theory ?



Some classical algorithms

Search of the minimum spanning tree

I Kruskal algorithm O(n2 + mlog2(m))

I Prim algorithm O(n2)

Shortest path problems

I positive weights: Dijkstra algorithm O(n2)

I arbitrary weights but without cycle: Bellman algorithm O(n2)

Max flow and Min cut

I G = (X ,E )

I partitioning in two sets A et B (A ∪ B = X , A ∩ B = ∅)
I cut(A,B) =

∑
x∈A,y∈B w(x , y)

I Ford and Fulkerson algorithm

Search of maximal clique in a graph

I decision tree

I cut of already explored branches
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Segmentation by minimum spanning tree

How can we segment this image using a minimum spanning tree ?



Segmentation by minimum spanning tree

Constantinides (1986)

I graph of pixels weighted by the gray levels (or colors) (weights
= distances)

I search of the minimum spanning tree

I spanning tree ⇒ partitioning by suppressing the most costly
edges
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Computation of the minimum spanning tree

Kruskal algorithm

I Starting from a partial graph without any edge, iterate (n− 1)
times : choose the edge of minimum weight creating no cycle
in the graph with the previsouly chosen edges

I In practice:

1. sorting of edges by increasing weights
2. while the number of edges is less than (n − 1) do:

I select the first edge not already examined
I if cycle, reject
I else, add the edge in the graph

I Complexity: O(n2 + mlog2(m))

Prim algorithm

I Extension from near to near of the current tree

I Complexity: O(n2)



Constantinides (1986)



Segmentation by graph-cut

Graph-cut definition:

I graph G = (X ,E )

I partitioning in 2 parts A et B (A ∪ B = X , A ∩ B = ∅)
I cut(A,B) =

∑
i∈A,j∈B wij
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Segmentation by graph clustering

Clustering : partitioning of the graph in groups of nodes based on
their similarities [Each cluster : a closely connected component]

The clustering corresponds to:
I edges between different groups have low weights (weak

similarities)
I edges inside a group have high weights (high similarities)

Possible cost functions for the cut:
I minimum cut Cut(A1, ...,Ak) =

∑i=k
i=1 Cut(Ai ,Ai )

I minimum cut normalized by the size of each part (RatioCut)
RatioCut(A1, ...,Ak) =

∑i=k
i=1

1
|Ai |Cut(Ai ,Ai )

(|Ai | number of vertices in Ai )
I minimum cut normalized by the connectivity of each part

(NCut) NCut(A1, ...,Ak) =
∑i=k

i=1
1

vol(Ai )
Cut(Ai ,Ai )

(vol(Ai ) =
∑

k∈Ai
dk sum of the weight of all edges of

vertices in Ai )



Toy example

Wu and Leavy (93): search for the MinCut
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Influence of the number of edges: Cut(A,B) = 4b,
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Normalized cut

I Principle: graph clustering

I + suppression of the influence of the number of edges:
normalized cut

Ncut(A,B) =
cut(A,B)

assoc(A,X )
+

cut(A,B)

assoc(B,X )

assoc(A,X ) =
∑

a∈A,x∈X
w(a, x) = vol(A)

I Measuring the connectivity of a cluster:

Nassoc(A,B) =
assoc(A,A)

assoc(A,X )
+

assoc(B,B)

assoc(B,X )

Ncut(A,B) = 2− Nassoc(A,B)

minimizing the cut ⇔ maximizing group connectivity



Toy example

Influence of the number of edges: Cut(A,B) = 4b,
Cut(A′,B ′) = 3b
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Graph theory and cuts

MinCut by combinatorial optimization

I Stoer-Wagner algorithm

I Principle: iterative reducing of the graph by fusion of the
nodes linked by the maximal weights

Min K-cut by combinatorial optimization

I Partitioning the (un-oriented graph) graph in many
components

I Gomory-Hu algorithm

minCut in oriented graph by combinatorial optimization

I Ford-Fulkerson algorithm (oriented graph with two terminal
nodes (sink / tank)

I Principle: MaxFlow search (MinCut equivalence) by search for
an augmenting chain to increase the flow



Graph theory and cuts
Laplacian matrices
D = diag(di ) with di =

∑
j wij

W = (wij)
I Graph Laplacian matrix

L = D −W
I Normalized graph Laplacian matrix

Ln = D−
1
2LD−

1
2 = I − D−

1
2WD−

1
2

Spectral clustering algorithms and cuts
I Computation of the eigen-values and eigen-vectors of some

matrix (L, Ln, or generalized eigen problems Lu = λDu)
I selection of the k smallest eigen-values and associated k

eigen-vectors uk
I U = (u1, ..., uk) ∈ Rn×k

I let yi ∈ Rk be the ith row of U (i = 1, ..., n)
I cluster the points (yi )1≤i≤n with the k-means algorithm into

clusters C1, ...,Ck

I clusters A1, ...,Ak with Ai = {j |yj ∈ Ci}



Examples (univ. Berkeley)

http://www.cs.berkeley.edu/projects/vision/Grouping/
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http://www.cs.berkeley.edu/projects/vision/Grouping/



Examples (univ. Berkeley)

http://www.cs.berkeley.edu/projects/vision/Grouping/



Examples (univ. Alberta) with linear constraints



Examples (Mean Shift et Normalized Cut)



Examples (texture classification with point-wise graph)
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Full scene labeling (scene parsing)

Figure from Farabet et al., PAMI
Tenenbaum and Barrow (1977)
I Segmentation in regions
I Building of the Region Adjacency Graph
I Labeling using a set of rules (expert system) :

1. on objects (size, color, texture,...)
2. on contextual relationships between objects (above, inside,

near ...)

Generalization with fuzzy attributed graphs



Markovian labeling (random graphs)

E (l) =
∑
i

Φ(di , li ) + β
∑
ij

Ψ(li , lj)

I Low-level applications:
I pixel graphs
I segmentation, classification, restoration

I High-level applications:
I graph of super-pixels (SLIC, watershed, ...)
I graph of primitives (edges, key-points, lines,...)

I CRF (Conditional Random Field) / MRF (Markov Random
Field):
I MRF: Ψ does not depend on d (“pure” prior)
I CRF: Ψ depends on d (usually based on image gradient values)

⇒ pattern recognition, full scene labeling



Example on a 3D RAG (T. Gud)



Example on a line graph



Example on a region adjacency graph



MRF and graph-cut optimization

Binary labeling (Greig et al. 89) :

E(l) =
∑
i

Φ(di |li ) +
∑
(i ,j)

β(li − lj)
2

I efficient way of finding the global minimum by min-cut search



MRF and graph-cut optimization

(figure from “Image processing and analysis with graphs”, Lezoray
- Grady)



MRF/CRF and graph-cut optimization
Multi-level labeling (Boykov, Veksler) :

⇒ generalization of the binary labeling
Definition of two space moves (to go back to the binary labeling)

I α-expansion : source S and sink P correspond to label α and
the current label α (Ψ should be a metric)

I α− β swap: source S for α and sink P for β (Ψ should be a
semi-metric)

Optimization by iterative mincut search:

I graph: nodes for super-pixels

I weights: depending on the current labeling

I good trade off time / efficiency compared to simulated
annealing or ICM

But for multi-labeling no garantee on optimality of the solution



Interactive segmentation: “hard” constraints

Principle Background and object manually defined

⇒ finding of a binary labeling minimizing an energy including
“hard” constraints

Method Mincut search and edges with high weights (should not be

cut)

Advantages

I easy introduction of “hard” constraints

I the manually defined areas permit to do a fast learning

I iterative algorithm



Illustrations



Interactive methods with mincut

Grab-cut

I take into account color

I two labels (background and object but with a Gaussian
Mixture Model)

I CRF (conditional random field): regularization term weighted
by the image gradient

I iterative semi-supervised learning of the GMM parameters
(after manual initialization and after each cut)



Illustrations -GrabCut-



Deep learning and graph labeling for full scene labeling



Deep learning and graph labeling for full scene labeling

Φ(di , li ) = exp(−αdi ,a)1(li 6= a)

Ψ(li , lj) = exp(−β||∇I ||i )1(li 6= lj)



Pattern recognition

I Object: defined by a set of primitives (nodes of the graph)

I Binary relationship of compatibility between nodes (edges of
the graph)

I Clique: sub-set of primitives all compatible between each other
= possible object configuration

I recognition by maximal clique detection

Search of maximal cliques :

I NP-hard problem

I Building of a decision tree: a node of the tree = 1 clique of
the graph

I pruning of the tree to suppress already found cliques

I Theorem: let S be a node of the search tree T , and let x be
the first unexplored child of S to be explored. If all the
sub-trees of S ∪ {x} have been generated, only the sons S not
adjacent to x have to be explored.



Example:maximal clique search
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Example: buiding reconstruction by the maximal clique
search (IGN)
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Example: buiding reconstruction by the maximal clique
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Example: buiding reconstruction by the maximal clique
search (IGN)
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Graph matching

Correspondance problem:

I Graph(s) of the model (atlas, map, model of object)

I Graph built from the data

I Graph matching:

G = (X ,E , µ, ν) →? G ′ = (X ′,E ′, µ′, ν ′)

Graph isomorphism: bijective function f : X → X ′

I µ(x) = µ′(f (x))

I ∀e = (x1, x2), ∃e ′ = (f (x1), f (x2)) / ν(e) = ν ′(e ′) and
conversely

Too strict ⇒ isomorphisms of sub-graphs



Sub-graph isomorphisms
I There exists a sub-graph S ′ of G ′ such that f is an

isomorphism from G to S ′
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I There exists a sub-graph S of G and a sub-graph S ′ of G ′

such that f is an isomorphism from S to S ′



Graph isomorphisms: searching the maximal clique

search of the maximal clique of the association graph

I principle: building of the association graph

I maximal clique: sub-graph isomorphism



Graph isomorphisms: searching the maximal clique

search of the maximal clique of the association graph

I principle: building of the association graph

I maximal clique: sub-graph isomorphism
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Sub-graph isomorphism: Ullman algorithm

I Principle : extension of the association set (vi ,wxi ) until the
G graph has been fully explored. In case of failure, go back in
the association graph (“backtrack”).
Acceleration: “forward checking” before adding an
association.

I Algorithm:
I matrix of node associations
I matrix of future possible associations for a given set of

associations matrice
I list of updated associations by “Backtrack” et

“ForwardChecking”

I Complexity : worst case O(mnn2) (n ordre de X , m de X ′,
n < m)
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Error tolerant graph-matching

I Real world: noisy graphs, incomplete graphs, distorsions

I Distance between graphs (editing, cost function,...)

I Sub-graph isomorphism with error tolerance: search of the
sub-graph G ′ with the minimum distance to G

I Optimal algorithms: A∗

I Approximate matching: genetic algorithms, simulated
annealing, neural networks, probablistic relaxation,...
I iterative minimistion of an objective function
I better adapted for big graphs
I problem of convergence and local minima



Decomposition in common sub-graphs

Messmer, Bunke
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Example
3D reconstruction by graph matching between a graph (data) and
a library of model graphs (IGN)



Example - building reconstruction

Model graph



Example - building reconstruction
Model graph and data graph matching



Example - building reconstruction
Model graph and data graph matching
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Matching with geometric transformation

I Graph = representation of the spatial information
I Matching = computation of the geometric transformation

I polynomial deformation
I elastic transformation (morphing)

I Matching approaches :
I translation: maximum of correlation
I Hough transform (in the parameter space)
I RANSAC method: select randomly a set of matching points,

compute the transformation, compute the score (depends on
the number of matched pairs for the transformation)

I AC-RANSAC: RANSAC + a contrario framework reducing the
number of parameters (NFA to be set)



Example - MAC-RANSAC (PhD Julien Rabin)



Example - MAC-RANSAC (PhD Julien Rabin)



Inexact matching
Optimization of a cost function

I Dissimilarity cost beween nodes

cN(aD , aM) =
∑

αid(aNi (aD), aNi (aM))
∑

αi = 1

I Dissimilarity cost between edges

CE ((a1D , a
2
D), (a1M , a

2
M)) =

∑
βjd(aAj (a1D , a

2
D), aAj (a1M , a

2
M))

∑
βj = 1

I Matching cost function h :

f (h) =
α

|ND |
∑

aD∈ND

cN(aD , h(aD))+
1− α
|ED |

∑
(a1D ,a

2
D)∈ED

cE ((a1D , a
2
D), (h(a1D), h(a2D)))

Optimization methods:

I Tree search

I Expectation Maximization

I Genetic algorithms

I ...



Example: brain structures (A. Perchant)



Example : face structures (R. Cesar et al.)
*1



Spectral method for graph matching (1)

Optimization of a cost function

I weighted adjacency matrix M

I nodes = potential assignments a = (i , i ′) (can be selected by
descriptor matching)

I edges = M(a, b) agreement between the pairwise matchings a
and b (geometric constraints)

I correspondance problem = finding a cluster C of assigments
maximizing the inter-cluster score S =

∑
a,b∈C M(a, b) with

additional constraints

I cluster C = vector x (with x(a) = 1 if a ∈ C and 0 else)

S =
∑
a,b∈C

M(a, b) = xTMx

x∗ = argmax(xTMx)

+ constraints (one to one mapping)



Spectral method for graph matching (2)

Search of the optimal cluster

I number of assigments

I inter-connection between the assignments

I weights of the assignment

Spectral method: relaxation of the constraints on x

x∗ = principal eigenvector(xTMx)

+ introduction of the one-to-one correspondance constraints
(iterative selection of a∗ = argmaxa∈L(x∗(a))
and suppression in x∗ of the incompatible assignments)



Example: point matching (Leordeanu, Hebert)

dab =
dij+q
di′j′+q

αab = angle between the matchings
(with centring and normalization)
M(a, b) = (1− γ)cα + γcd



Example:feature matching (Leordeanu, Hebert)



Example:factorized graph matching (Zhou, de la Torre)



Spatial reasoning in images



Spatial reasoning in images


