

Graphs for image processing, analysis and pattern recognition

Florence Tupin

KO K K Ø K K E K K E K V K K K K K K K K K

Overview

1. Definitions and representation models

2. Single graph methods

- \triangleright Segmentation or labeling and graph-cuts
- \blacktriangleright Graphs for pattern recognition

3. Graph matching

- \blacktriangleright Graph or subgraph isomorphisms
- \blacktriangleright Error tolerant graph-matching
- \blacktriangleright Approximate algorithms (inexact matching)

Overview

1. Definitions and representation models

2. Single graph methods

- \triangleright Segmentation or labeling and graph-cuts
- \blacktriangleright Graphs for pattern recognition

3. Graph matching

- \blacktriangleright Graph or subgraph isomorphisms
- \blacktriangleright Error tolerant graph-matching
- \blacktriangleright Approximate algorithms (inexact matching)

Why using graphs ?

- Interest: they give a compact, structured and complete representation, easy to handle
- \blacktriangleright Applications:

 \blacktriangleright ...

- \blacktriangleright Image processing: segmentation, boundary detection
- **Pattern recognition: printed characters, objects (buildings 2D)** ou 3D, brain structures, ...), faces, ...

- \blacktriangleright Image registration
- \blacktriangleright Understanding of structured scenes

Definitions

$$
Graph: G = (X, E)
$$

- I X set of nodes $(|X|$ order of the graph) $\sqrt{2}$
- \triangleright E set of edges ($|E|$ size of the graph)
- ► complete graph (size $\frac{n(n-1)}{2}$)
- partial graph $G = (X, E')$ with E' part of E
- ► subgraph $F = (Y, E')$, $Y \subseteq X$ et $E' \subseteq E$
- \triangleright (degree) of a node x : $d(x) =$ number of edges
- \triangleright connected graph: for each pair of nodes you find a path linking them
- \triangleright tree: connected graph without cycle
- \triangleright clique: complete subgraph
- \blacktriangleright dual graph (face \rightarrow node)
- \triangleright segment graph (edge \rightarrow node)
- hypergraph (n-ary relations)
- $\sqrt{1}$ weighted graphs: weights on the edges

with $D_{ii} = d_i$ (*D* degree matrix)

Representation

Adjacency matrix, adjacency lists

Representation

Adjacency matrix, adjacency lists

FIGURE 1.4

From top-left to bottom-right: a weighted directed graph, its adjacency list, its adjacency matrix, and its (transposed) incidence matrix representations.

(figure from "Image processing and analysis with graphs", Lezoray - Grady)**KORK EXTERNE PROVIDE**

Which graphs for images ? THE EA \bullet $\left(\begin{array}{ccc} \times & - & \text{ench.} & \text{d} \text{d} \text{d} & \text{p} \text{rk} \text{d} \text{d} \text{s} \end{array} \right)$ $E = 4$ - Conn ou 8- CONN Attribute des nouveles sag, RVB, Attribute des ares $\longrightarrow \{\omega_{ij} = \log i - ng_i\}$ La radiométriques/ $\alpha_{ij} = \| P_i - P_j \|$
calorimetriques (distances, relations spatiales) 6 raphes des primitives (distances) unotorshed
6 raphes des primitives : suspensivels
7 ps RZ Grophes des régions : K-mans noeuds) régions moyenne des no regions arces - adjacentes (GAR) a/colours and 3 rue de la protiére \bullet μ , \geq · histogramme! \bullet $\sqrt{\frac{u}{a}}$ $-\frac{1}{\sqrt{v}}$ maments stantaires) 2990

Examples of graphs

Examples of image graphs

FIGURE 1.11

The rectangular (left) and hexagonal (right) lattices and their associated Voronoi cells.

FIGURE 1.12

Examples of image graphs

RAG (Region Adjacency Graph)

イロト イ部 トイ君 トイ君 トー

重

Examples of image graphs

(figure from "Image processing and analysis with graphs", Lezoray - Grady)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Examples of graphs

 \triangleright Graph of fuzzy attributes : attributed graph with fuzzy value for each attribute

 \blacktriangleright Hierarchical graph :

multi-level graph and and bi-partite graph between 2 levels (multi-level approaches, object grouping, ...)

KORKAR KERKER SAGA

Exemples :

- \blacktriangleright quadtrees, octrees
- \blacktriangleright hierarchical representation of the brain

 \blacktriangleright Graph for reasoning

decision tree, matching graph

Graph examples

FIGURE 1.13

(a) An image with the quadtree tessellation, (b) the associated partition tree, (c) a real image with the quadtree tessellation, (d) the region adjacency graph associated to the quadtree partition, (e) and (f) two different irregular tessellations of an image using image-dependent superpixel segmentation methods: Watershed [23] and SLIC superpixels [24].

(figure from "Image processing and analysis with graphs", Lezoray - Grady)

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

 \equiv

 2990

Graph examples

Figure 2 – Représentation de variété des points clés de $\mathcal{S}_{\omega}^{\max}(I)$ (en rouge) et $\mathcal{S}_{\omega}^{\min}(I)$ (en bleu image Pléiades ayant des textures locales différentes.

(figure from M.T. Pham PhD)

Gra^{et}

(a) Image initial
e 512×512

 (c) Détecteur de Harris

 \mathbf{A} and \mathbf{A} are a set of \mathbf{A} and \mathbf{A} are a set of \mathbf{A} λ λ λ \mathbf{a} \cdots \sim \mathbf{r} \sim

Graph examples

Figure 5 - Vecteur de description proposé pour l'analyse ponctuelle de la texture.

(figure from M.T. Pham [PhD](#page-17-0)[\)](#page-19-0) (a) (E) (E) E DAG

Graph examples - BPT Binary Partition Tree

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 →) 익 Q Q

Which algorithms from graph theory ?

Plus court chemin

Thin Cut / Max Plow

ottin Spanning True

KORK ERKER ADA ADA KORA

Some classical algorithms

Search of the minimum spanning tree

Kruskal algorithm $O(n^2 + m \log_2(m))$

Prim algorithm $O(n^2)$

Shortest path problems

positive weights: Dijkstra algorithm $O(n^2)$

D arbitrary weights but without cycle: Bellman algorithm $O(n^2)$ Max flow and Min cut

KORKARYKERKER POLO

 \blacktriangleright $G = (X, E)$

 \triangleright partitioning in two sets A et B ($A \cup B = X$, $A \cap B = \emptyset$)

$$
cut(A, B) = \sum_{x \in A, y \in B} w(x, y)
$$

 \blacktriangleright Ford and Fulkerson algorithm

Search of maximal clique in a graph

 \blacktriangleright decision tree

 \blacktriangleright cut of already explored branches

Overview

1. Definitions and representation models

2. Single graph methods

- \triangleright Segmentation or labeling and graph-cuts
- \blacktriangleright Graphs for pattern recognition

3. Graph matching

- \blacktriangleright Graph or subgraph isomorphisms
- \blacktriangleright Error tolerant graph-matching
- \blacktriangleright Approximate algorithms (inexact matching)

Segmentation by minimum spanning tree
 $\log_{\widehat{A}} = \log_{\widehat{A}} \log_{\widehat{A}}$

How can we segment this image using a minimum spanning tree ?

KORK EXTERNE PROVIDE

Segmentation by minimum spanning tree

Constantinides (1986)

- \triangleright graph of pixels weighted by the gray levels (or colors) (weights $=$ distances)
- \blacktriangleright search of the minimum spanning tree
- \triangleright spanning tree \Rightarrow partitioning by suppressing the most costly edges

image graphe des pixels attribué

arbre couvrant de poids minimal suppression des arêtes

les plus coûteuses

KOD KAR KED KED E YOUN

Computation of the minimum spanning tree

Kruskal algorithm

► Starting from a partial graph without any edge, iterate $(n-1)$ times : choose the edge of minimum weight creating no cycle in the graph with the previsouly chosen edges

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

- \blacktriangleright In practice:
	- 1. sorting of edges by increasing weights
	- 2. while the number of edges is less than $(n 1)$ do:
		- \blacktriangleright select the first edge not already examined
		- \blacktriangleright if cycle, reject
		- \blacktriangleright else, add the edge in the graph
- ▶ Complexity: $O(n^2 + m \log_2(m))$

Prim algorithm

- \blacktriangleright Extension from near to near of the current tree
- Complexity: $O(n^2)$

Constantinides (1986)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Segmentation by graph-cut

Graph-cut definition:

- **If** graph $G = (X, E)$
- \triangleright partitioning in 2 parts A et B ($A \cup B = X$, $A \cap B = \emptyset$)

$$
\blacktriangleright \ cut(A, B) = \sum_{i \in A, j \in B} w_{ij}
$$

Segmentation by graph clustering

Clustering : partitioning of the graph in groups of nodes based on their similarities [Each cluster : a closely connected component]

The clustering corresponds to:

- \triangleright edges between different groups have low weights (weak similarities)
- \triangleright edges inside a group have high weights (high similarities)

Possible cost functions for the cut:

- minimum cut $Cut(A_1, ..., A_k) = \sum_{i=1}^{i=k} Cut(A_i, \overline{A_i})$
- \triangleright minimum cut normalized by the size of each part (RatioCut) $RatioCut(A_1, ..., A_k) = \sum_{i=1}^{i=k} \frac{1}{|A|}$ $\frac{1}{|A_i|}$ Cut (A_i, A_i) $(|A_i|$ number of vertices in A_i) \triangleright minimum cut normalized by the connectivity of each part (NCut) $NCut(A_1, ..., A_k) = \sum_{i=1}^{i=k} \frac{1}{vol(i)}$ $\frac{1}{\text{vol}(A_i)}$ Cut (A_i, A_i) $\left(\text{vol}(A_i) = \sum_{k \in A_i} d_k \right)$ $\left(\text{vol}(A_i) = \sum_{k \in A_i} d_k \right)$ $\left(\text{vol}(A_i) = \sum_{k \in A_i} d_k \right)$ sum [o](#page-92-0)f the weight of [a](#page-29-0)[ll](#page-27-0) [ed](#page-28-0)g[es](#page-0-0) o[f](#page-0-0) \cdots \cdots

 2990

Toy example

Wu and Leavy (93): search for the MinCut

KORK EXTERNE PROVIDE

image graphe des pixels attribué

coupe de capacité minimale partition

Influence of the number of edges: $Cut(A, B) = 4b$, $Cut(A', B') = 3b$

Normalized cut

- \blacktriangleright Principle: graph clustering
- \blacktriangleright + suppression of the influence of the number of edges: normalized cut

$$
Ncut(A, B) = \frac{Cut(A, B)}{assoc(A, X)} + \frac{cut(A, B)}{assoc(B, X)}
$$

assoc(A, X) =
$$
\sum_{(a \in A, x \in X} w(a, x) = vol(A)
$$

 \blacktriangleright Measuring the connectivity of a cluster:

Nassoc(A, B) =
$$
\frac{assoc(A, A)}{assoc(A, X)} + \frac{assoc(B, B)}{assoc(B, X)}
$$

Neut(A, B) = 2 - Nassoc(A, B)

minimizing the cut \Leftrightarrow maximizing group connectivity

Toy example

Influence of the number of edges: $Cut(A, B) = 4b$, $Cut(A', B') = 3b$

 \Rightarrow normalized cut (NCut)

 $vol(A) = 3a + 3a + 2b + 3a + 3a + 2b = \pi a + b$ $vol(B) =$ $NCut(A, B) =$ $vol(A') =$ $vol(B') =$ $NCut(A', B') =$ (ロ) (伊) (ミ

 299

Graph theory and cuts

MinCut by combinatorial optimization

- \triangleright Stoer-Wagner algorithm
- \triangleright Principle: iterative reducing of the graph by fusion of the nodes linked by the maximal weights

Min K-cut by combinatorial optimization

- \triangleright Partitioning the (un-oriented graph) graph in many components
- \blacktriangleright Gomory-Hu algorithm

minCut in oriented graph by combinatorial optimization

- \triangleright Ford-Fulkerson algorithm (oriented graph with two terminal nodes (sink / tank)
- ▶ Principle: MaxFlow search (MinCut equivalence) by search for an augmenting chain to increase the flow

Graph theory and cuts Laplacian matrices $D=diag(d_i)$ with $d_i=\sum_j w_{ij}$ $W = (w_{ii})$ \blacktriangleright Graph Laplacian matrix $L = D - W$ \blacktriangleright Normalized graph Laplacian matrix $L_n = D^{-\frac{1}{2}} L D^{-\frac{1}{2}} = I - D^{-\frac{1}{2}} W D^{-\frac{1}{2}}$ Spectral clustering algorithms and cuts **In Computation** of the eigen-values and eigen-vectors of some matrix (L, L_n , or generalized eigen problems $Lu = \lambda Du$) \blacktriangleright selection of the k smallest eigen-values and associated k eigen-vectors u_{k} \blacktriangleright $\boxed{U = (u_1, ..., u_k)} \in R^{n \times k}$

dustering en

l mean see les

First $y_i \in R^k$ be the ith row of U $(i = 1, ..., n)$

- ► cluster the points $(y_i)_{1 \leq i \leq n}$ with the k-means algorithm into clusters C_1 , ..., C_k
- I clusters $A_1, ..., A_k$ with $A_i = \{j | y_i \in C_i\}$ $A_i = \{j | y_i \in C_i\}$

Examples (univ. Berkeley)

Spreed i (pixel i) + $P_{x_1} C_{x_1}$

Spreed \overline{f} (pixel \overline{f}) + $P_{x_1} C_{x_1}$ and \overline{f} and \overline{f} $\begin{cases} \text{Need} & \text{if } (\mathbb{p}^{\dagger} \times \mathbb{Q}_{\mathbb{F}}) \rightarrow \mathbb{P}_{\mathbb{F}_{\mathbb{F}}} \text{ C}_{\mathbb{F}_{\mathbb{F}}} \end{cases}$

 \overline{z} (\overline{z}) \overline{z}) \overline{z}) \overline{z}) \overline{z}

 2990

http://www.cs.berkeley.edu/projects/vision/Grouping/

Examples (univ. Berkeley)

つへへ

- 4 何) 4 三)

http://www.cs.berkeley.edu/projects/vision/Grouping/
Examples (univ. Berkeley)

http://www.cs.berkeley.edu/projects/vision/[Gr](#page-35-0)[ou](#page-37-0)[pi](#page-35-0)[ng](#page-36-0)[/](#page-37-0)È $2Q$

Examples (univ. Alberta) with linear constraints

 4 ロ) 4 何) 4 ヨ) 4 ヨ)

Ğ,

 299

Examples (Mean Shift et Normalized Cut)

イロトメ 倒 トメ きょくきょうき 2990

Examples (texture classification with point-wise graph)

Graph-cuts

Bibliography

- \triangleright An optimal graph theoretic approach to data clustering: theory and its application to image segmentation, Z. Wu et R. Leahy, IEEE PAMI, vol.15, num.11, nov. 93
- \triangleright Normalized cuts and image segmentation, J. Shi et J. Malik, IEEE PAMI, vol. 22, num. 8, 2000
- \triangleright Image segmentation with minimum mean cut, Wang, Siskind, 8th ICCV, 2001
- \triangleright Efficient graph-based image segmentation, Felzenszwalb, Huttenlocher, IJCV, 2004
- \triangleright A tutorial on spectral clustering, U. von Luxburg, Statistics and Computing, 2007
- ▶ Color Image segmentation Based on Mean-Shift and Normalized Cuts, Tao, Zhang, IEEE Trans. on Systems, Man and Cybernetics, 2007
- **In Pointwise approach for texture [an](#page-39-0)alysis an[d c](#page-41-0)[h](#page-39-0)[ar](#page-40-0)[a](#page-41-0)[ct](#page-0-0)[eri](#page-92-0)[za](#page-0-0)[tio](#page-92-0)[n](#page-0-0)** \bar{z} **and** ∞

Overview

1. Definitions and representation models

2. Single graph methods

- \triangleright Segmentation or labeling and graph-cuts
- \blacktriangleright Graphs for pattern recognition

3. Graph matching

- \blacktriangleright Graph or subgraph isomorphisms
- \blacktriangleright Error tolerant graph-matching
- \blacktriangleright Approximate algorithms (inexact matching)

KORKARYKERKER POLO

Full scene labeling (scene parsing)

Figure from Farabet et al, PAMI Tenenbaum and Barrow (1977)

- \triangleright Segmentation in regions
- \triangleright Building of the Region Adjacency Graph
- \blacktriangleright Labeling using a set of rules (expert system) :
	- 1. on objects (size, color, texture,...)
	- 2. on contextual relationships between objects (above, inside, near ...)

Generalization with fuzzy attributed graphs \longleftrightarrow

Markovian labeling (random graphs) \bullet^2 and

$$
E(I) = \sum_{i} \Phi(d_i, l_i) + \beta \sum_{ij} \underbrace{\Psi(l_i, l_j)}_{\Delta}
$$

- \blacktriangleright Low-level applications:
	- \blacktriangleright pixel graphs
	- \blacktriangleright segmentation, classification, restoration
- \blacktriangleright High-level applications:
	- **P** graph of super-pixels (SLIC, watershed, ...)
	- \blacktriangleright graph of primitives (edges, key-points, lines,...)
- ▶ CRF (Conditional Random Field) / MRF (Markov Random Field):
	- \triangleright MRF: Ψ does not depend on d ("pure" prior)
	- **I** CRF: Ψ depends on d (usually based on image gradient values)
	- ⇒ pattern recognition, full scene labeli[ng](#page-42-0)

Example on a 3D RAG (T. Gud)

nuclei segmentation

3D anisotropic diffusion

3D anisotropic gradient

3D morphological closing

3D watershea

3D over-segmentation

result of graph labeling

メロンス (型) フォルンスルン

Markovian relaxation

Example on a line graph

 290

Example on a region adjacency graph

イロト イ部 トイ活 トイ店

つへへ

MRF and graph-cut optimization

Binary labeling (Greig et al. 89) :

$$
\mathcal{E}(I) = \sum_i \Phi(d_i|I_i) + \sum_{(i,j)} \beta(I_i - I_j)^2
$$

 \triangleright efficient way of finding the global minimum by min-cut search

KO K K Ø K K E K K E K V K K K K K K K K K

MRF and graph-cut optimization

FIGURE 2.5

(a) The graph for binary MRF minimization. The edges in the cut are depicted as thick arrows. Each node other than v_s and v_t corresponds to a site. If a cut $(8, \mathcal{T})$ places a node in S, the corresponding site is labeled 0; if it is in T , the site is labeled 1. The 0's and 1's at the bottom indicate the label each site is assigned. Here, the sites are arranged in 1D; but according to the neighborhood structure this can be any dimension as shown in (b) and (c).

(figure from "Image processing and analysis with graphs", Lezoray - Grady)

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

 2990

MRF/CRF and graph-cut optimization Multi-level labeling (Boykov, Veksler) :

 \Rightarrow generalization of the binary labeling Definition of two space moves (to go back to the binary labeling)

- \triangleright α -expansion : source S and sink P correspond to label α and the current label $\overline{\alpha}$ (Ψ should be a metric)
- $\triangleright \alpha \beta$ swap: source S for α and sink P for β (Ψ should be a semi-metric)

Optimization by iterative mincut search:

- \blacktriangleright graph: nodes for super-pixels
- \triangleright weights: depending on the current labeling
- \triangleright good trade off time / efficiency compared to simulated annealing or ICM

But for multi-labeling no garantee on optim[alit](#page-48-0)[y o](#page-50-0)[f](#page-48-0) [t](#page-49-0)[he](#page-50-0) [s](#page-0-0)[olu](#page-92-0)[ti](#page-0-0)[on](#page-92-0)

Interactive segmentation: "hard" constraints

Principle Background and object manually defined

 \Rightarrow finding of a binary labeling minimizing an energy including "hard" constraints

Method Mincut search and edges with high weights (should not be cut)

Advantages

- \blacktriangleright easy introduction of "hard" constraints
- \triangleright the manually defined areas permit to do a fast learning

 \blacktriangleright iterative algorithm

Illustrations

 $\mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{B} \otimes \mathbf{B}$ 290

Interactive methods with mincut

Grab-cut

- \blacktriangleright take into account color
- \triangleright two labels (background and object but with a Gaussian Mixture Model)
- \triangleright CRF (conditional random field): regularization term weighted by the image gradient

KORKARYKERKER POLO

 \triangleright iterative semi-supervised learning of the GMM parameters (after manual initialization and after each cut)

Illustrations -GrabCut-

メロトメ 御 トメ 君 トメ 君 トー 活 2990

Deep learning and graph labeling for full scene labeling

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$ 2990

Deep learning and graph labeling for full scene labeling

KORK EXTERNE PROVIDE

Pattern recognition

- \triangleright Object: defined by a set of primitives (nodes of the graph)
- \triangleright Binary relationship of compatibility between nodes (edges of the graph)
- \triangleright Clique: sub-set of primitives all compatible between each other $=$ possible object configuration

 ${\epsilon}$ recognition by maximal clique detection

Search of maximal cliques :

- \blacktriangleright NP-hard problem
- \triangleright Building of a decision tree: a node of the tree $= 1$ clique of the graph
- \triangleright pruning of the tree to suppress already found cliques
- \blacktriangleright Theorem: let S be a node of the search tree T, and let x be the first unexplored child of S to be explored. If all the sub-trees of $S \cup \{x\}$ have been generated, only the sons S not adjacent to x have to be explored. .
EXPRESS 1999 1999 1999 1999

Example:maximal clique search

イロメ イ部メ イ君メ イ君メー È 2990

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ ○ 결 ...

 2990

KORK EXTERNE PROVIDE

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

 $2Q$

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

Overview

1. Definitions and representation models

2. Single graph methods

- \triangleright Segmentation or labeling and graph-cuts
- \blacktriangleright Graphs for pattern recognition

3. Graph matching

- \blacktriangleright Graph or subgraph isomorphisms
- \blacktriangleright Error tolerant graph-matching
- \blacktriangleright Approximate algorithms (inexact matching)

KORKARYKERKER POLO

Graph matching

Correspondance problem:

 \blacktriangleright (Graph(s) of the model (atlas, map, model of object)

$$
\bullet
$$
 Graph built from the data \bullet \bullet

 \blacktriangleright Graph matching:

$$
G = (X, E, \mu, \nu) \quad \to ? \quad G' = (X', E', \mu', \nu')
$$

Graph isomorphism: bijective function $f : X \rightarrow X'$

\n- $$
\mu(x) = \mu'(f(x))
$$
\n- $\forall e = (x_1, x_2), \exists e' = (f(x_1), f(x_2)) / \nu(e) = \nu'(e')$ and conversely
\n

Too strict \Rightarrow isomorphisms of sub-graphs

Sub-graph isomorphisms

There exists a sub-graph S' of G' such that f is an isomorphism from (G) to S'

There exists a sub-graph S of G and a sub-graph S' of G' such that f is an is[o](#page-66-0)morphism from S to S'

Graph isomorphisms: searching the maximal clique

search of the maximal clique of the association graph

 \triangleright principle: building of the association graph

 \triangleright maximal clique: sub-graph isomorphism

モニメ イ ランス ミンス キロメ

 2990

Graph isomorphisms: searching the maximal clique

search of the maximal clique of the association graph

- \triangleright principle: building of the association graph
- \triangleright maximal clique: sub-graph isomorphism

Sub-graph isomorphism: Ullman algorithm

- Principle : extension of the association set (v_i, w_{x_i}) until the G graph has been fully explored. In case of failure, go back in the association graph ("backtrack"). Acceleration: "forward checking" before adding an association.
- \blacktriangleright Algorithm:
	- \triangleright matrix of node associations
	- \triangleright matrix of future possible associations for a given set of associations matrice
	- \blacktriangleright list of updated associations by "Backtrack" et "ForwardChecking"
- ▶ Complexity : worst case $O(m^n n^2)$ (*n* ordre de *X*, *m* de *X'*, $n < m$)

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Overview

1. Definitions and representation models

2. Single graph methods

- \triangleright Segmentation or labeling and graph-cuts
- \blacktriangleright Graphs for pattern recognition

3. Graph matching

- \blacktriangleright Graph or subgraph isomorphisms
- \blacktriangleright Error tolerant graph-matching
- \blacktriangleright Approximate algorithms (inexact matching)

KORKARYKERKER POLO
Error tolerant graph-matching

- \triangleright Real world: noisy graphs, incomplete graphs, distorsions
- \triangleright Distance between graphs (editing, cost function,...)
- \triangleright Sub-graph isomorphism with error tolerance: search of the sub-graph G' with the minimum distance to G

- \triangleright Optimal algorithms: A[∗]
- **Approximate matching: genetic algorithms, simulated** annealing, neural networks, probablistic relaxation,...
	- \blacktriangleright iterative minimistion of an objective function
	- \blacktriangleright better adapted for big graphs
	- \triangleright problem of convergence and local minima

Decomposition in common sub-graphs

 ${1,2,5,4}$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Example

3D reconstruction by graph matching between a graph (data) and a library of model graphs (IGN)

 \Rightarrow

ロト イ母 トイヨ トイヨト

 2990

Example - building reconstruction

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Example - building reconstruction Model graph and data graph matching

Overview

1. Definitions and representation models

2. Single graph methods

- \triangleright Segmentation or labeling and graph-cuts
- \blacktriangleright Graphs for pattern recognition

3. Graph matching

- \triangleright Graph or subgraph isomorphisms
- \blacktriangleright Error tolerant graph-matching
- \blacktriangleright Approximate algorithms (*inexact matching*)

KORKARYKERKER POLO

Matching with geometric transformation

- \triangleright Graph = representation of the spatial information
- \blacktriangleright Matching = computation of the geometric transformation
	- \blacktriangleright polynomial deformation
	- \blacktriangleright elastic transformation (morphing)
- \blacktriangleright Matching approaches :
	- \blacktriangleright translation: maximum of correlation
	- \blacktriangleright Hough transform (in the parameter space)
	- **IN RANSAC** method: select randomly a set of matching points, compute the transformation, compute the score (depends on the number of matched pairs for the transformation)
	- \triangleright *AC*-RANSAC: RANSAC + a contrario framework reducing the number of parameters (NFA to be set)

KORKAR KERKER ORA

Example - MAC-RANSAC (PhD Julien Rabin)

(a) Paire d'images analysée.

(b) Reconnaissance de chacun des objets superposés.

Example - MAC-RANSAC (PhD Julien Rabin)

(a) Paire d'images utilisée

Inexact matching

Optimization of a cost function

 \blacktriangleright Dissimilarity cost beween nodes

$$
c_N(a_D, a_M) = \sum \alpha_i d(a_i^N(a_D), a_i^N(a_M)) \sum \alpha_i = 1
$$

 \triangleright Dissimilarity cost between edges

$$
C_E((a_D^1, a_D^2), (a_M^1, a_M^2)) = \sum \beta_j d(a_j^A(a_D^1, a_D^2), a_j^A(a_M^1, a_M^2)) \sum \beta_j :
$$

 \blacktriangleright Matching cost function h :

$$
f(h) = \frac{\alpha}{|N_D|} \sum_{a_D \in N_D} c_N(a_D, h(a_D)) + \frac{1 - \alpha}{|E_D|} \sum_{(a_D^1, a_D^2) \in E_D} c_E((a_D^1, a_D^2), (h(a_D^1), h(a_D^2))
$$

Optimization methods:

 \blacktriangleright Tree search

 \blacktriangleright ...

- \blacktriangleright Expectation Maximization
- \blacktriangleright Genetic algorithms

Example: brain structures (A. Perchant)

Example : face structures (R. Cesar et al.)

*1

メロトメ 御 トメ 差 トメ 差 ト

CONTRACTOR

 2990

Spectral method for graph matching (1)

Optimization of a cost function

- \blacktriangleright weighted adjacency matrix M
- nodes = potential assignments $a = (i, i')$ (can be selected by descriptor matching)
- \blacktriangleright edges = $M(a, b)$ agreement between the pairwise matchings a and b (geometric constraints)
- \triangleright correspondance problem = finding a cluster C of assigments maximizing the inter-cluster score $\mathcal{S} = \sum_{a,b \in C} \mathit{M}(a,b)$ with additional constraints
- ► cluster $C =$ vector x (with $x(a) = 1$ if $a \in C$ and 0 else)

$$
S = \sum_{a,b \in C} M(a,b) = x^T M x
$$

$$
x^* = \text{argmax}(x^T M x)
$$

KORKAR KERKER ORA

 $+$ constraints (one to one mapping)

Spectral method for graph matching (2)

Search of the optimal cluster

- \blacktriangleright number of assigments
- \blacktriangleright inter-connection between the assignments
- \blacktriangleright weights of the assignment

Spectral method: relaxation of the constraints on x

$$
x^* = principal\ eigenvector(x^T M x)
$$

KID K 4 D K 4 B X 4 B X 1 B YO A CH

 $+$ introduction of the one-to-one correspondance constraints (iterative selection of $a^* = argmax_{a \in L}(x^*(a))$ and suppression in x^* of the incompatible assignments)

Example: point matching (Leordeanu, Hebert)

 $d_{ab} = \frac{d_{ij} + q}{d_{ij} + q}$ $d_{i'j'}+q$ α_{ab} = angle between the matchings (with centring and normalization) $M(a, b) = (1 - \gamma)c_{\alpha} + \gamma c_d$

Example:feature matching (Leordeanu, Hebert)

Example:factorized graph matching (Zhou, de la Torre)

 2990 イロト イ押 トイヨトス

Spatial reasoning in images

(a) Example image.

(b) Labeled image: The blue regions represent the sea, the red and orange represent ships or boats and the yellow regions represent the docks.

(c) Concept hierarchy T_C in the context of harbors.

(d) Conceptual graph representing the spatial organization of some elements of Figure 5.8(b).

Spatial reasoning in images

 290

References

Bibliography

- \triangleright Factorized graph matching, Zhou and de La Torre, IEEE PAMI, vol.15, num.11, 2015
- \triangleright A spectral technique for correspondence problems using pairwise constraints, Leordeanu and Hebert, ICCV, 2005
- \blacktriangleright Learning hierarchical features for scene labeling, Farabet, Couprie, Najman, LeCun, IEEE PAMI, 2015
- \blacktriangleright Alignement and parallelism for the description of high resolution remote sensing images, Vanegas, Bloch, Inglada, IEEE TGRS, 2013
- \triangleright A statistical approach to the matching of local features, Rabin, Gousseau, Delon, SIAM Imaging science, 2019