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Why using graphs ?

P Interest: they give a compact, structured and complete
representation, easy to handle
» Applications:
» Image processing: segmentation, boundary detection
> Pattern recognition: printed characters, objects (buildings 2D
ou 3D, brain structures, ...), faces, ...
P Image registration

» Understanding of structured scenes
> .



Definitions Graph: G = (X,E)

R

=
X set of nodes (|X| order of the graph) &ﬁfg i

>

» E set of edges (|E| size of the graph) ‘f A/J—/
: -1

» complete graph (size %)

>

>

partial graph G = (X, E’) with E’ part of E
subgraph F = (Y,E'), YC X et E' CE

> f a node x : d(x) = number of edges
connectggg}aph: for each pair of nodes you find a path

linking them
P tree: connected graph without cycle /
» clique: complete subgraph
» dual graph (face — node) /\@

> segment graph (edge — node)




Notations Graph: G = (X,E) o A -

{'j 2@0 wo{ (U)O(T\
> weight of an edge linking i et j : @ 7
» adjacency matrix W of size | X| x | X| defined by

{ wij if ej € E 4\\/_”,\%
0 else SRE )
1Al

)
for undirected edges W is symetric y N
» Laplacian matrix of an undirected graph Q
=3 Wi m \C; (f“)
! e,'jEE y
d if i= A/g
Lij = w; if eckE — *:;l*ﬁ

with D; = d; @ ree matrix



Representation

Adjacency matrix, adjacency lists
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Representation

Adjacency matrix, adjacency lists
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FIGURE 1.4

From top-left to bottom-right: a weighted directed graph, its adjacency list, its adja-
cency matrix, and its (transposed) incidence matrix representations.

(figure from “Image processing and analysis with graphs”, Lezoray
- Grady)
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Examples of graphs

» Attributed graph : G = (X, E, u,v)
» 1 X — Lx nodes interpreter (Lx = attributes of nodes)
» v E — L edges interpreter (Lg = attributes of edges)

Exemples :

>graph of pixels—

> ~region adjacency graph (RAG
> Voronogions / Delaunay triangulation

> . . . .
graph of wlth complex relationships

> edges and nodes = random variables
» Fuzzy graph : G = (X, E = X x X, s, vf)
> ur: X —=[0,1]
> vr: E—[0,1]
> avec Y(u,v) € X x X ve(u,v) < pe(u)pe(v) or
ve(u, v) < minfur(u)yae(v)]



Examples of image graphs

uz uz
u; uy
FIGURE 1.11
The rectangular (left) and hexagonal (right) lattices and their associated Voronoi
cells.
| | | | 4.4.!!
| [ | | mﬁ !!
(a) 6-adjacency. (b) 18-adjacency. (c) 26-adjacency.

FIGURE 1.12



Examples of image graphs
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RAG (Region Adjacency Graph)



Examples of image graphs




Examples of imace oranhe

(a) Initial sct of pointx

() Relative Neighborhaod Graph.

N>
2

4
NG
NV
S
e
b2

—

(h) 3-Skeketon Graph,
black edges, 8 = 0.9: grey edges.

FIGURE 1.14
Examples of proximity graphs from a set of 100 points in Z.

(figure from “Image processing and analysis with graphs”, Lezoray
- Grady)



Examples of graphs

» Graph of fuzzy attributes : attributed graph with fuzzy value
for each attribute

» Hierarchical graph :

multi-level graph and and bi-partite graph between 2 levels
(multi-level approaches, object grouping, ...)

Exemples :
» quadtrees, octrees
» hierarchical representation of the brain
» Graph for reasoning
decision tree, matching graph



Graph example

pds CsLic)

FIGURE 1.13
(a) An image with the quadtree tessellation, (h) the associated partition tree, (c) a
real image with the quadtree ion, (d) the region adj; graph i

to the quadtree partition, (e) and (f) two different iregular tessellations of an image
using image-dependent superpixel segmentation methods: Watershed [23] and SLIC

superpixels [24].

(figure from “Image processing and analysis with graphs”, Lezoray
- Grady)



Graph examples

Figure 2 — Représentation de variété des points clés de Sm2%() (en rouge) et S (I) (en bleu
image Pléiades ayant des textures locales différentes.

(figure from M.T. Pham PhD)



(a) Image initiale 512 x 512 (b) Extrema locaux

(c) Détecteur de Harris
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Graph examples

Understudied
vertex
Understudied pixel \6(9 am

K closest local
minimum pixels

K closest local
maximum pixels

2 min
T

0,
"

05 min

Rmin
Geometrical vector a 3
formed by p and q DFg"

Description vector

Figure 5 — Vecteur de description proposé pour T'analyse ponctuelle de la texture.

(figure from M.T. Pham PhD) =& -




Graph examples - BPT Binary Partition Tree
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Which algorithms from graph theory ?
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Some classical algorithms

Gearch of the minimum spanning tree—
> Kruskal algorlthm O( + mloga(m))
> Prim algeﬁtererOeﬁg)
Shortest path problems >
~ > positive weights: Dijkstra algorithm O(n?)
~»arbitrary weights but without cycle: Bellman algorithm 0(n?)

/" Max flow and Min cut\

T » G=(X,E)
> partitioning in two sets Aet B (AUB =X, AN B =10)
> cut(A,B) = erA,yeB w(x,y)
» Ford and Fulkerson algorithm
Search of maximal clique in a graph
> decision tree

P cut of already explored branches
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Segmentation by minimum spanning tree

MWg= \ngi- “64)

How can we segment this image using a minimgm spanning tree ?
S

Mo




Segmentation by minimum spanning tree

Constantinides (1986)
» graph of pixels weighted by the gray levels (or colors) (weights
= distances)
» search of the minimum spanning tree

P spanning tree = partitioning by suppressing the most costly

edges
25! 255 o
0 5 0 0 5. 0 P
ﬂ 25| 2ss| O 128 0
*—o o ° *—o o [ ]
0 0 128 0 0 128
image graphe des pixels attribué arbre couvrant de poids minimal suppression des arétes

les plus coliteuses



Computation of the minimum spanning tree

Kruskal algorithm

» Starting from a partial graph without any edge, iterate (n — 1)
times : choose the edge of minimum weight creating no cycle
in the graph with the previsouly chosen edges

P In practice:

1. sorting of edges by increasing weights
2. while the number of edges is less than (n — 1) do:

P select the first edge not already examined
> if cycle, reject
> else, add the edge in the graph

» Complexity: O(n? + mlogs(m))

Prim algorithm
» Extension from near to near of the current tree
» Complexity: O(n?)



Constantinides (1986)




Segmentation by graph-cut

Graph-cut definition:
» graph G = (X, E)
» partitioning in 2 parts Aet B(AUB =X, ANB =)
> cut(A,B) = ZieA,jeB wij

A




Segmentation by graph clustering

/Clustering . partitioning of the graph in groups of nodes based o
/L their similarities [Each cluster : a closely connected component

The cIusterlng corresponds to

P> edges between different groups have low weights (weak

similarities)
> edges inside a group have high weights {(high similarities)

Possible cost functions for the cut:

> minimum cut Cut(Ay, ..., Ax) = S2i=8 Cut(A;, A;)

» minimum cut normalized by the size of each part (RatioCut)
RatioCut(Ar, ..., Ax) = Y=t ra7 Cut(Ai, Aj)
(|Ai| number of vertices in Aj)

> minimum cut normalized by the connectivity of each part
(NCut) NCut(Ar, ..., Ax) = Sit vartay Cut(Ai A)
(vol( i) = ZkeA di sum of the weight of all edges of



Toy example

Wu and Leavy (93): search for the MinCut

255 0 255

': ° PY
ﬂ ’ ’ T . el g
Py Py

255 255 128

image graphe des pixels attribué coupe de capacité minimale partition

Influence of the number of edges: Cut(A, B) = 4b,
Cut(A',B') =3b

Cut(A.B)

= Tnormalized cut (NCut) =4b




Normalized cut

» Principle: graph clustering

» + suppression of the influence of the number of edges:
normalized cut

r cut A ut (A, B)
A, B) =
@* assoc(B X)
— /

aSSOC(A’ X): 7 72 7 (a,x) — VO/(A)

@EcAxeX

» Measuring the connectivity of a cluster:

assoc(A, A) N assoc(B, B)

N A B)=
assoc(A, B) assoc(A, X) ' assoc(B, X)

Ncut(A, B) = 2 — Nassoc(A, B)

minimizing the cut < maximizing group connectivity‘




Toy example

Influence of the number of edges: Cut(A, B) = 4b,
Cut(A',B') =3b

--- Cut(A’,B’) = Bb

ciam Ul
= normalized cut (NCut)

vol(A) 2o + 3&+Q\>4,30\A/3&4Q\3: /izaJrU\D
vol(B) = 3lb & 3\;; ob. 0
NCut(A,B) = ¢ 2= m[b

m 6b
ol(A) = 2o 4 bt 3b= A+7D

vwl(BY= =k \
ut(A. B = B£ 3\D — 3 e
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Graph theory and cuts

MinCut by combinatorial optimization
> Stoer-Wagner algorithm

» Principle: iterative reducing of the graph by fusion of the
nodes linked by the maximal weights

Min K-cut by combinatorial optimization

» Partitioning the (un-oriented graph) graph in many
components

» Gomory-Hu algorithm
minCut in oriented graph by combinatorial optimization

» Ford-Fulkerson algorithm (oriented graph with two terminal
nodes (sink / tank)

» Principle: MaxFlow search (MinCut equivalence) by search for
an augmenting chain to increase the flow



Graph theory and cuts
Laplacian matrices
D = diag(d,-) with d; = Zj Wijj
W = (wj)

d\}m)mj’\fn’\a en
» Normalized graph Laplacian matri L James
< Ly=D"2lD"2=]-D 2WD 2

(Spectral cluste@algorithms and cuts

L ——»Computation of the eigen-values and eigen-vectors of some

“‘ matrix (L, L,, or generalized eigen problems Lu = ADu) meﬁg
P selection of the k smallest eigen-values and associatg;dk Z s o

eigen-vectors iy 2 TRt e n
S( ’?\A OV“\L - z\y(kQJUMJ

> Tet y; € e the ith row of U (i =1,...,n) =

» cluster the points (y;)1<j<n with the k-means algorithm into
‘ clusters Cy, ..., Ck
| » clusters Aq..... A, with A; = {jly; € C}



Examples (univ. Berkeley) Aclpr P\ ase Aok
§ m@d X CF;K%Q JL>H> (P,{/ C,r '—’ng_ii’gi o dﬁiC) »Ci)lz
Noad QP“&%J\*P%)C,{' /UJ% :\LQ e 29'2

http://www.cs.berkeley.edu/projects/vision/Grouping/



Examples (univ. Berkeley)

http://www.cs.berkeley.edu/projects/vision /Grouping/




Examples (univ. Berkeley)
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http:/ /www.cs.berkeley.edu/projects/vision/Grouping/




Examples (univ. Alberta) with linear constraints

(d)




Examples (Mean Shift et Normalized Cut)




Examples (texture classification with point-wise graph)

(a) Image originale (b) Vérité terrain

(j) Vecteur de signature (k) €Classification spectrale des
vecteurs de signature



Graph-cuts
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Figure from Farabet et al,, I
Tenenbaum and Barrow@%
» Segmentation in regions
» Building of the Region Adjacency Graph
» Labeling using a set of rules (expert system) :
1. on objects (size, color, texture,...)

2. on contextual relationships between objects (above, inside,
near ...)

Generalization with fuzzy attributed graphs



Markovian Iabellng (random graphs) e

( Z“’O +5Z"”n’1) N

,/, S

> Low-level appllcatlons e
» pixel graphs
P segmentation, classification, restoration

» High-level applications:
> graph of/super-pixels (SLIC, watershed, )
> graph of primitives (edges, key-points, lines,...)

» CRF (Conditional Random Field) / MRF (Markov Random
Field):
» MRF: W does not depend on d (“pure” prior)
» CRF: W depends on d (usually based on image gradient values)

= pattern recognition, full scene labeling



Example on a 3D RAG (T. Gud)

nuclei
segmentation

3D over-segmentation result of graph labeling

Markovian relaxation

20,

p{ S S, ., J}

=)




Example on a line graph




Example on a region adjacency graph




MRF and graph-cut optimization

Binary labeling (Greig et al. 89) :

E(1) =" _o(dilh)+ > Bl — 1)
i (i)

> efficient way of finding the global minimum by min-cut search



MRF and graph-cut optimization

(@) (b) (©

FIGURE 2.5

(a) The graph for binary MRF minimization. The edges in the cut are depicted as
thick arrows. Each node other than v, and v; corresponds to a site. If a cut (8,7)
places a node in 8, the corresponding site is labeled 0; if it is in T, the site is labeled
1. The 0’s and 1’s at the bottom indicate the label each site is assigned. Here, the
sites are arranged in 1D; but according to the neighborhood structure this can be any
dimension as shown in (b) and (c).

(figure from “Image processing and analysis with graphs”, Lezoray
- Grady)



MRF /CRF and graph-cut optimization
Multi-level labeling (Boykov, Veksler) :

= generalization of the binary labeling
Definition of two space moves (to go back to the binary labeling)

» q-expansion : source S and sink P correspond to label o and
the current label @ (W should be a metric)

» « — 3 swap: source S for « and sink P for 3 (VW should be a
semi-metric)

Optimization by iterative mincut search:

» graph: nodes for super-pixels

> weights: depending on the current labeling

» good trade off time / efficiency compared to simulated
annealing or ICM

But for multi-labeling no garantee on optimality of the solution



Interactive segmentation: “hard” constraints

Principle Background and object manually defined

= finding of a binary labeling minimizing an energy including
“hard” constraints

Method Mincut search and edges with high weights (should not be
cut)

Advantages
» easy introduction of “hard” constraints

» the manually defined areas permit to do a fast learning

> iterative algorithm



[[lustrations

\Ij

(a) Original B&W photo (b) Segmentation results

|




Interactive methods with mincut

Grab-cut

| 2
| 2

take into account color

two labels (background and object but with a Gaussian
Mixture Model)

CRF (conditional random field): regularization term weighted
by the image gradient

iterative semi-supervised learning of the GMM parameters
(after manual initialization and after each cut)



[llustrations -GrabCut-




Deep learning and graph labeling for full scene labeling




Deep learning and graph labeling for full scene labeling

sppin pan'ls ON
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minimization in
the graph via
a-expansion




Pattern recognition

» Object: defined by a set of primitives (nodes of the graph)

» Binary relationship of compatibility between nodes (edges of
the graph)

» Clique: sub-set of primitives all compatible between each other
= possible object configuration

>@tion y maximal Elﬁﬁe@

Search of maximal cliques :

» NP-hard problem

» Building of a decision tree: a node of the tree = 1 clique of
the graph

» pruning of the tree to suppress already found cliques

» Theorem: let S be a node of the search tree T, and let x be
the first unexplored child of S to be explored. If all the
sub-trees of S U {x} have been generated, only the sons S not
adjacent to x have to be explored.



Example:maximal clique search




Example: buiding reconstruction by the maximal clique
search (IGN)

Amiens (Résolution : 20cm) Echelle 1:1000

Données




Example: buiding reconstruction by the maximal clique
search (IGN)

€N
% A
Graphe Graphe de Meilleure clique
Graphe 3D | B| , * Gible 3D |= compatibilité S




Example: buiding reconstruction by the maximal clique
search (IGN)

Algorithme :

Eliminer récursivement toute facette localement inadmissible

jraphe Admissible 3D



Example: buiding reconstruction by the maximal clique
search (IGN)

Algorithme :

Eliminer récursivement toute facette localement inadmissible

2
pe

Surfaarfatdionestoppesudavs sidioissible



Example: buiding reconstruction by the maximal clique
search (IGN)

Facettes incompatibles



Example: buiding reconstruction by the maximal clique
search (IGN)

(21G Facettes incompatibles



Example: buiding reconstruction by the maximal clique
search (IGN)
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Graph matching

Correspondance problem:
>Watlas, map, model of object)
» (Graph built from the data, _ - bwu-}@f/ o
» Graph matching:

G=(X,E,u,v) —=? G =X, E u V)

Graph isomorphism: bijective function f : X — X’

> u(x) = 1(F(x))
> Ve = (x1,x), 3 = (f(x1),f(x2)) / v(e) =7'(¢) and
conversely

Too strict = isomorphisms of sub-graphs



Sub-graph isomorphisms

» There exists a sub-graph S’ of G’ such that f is an
isomorphism from @o s’

L S
i

» There exists a sub-graph S of G and a sub-graph S’ of G’
such that f is an isomorphism from S to S’



Graph isomorphisms: searching the maximal clique

search of the maximal clique of the association graph
» principle: building of the association graph

> maximal clique: sub-graph isomorphism j




Graph isomorphisms: searching the maximal clique

search of the maximal clique of the association graph

» principle: building of the association graph

» maximal clique: sub-graph isomorphism

22)




Sub-graph isomorphism: Ullman algorithm

» Principle : extension of the association set (v;, wy;) until the
G graph has been fully explored. In case of failure, go back in
the association graph (“backtrack™).

Acceleration: “forward checking” before adding an
association.

» Algorithm:

P matrix of node associations

» matrix of future possible associations for a given set of
associations matrice

» list of updated associations by “Backtrack” et
“ForwardChecking”

» Complexity : worst case O(m"n?) (n ordre de X, m de X/,
n < m)
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Error tolerant graph-matching

» Real world: noisy graphs, incomplete graphs, distorsions
» Distance between graphs (editing, cost function,...)
» Sub-graph isomorphism with error tolerance: search of the
sub-graph G’ with the minimum distance to G
» Optimal algo@
> Approximate matching: genetic algorithms, simulated
annealing, neural networks, probablistic relaxation,...
» iterative minimistion of an objective function

» better adapted for big graphs
» problem of convergence and local minima



Decomposition in common sub-graphs

Messmer, Bunke

Gl
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Example

3D reconstruction by graph matching between a graph (data) and
a library of model graphs (IGN)




Example - building reconstruction

Model graph

@ 1 () = (portion de plan)

‘_ I (v) = (segment de droite, horizontal=1)

¢) = (borde=1, plus haut que=1, mow \

N

2\

-

ot




Example - building reconstruction
Model graph-an

de cout minimal

Isomorphisme
(strict) de sous-graphe

Isomorphime
de sous-graphe
avec tolérance

d "erreur

appariement




Example - building reconstruction
Model graph and data graph_ matching

Ty
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Matching with geometric transformation

» Graph = representation of the spatial-information—
» Matching = computation of th ometrlc transformatlorD

\,

» polynomial deformation
> elastic transformation (morphing)

» Matching approaches :

> translation: maximum of correlation

» Hough transform (in the parameter space)

»> RANSAC method: select randomly a set of matching points,
compute the transformation, compute the score (depends on
the number\f matched pairs for the transformation)

AC- RANSA??ANSAC + a contrario framework reducing the
Gumber of parameters (NFA to be set)



Example - MAC-RANSAC (PhD Julien Rabin)

(a) Paire d'images analysée.

(b) Reconnaissance de chacun des objets superposés.






Inexact matching
Optimization of a cost function
» Dissimilarity cost beween nodes

aD,aM E ad aD, , Za,—l

» Dissimilarity cost between edges

((aD, aD) Zﬁj 3D73D) A(a}\/la 3%//)) Zﬁj :
» Matching cost function h :
o 1-a
f(h) = m Z CN(aD7h(aD))+ E ’ Z CE((alD7a2D)a(h(alD)7‘
apeNp (31D732D)€ED

Optimization methods:
» Tree search
» Expectation Maximization
» Genetic algorithms
> ...



W 2P
L .JW.A"A/
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Example: brain structures (A. Perchant)



Example : face structures (R. Cesar et al.)
*1




Spectral method for graph matching (1)
Optimization of a cost function

P> weighted adjacency matrix M

» nodes = potential assignments a = (i, /") (can be selected by
descriptor matching)

» edges = M(a, b) agreement between the pairwise matchings a
and b (geometric constraints)

» correspondance problem = finding a cluster C of assigments
maximizing the inter-cluster score S =3, M(a, b) with
additional constraints

» cluster C = vector x (with x(a) =1 if a€ C and 0 else)

S= Z M(a, b) = xT Mx
a,beC

x* = argmax(x " Mx)

+ constraints (one to one mapping)



Spectral method for graph matching (2)

Search of the optimal cluster

» number of assigments
P inter-connection between the assignments

> weights of the assignment
Spectral method: relaxation of the constraints on x
x* = principal eigenvector(x T Mx)

+ introduction of the one-to-one correspondance constraints
(iterative selection of a* = argmax,e; (x*(a))
and suppression in x* of the incompatible assignments)



Example: point matching (Leordeanu, Hebert)

25 inliers
0 0 £3 o
* u % * *
w T T = * 5 #* Hy g
* * #E x *g * T * * w¥
100F *, - 100 * =ty w EEER *
s *F *

dj
d, itd

b = dyy+q
«zp = angle between the matchings
(with centring and normalization)

M(a, b) = (1 — v)ca +vcq




Example:feature matching (Leordeanu, Hebert)




Example:factorized graph matching (Zhou, de la Torre)




Spatial reasoning in images

==== Sea:R1

— == Boat:R7

== Boat:R2

_——=Boat:R4
-

Dock:R5

S=~~ship:R3

= Dock:R6

(a) Example image. (b) Labeled image: The blue regions represent the
sea, the red and orange represent ships or boats and
the yellow regions represent the docks.

Water Harbour_Structures Ship

‘ Boat:R2 ‘

(c) Concept hierarchy Te in the context of  (d) Conceptual graph representing the spatial orga-
harbors. nization of some elements of Figure 5.8(h).

Sea Quay  Dock ety Boat



Spatial reasoning in images
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