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Introduction

◦ Historiy

- Statistical physics (crystal structure)

- Geman and Geman paper (84)

- New interest with graph-cuts (2000)

◦ Main principle of Markov Random Fields

introducing contextual relationship in image processing

a local neighborhood is enough
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Prior model for natural images : spatial context
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Illustrations - denoising (Darbon, Sigelle)

impulsive noise + TV
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Illustrations - object selection (Rother, Kolmogorov et
Blake)
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Illustrations - digital tapestry (Rother et al.)
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Illustrations - inpainting (Allène, Paragios)
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Markov random fields and graph-cut based optimization

◦ Bayesian analysis and markovian models

◦ Optimization

8



Notations

◦ Probabilistic model of images

S = {s} ⊂ Zd (finite) set of sites

xs ∈ E gray-level space

(E = {0..255} {0..q − 1} (labels) IR)

Xs random variable associated to s

X = {Xs}s∈S random field

x = {xs}s∈S = {xs} ∪ xs configuration (image)

Ω = E|S| space of configurations

◦ probabilities :

P (Xs = xs) local probability

P (X = x) = P (X1 = x1, X2 = x2 . . . Xs = xs . . .) global (joint) law

P (Xs = xs|Xt = xt, t 6= s)(local) conditional probability
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Bayesian analysis for image processing
Acquisition process of the observation y

x → Degradation Detection Measurement → y

original scene observation

◦ MAP (Maximum A Posteriori) crierion

P (X|Y ) ∝ P (Y |X)P (X)

— P (Y |X) : likelihood term (“data attachment term”)

— P (X) : prior term, choice of a model for the solution (regularization)
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Energy formulation

◦ Acquisition process

P (Y = y|X = x) =
∏
s∈S

P (Ys = ys|x) =
∏
s∈S

P (Ys = ys|Xs = xs)

◦ Prior model : desired properties of the solution

⇒ interaction between a site and its neighbors (regularity of the solution, ...)

⇒ X is a Markov random field

⇒ Hammersley-Clifford theorem

P (X = x) =
exp −U(x)

Z
Gibbs distribution

U(x) =
∑
c∈C

U c(x) global enregy

U c(x) = U c(xs, s ∈ c) clique potentials
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A posteriori distribution

◦ New Gibbs distribution

P (X = x|Y = y) =
exp −U(x|y)

Z ′

U(x|y) =
∑
s∈S
− ln(P (Ys = ys|Xs)) + U(x)

U(x|y) =
∑
s∈S

Vc(ys|xs) +
∑
{s,t}

Vc(xs, xt)

max
x∈Ω

Pr(X = x|Y = y) ⇔ min
x∈Ω

U(x|y)
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Examples of Markovian models

◦ Segmentation - classification

Ising model : binary field (E = {0, 1})

Potts model : multi-labels field (E = {0, ...,K})

Vc(xs, xt) = βδ(xs 6= xt)

◦ Restoration Vc(xs, xt) = φ(xs − xt)
— gaussian model (quadratic) φ(u) = u2

— Geman and Mac Clure 85 φ(u) =
u2

1 + u2

— Hebert and Leahy 89 φ(u) = log(1 + u2)

— Charbonnier 94 φ(u) = 2
√

1 + u2 − 2

— TV (Total Variation) model φ(u) = |u|
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Markov random fields and graph-cut based optimization

◦ Bayesian analysis and markovian models

◦ Optimization
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Optimization methods

◦ Difficulties

Configuration space Ω is huge : Card(Λ)(np×nl) !

◦ Methods

— Simulated annealing (Geman et Geman 84) : iterative stochastic

algorithm, global minimum, slow algorithm (many Gibbas samplers)

— ICM (Iterated Conditional Modes) : deterministic algorithm, local

minimum, very fast, needs a good initialization

— Research of minimum cut in a graph : fast and global minimum !

but for a restricted class of energies ...
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Graph-cut based optimization methods

◦ Introduction - reminders on graphs

◦ Binary case

◦ Approximate algorithms

◦ Exact algorithms
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Graph theory and cuts

◦ Cut of a graph

— graph G = (X,E)

— partitioning in two parts A and B (A ∪B = X, A ∩B = ∅)
— cut(A,B) =

∑
x∈A,y∈B w(x, y)
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Graph theory and cuts

◦ Cut of a graph with 2 terminal nodes

— adding of 2 particular nodes : source s, sink t

— partitioning in 2 parts S and T , one containing the source and the other

the sink : st-cut

— cut(S, T ) =
∑
x∈S,y∈T w(x, y)
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Graph theory and cuts

◦ Min-cut of a graph

Min-cut : Among all the s-t cuts, the one with the minimum cost
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Graph theory and cuts

◦ Flow

— flow(p,q) ≤ w(p,q)

— in a node : in-going flow = out-going flow

— search for the max flow between s and t for given positive capacities of

the edges

20



Graph theory and cuts ◦ MinCut = MaxFlow

— maximum flow = cut of minimum capacity

— value of the flow = cost of the cut
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Graph theory and cuts

◦ Ford and Fulkerson algorithm (62)

notion of residual graph and search for the shortest path

algorithm in O(nmcmax) (n number of nodes, m number of edges and cmax

maximum capacity of the edges)

◦ “Push - relabel” algorithm (Goldberg et Trajan)

does not respect in-going flow = out-going flow

algorithm in O(n3) or O(n2
√
m)
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Graph theory and cuts

◦ Specific algorithm for image processing (Boykov et Kolmogorov)

— building of 2 trees, each one starting from a terminal node

— meeting of the 2 trees : existence of an increasing chain

— updating of the residual graph and iteration

in practice : much more adapted to graphs with few edges of image processing !

http://www.adastral.ucl.ac.uk/˜vladkolm/software.html
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Graph-cut based optimization methods

◦ Introduction - reminders on graphs

◦ Binary case

◦ Approximate algorithms

◦ Exact algorithms
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Binary case - Ising model (Greig et al. 89)

◦ Ising model

two labels 0 (black) and 1 (white)

energy :

U(x|y) =
∑
s

D(xs, ys) +
∑
(s,t)

βδ(xs 6= xt)

◦ Graph building

— nodes = all the pixels p of the image

— addition of two terminal nodes (source : label 0, sink : label 1)

— edges :

1. link with the source with weight : w(p, s) = D(0, yp)

2. link with the sink with weight : w(p, t) = D(1, yp)

3. if two pixels p and q are neighbors in 4 connexity : edge of weight

w(p, q) = β
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Binary case 1D and 2D (Greig et al. 89)

S(label 0)

P (label 1)

i
β β β β

coupe

....

D(0,yi)

D(1,yi)

s

t

s

t
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Binary case - Ising model (Greig et al. 89)

◦ Cost of a cut

S set of pixels linked to the source

T set of pixels linked to the sink

cost of the cut :

C(S, T ) =
∑
p∈S
D(1, yp) +

∑
p∈T
D(0, yp) +

∑
(s∈S,t∈T )

β

⇒ C(S, T ) = U(x|y) for a labeling x defined by

— if p ∈ S : xp = 1

— if p ∈ T : xp = 0
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Binary case 1D and 2D (Greig et al. 89)
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Binary case : generalization (Kolmogorov et Zabih, 2004)

◦ Energy formulation

U(x|y) =
∑
s

D(xs, ys) +
∑
(s,t)

Vc(xs, xt)

◦ Condition for a graph-representable energy

Vc(0, 0) + Vc(1, 1) ≤ Vc(0, 1) + Vc(1, 0)

Vc “sous-modular” functions
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Building of the graph (Kolmogorov et Zabih)

(if p ∈ S xp = 0)
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Building of the graph (Kolmogorov et Zabih)
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Building of the graph (Kolmogorov et Zabih)
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Interactive segmentation : “hard” constraints

◦ Principle

the user manually defines the object and the background

⇒ minimization of the energy of a binary classification with “hard” constraints

(= pixels that can not change their class)

◦ Method

Search for the minimum cut with high weights for some edges guaranteeing

that these edges will not belong to the cut

◦ Advantages

— allow to introduce “hard” constraints not easy to introduce when

optimizing with the simulated annealing algorithm

— the areas belonging to the object and background can be used to do

some supervised learning of the likelihood term (“data attachment

term”)

— very fast algorithm if new markers are introduced
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Building of the graph (Boykov et Jolly)
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Weights of the graph (Boykov et Jolly)
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Illustrations (Boykov et Jolly)
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Interactive methods with graph-cuts

◦ Grab-cut (Rother et al.)

— take into account the colors

— two classes (one for the object and the other one for the background)

but with gaussian mixture models to define their distributions (many

gaussian components for the background and the object)

— regularization term weighted by the gradient between neighboring pixels

— learning of the distribution parameters in a semi-supervised way :

initialization by the user (definition of the backgroynd class) and then

iteratively after each cut refinement
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Illustrations -GrabCut- (Rother, Kolmogorov et Blake)
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Graph-cut based optimization methods

◦ Introduction - reminders on graphs

◦ Binary case

◦ Approximate algorithms

◦ Exact algorithms
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Extension to the multi-labels case (Boykov et al)

U(x|y) =
∑
p

D(xp, yp) +
∑
(p,q)

Vc(xp, xq)

xp ∈ E finite 1D set

◦ Idea : go back to the ... binary case !

◦ Constraints on the regularization functions

Vc is a metric or a semi-metric

Semi-métric ∀α, β ∈ E2 :

— Vc(α, β) = Vc(β, α) ≥ 0

— Vc(α, β) = 0⇔ α = β

Metric if Vc(α, β) ≤ Vc(α, γ) + Vc(γ, β)

Examples : troncated quadratic (semi-), Potts model,...

◦ Limits

approximate solution (local minimum) !
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Extension to the multi-labels case : α− β swap

◦ α− β swap definition

• labeling = partitioning of the image P = {Pl|l ∈ E} with Pl = {p ∈ I|xp = l}

• α− β swap : movement from the partitioning P to the partitioning P′ such

that Pl = P ′l ∀l 6= α, β (some labeled pixels α will be labeled β and vice-versa)
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Extension to the multi-labels case : α− β swap

◦ Optimization of the α− β swap by min cut

— building of the graph using only the pixels labeled α or β as nodes (Sαβ)

— addition of two terminal nodes one for α, the other one for β

— edges :

1. link with the α node with the weight :

w(p, α) = D(α, yp) +
∑
q|q∈Np, q 6∈Sαβ Vc(α, xq)

2. link with the β node with the weight :

w(p, β) = D(β, yp) +
∑
q|q∈Np, q 6∈Sαβ Vc(β, xq)

3. if two pixels p et q are neighbors in 4-neighborhood and in Sαβ :

edge with weight poids w(p, q) = Vc(α, β)

— the final label of a pixel corresponds to the one of the cut edge
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Extension of the multi-labels case : α− β-swap
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Extension of the multi-labels case : α− β-swap
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Extension of the multi-label case : α-expansion

◦ Definition of α expansion

• α-extension : mouvement d’une partition P à une partition P′ telle que les

pixels étiquetés à α le restent et d’autres peuvent prendre l’étiquette α
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Extension of the multi-label case : α-expansion

◦ Optimization of the α-expansion by min cut (Vc must be a metric)

— building of the graph with all the pixels

— addition of two terminal nodes, one for α, the other one for α (the

current label)

— the final label is the one of the cut edge

— it is necessary to add an auxiliary node and edges to take into account

all the situations !
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Extension to the multi-labels case : α-expansion

◦ Graph-cut representable

α label 0

α label 1 (pixel p keeps the current label xp = α(p), pixel q keeps the curent

label xq = α(q))

Sub-modularity condition :

Vc(0, 0) + Vc(1, 1) ≤ Vc(0, 1) + Vc(1, 0)

⇒ Vc(α, α) + Vc(α(p), α(q)) ≤ Vc(α, α(p)) + Vc(α(q), α)

⇒ 0 + Vc(xp, xq) ≤ Vc(α, xp) + Vc(xq, α)

verified when Vc is a metric !
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α-expansion move
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α-expansion move

e(p, a) = V (lp, α), e(a, q) = V (α, lq), t
α
a = V (lp, lq)

red cut is impossible because V is a metric (V (lp, α) ≤ V (lp, lq) + V (lq, α))
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α-expansion move
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Illustrations (Boykov et al.)
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Results

◦ Algorithms

— α− β swap : semi-metric potential

— α-extension : metric potential

◦ Performances

— converges towards a local minimum (some iterations)

— much faster than simulated annealing

— allows much bigger moves in the energetic landscape

— theoretical results on the distance to the global minimum
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Illustrations (Boykov et al.)

(E2 Potts, E1 troncated quadratic)
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Graph-cut based optimization methods

◦ Introduction - reminders on graphs

◦ Binary case

◦ Approximated algorithms

◦ Exact algorithms
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Case of image restoration

◦ Energy formulation

U(x|y) =
∑
p

D(up, vp) +
∑
(p,q)

g(up − uq)

data attachment term (likelihood) + regularization (prior)

◦ Choice of the regularization potential

— quadratic (up − uq)2

— troncated quadratic min((up − uq)2, k)

— Phi-fonction (conditions on the derivatives)

— Total variation (continuous domain
∫

Ω
|∇u|)
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restoration case

U(u|v) =
∑
p

D(up, vp) + β
∑
(p,q)

g(up − uq)

data attachment term (likelihood) + regularization (prior)

◦ Total Variation minimization
∫

Ω
|∇u|

Anisotropic model :

||∇u|| =

√
(
∂u

∂x
)2 + (

∂u

∂y
)2

||∇u|| ≈ |∂u
∂x
|+ |∂u

∂y
|

||∇u|| ≈ |u(i+ 1, j)− u(i, j)|+ |u(i, j + 1)− u(i, j)|

corresponds to g(up − uq) = |up − uq|

corresponds to a L1 norm on the gradient
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Restoration case - exact solution (Ishikawa)

V set of pixels, L set of labels

◦ Hypotheses on g

g is a convex function (on integers)

◦ Method

• Graph building

— nodes : X = V × L ∪ {s, t} (npi node of pixel p for label i) ;

— edges : from s to all the nodes pixels-first label, then from all the nodes

pixels-label i to nodes pixels-label i+1, etc.

— weights of edges “in column” : c(s, np(L−1)) = D(L, yp),

c(np(i+1), npi) = D(i, yp), c(np1, t) = D(1, yp) (c(npi, np(i+1)) = +∞ to

hinder loops in the cut)
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Restoration case - exact solution (Ishikawa)

regularization term : penalty weights

• Simplified case for TV regularization :

only “horizontal” edges with weight β ⇒ g(xp − xq) = β|xp − xq|

• General case :

set of edges linking pixel-nodes cut by the cut
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Restoration case - exact solution (Ishikawa)

s

t
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Restoration case - exact solution (Ishikawa)

s

t

s

t

s

t
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Restoration case - exact solution (Ishikawa)

◦ Cas général
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Restoration case - exact solution (Ishikawa)

◦ Penalty term of the cut :

g(i, j) =

i∑
a=1

k∑
b=j+1

c(nva, nwb) +

k∑
a=i+1

j∑
b=1

c(nwb, nva)

◦ Proposition : if g(i, j) defined as the sum of the capacities of neighboring

pixels depends only of i− j, g(i, j) = g̃(i− j) then g̃ is necessarily convex.

Reciprocally if g is convex then the edge capacities (for the regularization

term) can be defined by :

c(nvi, nwj) =
g̃(i− j + 1)− 2g̃(i− j) + g̃(i− j − 1)

2

the capcity becomes 0 for differences high enough between gray levels

NB : no constraint on the data attachment term
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Restoration case - exact solution (Darbon, Sigelle 2006)

U(x|y) =
∑
p

D(xp, yp) +
∑
(p,q)

wpq|xp − xq|

◦ Principle

Decomposition of x on the level sets (thresholded versions of x)

⇒ reformulation using binary Markov random fields

⇒ reconstruction formula under certain hypotheses
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Level set decomposition

◦ Definitions

xλs = 1lxs≤λ

xs = min{λ/xλs = 1}

xλ = {xλs} set of level λ

xs

0

1

λ
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Level set decomposition

◦ Reformulation of the energy

• Regularization term :

TV (x) =

L−2∑
λ=0

∑
(s,t)

wst |xλs − xλt |

TV (x) =
L−2∑
λ=0

∑
(s,t)

wst
[
(1− 2xλt ) xλs + xλt

]
• Data attachment term :

f(ys|xs) = gs(xs) =
L−2∑
λ=0

(gs(λ+ 1)− gs(λ)) 1lλ<xs︸ ︷︷ ︸
(1−xλs )

+ gs(0)
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Level set decomposition

◦ Reformulation of the energy using the level sets

U(x|y) =

L−2∑
λ=0

Eλ(xλ)

Eλ(xλ) =
∑
(s,t)

wst [(1− 2xλt )xλs + xλt ] +

∑
s

(gs(λ+ 1)− gs(λ)) (1− xλs ) + gs(0)
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Optimization using the level sets

Eλ(xλ) : binary field with ising model (ferro-magnetism)

Let x̂λ be the global minimizer of Eλ(xλ) with fixed λ

To have {x̂λ}0≤λ≤L−1 the global minimum of U(x|y) we need that :

x̂λ ≤ x̂µ ∀λ < µ

The optimal solution is then given by :

∀s x̂s = min{λ/x̂λs = 1}
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Conditions on the energies and associated graphs

◦ Convexity condition for the local conditional energies

— reconstruction property guaranteed by the separate optimizations of the

level sets

— very fast algorithm by dichotomy on the grey-level set

◦ Levelable regularization with non convex likelihood

— reconstruction property guaranteed by the addition of a coupling term

between the grey-levels
∑
s αH(xλs − xλ+1

s )

— graph different from Ishikawa but of similar size

72



Examples of results (Darbon, Sigelle)

gaussian noise (L2+TV)
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Examples of results (Darbon, Sigelle)

gaussian noise (L2+TV)
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Examples of results (Darbon, Sigelle)

impulsive noise + TV
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Examples of results (Darbon, Sigelle)

impulsive noise + TV
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Examples de résultats (Darbon, Sigelle)

impulsive noise + TV

77



Examples - multi-labeling optimization
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Summary

Authors Space Régul. Graph Optimum

Greig et al. binary Ising pixels + s,t global

Kolmog. Zabih binary sub-modular pixels + s,t global

Freedman binary order 3

Boykov et al. multi semi metric sub-set +s,t local*

metric pixels +s,t local*

Ishikawa multi convex of |xs − xt| S*n+s,t global

Darbon et al. multi convex loc. en. dichotomy global

levelable S*n+s,t global
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