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Topics

o Image labeling

> Problem modeling

> Solution with pixel independence

> Solution with Markov Random Field
> Exemples

o Image restoration

> Problem modeling

> Line process

o Extensions and links with related topics
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Bayesian analysis in image processing
Data acquisition process modeling

r —

original scene

Degradation Detection Measure

— Y

observation

Pr(Y=y / X=x)

o Space state

— restoration : y; and x, in E (space of gray-levels)

— labeling : ys in F, x4 in A (space of labels)




Posterior distribution

o problem modeling : y — z 7

Pr(X:x/Y:y):Pr(Yzy/X:w).Pr(Xza:)

[Bayes]

Pr(Y =y)
Pr( X=x2/Y=yx Pr(Y=y/X=2x) . Pr(X = x)
} } }
posterior probability formation prior
of x of the observations on the solution

o MAP estimate : T = arg max Pr(X=2/Y =y)
xre




Punctual (per pixel) bayesian labeling

o Example Let us suppose a brain image labeling with 6 classes
A=A, ..., X
with background, skin, bone, Gray Matter, White Matter, ventricules

o Per pixel model

Ech pixel is conditionally independent from its neighbors for P(X|Y) :

P(X‘Y> — HSP<XS|YS)

The problem boils down to look for the “best” label maximizing P(X|Ys) for

each pixel s.

P(X,|Y,) x P(Y,|X,)P(X,)

(per pixel MAP estimate)



Punctual bayesian labeling

o Likelihood
Term P(Y; = ys| Xs = xs)
depends on the sensor (acquisition process) and considered labels.

= physical modeling, supervised learning by manual selection of region of

interest, unsupervised learning by iterative estimation (EM)

o Prior (per pixel)
Term P(X; = xy)

Prior knowledge on the proportion of classes



Punctual bayesian labeling

o Example

Gaussian distributions of the gray levels conditionally to the class
no prior on the class proportion

o Limits

no spatial coherency

model not adapted for image processing

= global prior on X = Markov Random Field



Image labeling
Data acquisition process

MAP criterion P(X =z|Y =y) x P(Y|X)P(X)
o Term P(Y|X) - Hypotheses

Pr(Y =yl X =2) = H Pr(Ys = ys|lz) = H Pr(Ys = ys| X5 = x5)
seS seS

P(Y[X) = exp(—[)_ —log(P(Y;| X))

S

o Conditional probabilities P(Y;|Xj)

depend on the sensor, on the considered classes



Prior model : properties of real images (image of labels)

o (if pixel independence)

P(X =z)=]] P(Xs =)
seS

back to the per pixel bayesian classification
PlYs=vys /| Xs=25)P(Xs) x P(Xs =25 / Ys = ys)

o MRF hypothesis for X

= interaction between a pixel and its neighbors (region regularity, ...)

exp — U(x)

Pr(X =x) = 7

with U(z) = >, Ve(x)



Posterior distribution

o new Gibbs distribution

exp —U(x / y)

PriX=2/Y=y)= 7

Uz [ y) =) —log(P(Y, =y, /| X))+ > Ve()

seS

Iggg}z(Pr(X:a:/Y:y) < i Uz / y)

posterior field is also markovian !
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Posterior distribution

o Likelihood term

Z - log(P(Ys — ys’Xs))

S

Link between the data and the label (data attachment term)

o Prior term

Ux) = ZVC(:BS,S € c)

Regularization term (does not depend on the data) to introduce prior

knowledge on the searched for solution

o MAP estimate

trade-oftf between the data attachment term and the regularization term
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Optimization
Search for the “optimal” configuration (minimizing the energy)
o Simulated Annealing

Gibbs distribution (for the posterior field) with decreasing temperature

Drawback : slow convergence (stochastic algorithm) but global minimum

o ICM (Iterated Conditional Modes)

Drawback : local minimum (deterministic algorithm) but fast convergence
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Optimization
o ICM (Iterated Conditional Modes)

> Initialization z(?) close to the solution
> Sequence of images (™) : at step n (updating of all the sites)
— random selection of s

— state updating = max of local probabilities

(n) _ P(X. = V(n—l)
) = angmax PX, =€ |y, V")

> stop criterion : change rate < threshold

Characteristics

> Deterministic algorithm, result depends on initialization
> Fast convergence
> No guarantee on the minimum of U(zx | y).
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Example 1
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Example 1 : brain imaging
o likelihood : independence for the conditional probability

PY=y|X=ux)= HP(YS:yS\stms)
ses

Gaussian case : supervised leraning of the pdf of each class i : N (u;, 0;)

. 1 Ys — Hi)?

1

o regularisation
Local interactions between labels : Potts model,

= Posterior dist. P(X | Y) : Gibbs dist. with local conditional energy :

Z/{( | V)—lo +(ys_ﬂxs)2+521

Lg ya s) — gO'mS 20_323 (xs?éxr)
s r € Vs

o optimization - MAP estimate z

Simulated Annealing (random init.) ; ICM (likehood estimate for initialization)
16



Example 1
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Example 2 : remote sensing image

o Likelihood : conditional independence

PY=y|X=x)= HP(YS:ZUS‘Xs:xS)
seS

Gamma, pdf

2LF y*t Ly;

o regularisation

Local interactions between labels : Potts model,

o Posterior : GGibbs distribution Local conditional energy :

2
Ys
U(xs |y, Vi) =L —log pi. + 5 E (.4,

Ts r eV

o optimization : simulated annealing or ICM
19



Exemple




Example 3 : segmentation and data combination

o problem
K = nomber of channels (sources) = vector of attributes Y = (Y'1,..., YK)

M number of classes A = {1, ..., Ay}

o likelihood : independent sources

p(Y|X) = ][ PXs)=]] PUYS Y2, .. YEHX)
seS seS
= [ PiXy)..PYEIX) =] [ POYEIXs)
seS seS k=1

V(ys|A) = ZV ysIA)

o confidence coeflicients (reliability) C(; ) : source k — class A

1
Z Cleny)V (Y5 IN)
Zk C(k A) k

21
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Segmentation and data combination

o Likelihood V (y*|)\) piecewise linear
U

= supervised definition (histogram, thresholding,...)

= automatic definition (hisogram multi-scale analysis,...)

o weighting coefficients (' )) for sensor £ relative to A
= 0 if £ is not significant for A

= 0,5 if k is moderately reliable

= 1 if k is reliable for A
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Segmentation and data combination

o Contextual term : Markovian label field

Ux) = 3 V()

o Prior knowledge on class adjacency : adjacency matrix
(v (s, Aj))i,je{l,...,M}
regularization potential : Vo— (s 4 (75, 2¢) = v(2s, T¢)

o forbidden adjacency between A1 and A3 = (A1, A\3) = +00

o favorable adjacency for Ay and Ao = v(A1, A2) =0

o Parameter choice
comparison of local energies for different configurations

L-curve
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Multi-spectral labeling of AVHR RNOAA ice areas

channel 1 channel 3 labeling
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xr — Degradation Detection Measure — Y

original scene observation
Pr(Y=y / X=x)

o Additive white gaussian noise

_y:$+€ yS:x3+63Vs€S 68—>N(0702)
(ys_xs)2
Pr(Y =y / X =2) = [[Pr(Vi=u/X,=2) x [[ew— =5
0
i s€S s€S

24-1



Loi du processus de formation des observations (suite)

o convolution

y:hZC+€ yszzhrs$r+63V8€5 68_>N(O7O-2)
resS

- blurring (gaussian)

- blurring (uniform) @
AR

Oc
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Denoising with additive white gaussian noise

2
Ys — Ls
Pr(Y =yl X =2) = H Pr(Ys = ys| Xs = x5) x H exp — ( 53 )
seS seS

o regularity of solution

exp —6 Z (I)(CCT,CES)

(r,s)eC
Pr(X =) =
(X =) )
~U
o new Gibbs distribution Pr(X =z / Y = y) = —» Z,(” [ Y)

2

L{(m/y)zz(ys_xs) + 5 Z b(z,,x5)

202

maxPr(X =z /Y =y) < min Uz / y)

o regularization ®(x,,x;) = ®((z, — xs)) = P(u)
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Image denoising : choice of ¢

o quatratic regularization
Gaussian field

d(u) = u?
good regularization of homogeneous areas

edge blurring

o suppressing the regularization term on discontinuities

— intuitively : quadratic term = truncated quadratic term

— introduction of a line process
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Restoration taking into account discontinuities
R IR

o Line process B
B — (Bst)

by = 1 if there is an edge, else by = 0

o Posterior field

P((x,B)y) = LYK B)PX,B) _ PY|X)P(X, B)

(Y) P(Y)
o Prior field energy
U(x,b) = Z(l — bst) (s — xt)2 + vbgt

s,t
27



Restoration taking into account discontinuities

o Minimization of the energy in (z,b)

{nilg U(z,b) = minU(z)

Iilin flrs —xs,bst) = p(xs — T4)
implicit model < explicit model

(weak membrane model)

28



Restoration taking into account discontinuities

o examples of regularization functions ¢(z; — x,)
2

Geman and Mac Clure 85 o(u) = 1 ji >
Hebert and Leahy 89 o(u) = log(1 + u?)
Charbonnier 94 d(u) =2V 1+ u? —2

o conditions on ¢

/
L dm 2
u—>0t 2u
/
2. im 2 g
u—>+4o0 2
¢ (u). . . .
3. is continuous, strictly decreasing [0, +00]

2U
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Theorem

Soit :
¢ : |0, +o0|— [0, +o0|

¢(y/u) strictly concave on ]0, +00]
and let

L = lim ¢ (u) and M = lim ¢ (u)

u—+oo 21 u—0+t  2u
then :
— d 4 strictly convex and decreasing : [L, M| — |a, 8], such that :

o(u) = inf (bu®+ (b))

L<b<M
o 2 ¢’ (u) o 29 (u)
a= lim ¢(u) —uw’—-—=, f= lm ¢(u)—u"—~
N A0
Yu b, = 5

is the unique value for which infimum is reached
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Image restoration : Geman and Reynolds potential

o formulation

B : “range” of the potential

0 : “Amplitude” of the potential

o = choice of § and ¢ controlling the regularization
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Implicit ¢-function vs explicit line process

to preserve discontinuitites it is strictly equivalent to minimize

o an explicit expression with line process

U(ZE‘,b‘y) — Z(ys — 373)2 + A Z brs(xs — ‘|_ v Z 'Qb rs

s (r,s) (r,9)

o an implicit equivalent expression

Ulely) = 3 (e — 2 + X' Y o — ;)

s (7,8)

o the equivalent b, is given by

¢'(zs — xr)
2(xs — ;)

brs —

32



Minimization algorithms

o GNC Graduated non convexity (Blake et Zisserman)

— Principle : approximating the energy by a convex function and
graduated modification
— deterministic algorithm

— proof of convergence for some cases

o MFA Mean Field Annealing

— explicit line process
— temperature decrease and mean field approximation

— iterative estimation of the line process and the solution

o Artur et Legend

— explicit line process
— itertive computation of the line process (closed form expression) then
with fixed b estimation of x (gradient descent)
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MRF and graphical models

o Graphical models to capture independence

node = random variable, edge = probabilistic interaction

CACICEN NN CaCa OB

total independence a Markov random field complete dependence

o Factor graphs

connecting groups of variables through the factor f;

2
L T
B
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MRF and graphical models o MRF

Statistical dependence of random variables and factorization

P(x) = ch(xs, SEc) = %Hexp(—VC(az))

C

o\ SRR

@& @)

graphical model

decomposition into cliques
of a Markov random field positl 19
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MRF and Conditional Random Fields (CRF)

o Conditional (discriminative) Random Fields

O white circles: parameters of interest

‘ black circles: observations

graphical model
of a conditional random field

direct modeling of the posterior field

e The clique potentials can depend on the vector of observations (external field)

e Often used in a supervised training context with a learning of V. (x5, y)

(unitary potentials) and V.(xs, z¢, y) pairwise potentials (ex : logistic classifiers)
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