Bayesian analysis and Markov random fields for image processing

Florence Tupin
Télécom Paris
Topics

○ **Image labeling**
 ▶ Problem modeling
 ▶ Solution with pixel independence
 ▶ Solution with Markov Random Field
 ▶ Exemples

○ **Image restoration**
 ▶ Problem modeling
 ▶ Line process

○ **Extensions and links with related topics**
Bayesian analysis in image processing
Data acquisition process modeling

\[x \rightarrow \text{Degradation Detection Measure} \rightarrow y \]

original scene \hspace{1cm} observation

\[\Pr(Y = y \mid X = x) \]

- **Space state**
 - restoration: \(y_s \) and \(x_s \) in \(E \) (space of gray-levels)
 - labeling: \(y_s \) in \(E \), \(x_s \) in \(\Lambda \) (space of labels)
Posterior distribution

- **problem modeling**: $y \rightarrow x$?

\[
Pr(X = x \mid Y = y) = \frac{Pr(Y = y \mid X = x) \cdot Pr(X = x)}{Pr(Y = y)} \quad \text{[Bayes]}
\]

\[
\begin{align*}
Pr(X = x \mid Y = y) & \propto Pr(Y = y \mid X = x) \cdot Pr(X = x) \\
\downarrow & \quad \downarrow & \downarrow \\
\text{posterior probability} & \text{formation} & \text{prior} \\
\text{of } x & \text{of the observations} & \text{on the solution}
\end{align*}
\]

- **MAP estimate**: $\hat{x} = \arg \max_{x \in \Omega} Pr(X = x \mid Y = y)$
Punctual (per pixel) bayesian labeling

- **Example** Let us suppose a brain image labeling with 6 classes
 \[\Lambda = \lambda_1, \lambda_2, ..., \lambda_6 \]
 with background, skin, bone, Gray Matter, White Matter, ventricles

- **Per pixel model**

 Each pixel is conditionally independent from its neighbors for \(P(X|Y) \) :

 \[
P(X|Y) = \Pi_s P(X_s|Y_s)
 \]

 The problem boils down to look for the “best” label maximizing \(P(X_s|Y_s) \) for each pixel \(s \).

 \[
P(X_s|Y_s) \propto P(Y_s|X_s)P(X_s)
 \]

 (per pixel MAP estimate)
Punctual bayesian labeling

- **Likelihood**

 Term $P(Y_s = y_s | X_s = x_s)$

 depends on the sensor (acquisition process) and considered labels.

 \Rightarrow physical modeling, supervised learning by manual selection of region of interest, unsupervised learning by iterative estimation (EM)

- **Prior (per pixel)**

 Term $P(X_s = x_s)$

 Prior knowledge on the proportion of classes
Punctual bayesian labeling

- **Example**
 Gaussian distributions of the gray levels conditionally to the class
 no prior on the class proportion

- **Limits**
 no spatial coherency
 model not adapted for image processing
 \[\Rightarrow\] global prior on \(X =\) Markov Random Field
Image labeling
Data acquisition process

MAP criterion \(P(X = x|Y = y) \propto P(Y|X)P(X) \)

○ **Term \(P(Y|X) \) - Hypotheses**

\[
\Pr(Y = y|X = x) = \prod_{s \in S} \Pr(Y_s = y_s|x) = \prod_{s \in S} \Pr(Y_s = y_s|X_s = x_s)
\]

\[
P(Y|X) = \exp(-\sum_{s} - \log(P(Y_s|X_s)))
\]

○ **Conditional probabilities \(P(Y_s|X_s) \)**

depend on the sensor, on the considered classes
Prior model: properties of real images (image of labels)

- *(if pixel independence)*

\[
P(X = x) = \prod_{s \in S} P(X_s = x_s)
\]

back to the per pixel bayesian classification

\[
P(Y_s = y_s / X_s = x_s)P(X_s) \propto P(X_s = x_s / Y_s = y_s)
\]

- **MRF hypothesis for X**

 \[\Rightarrow\] interaction between a pixel and its neighbors (region regularity, ...)

\[
\Pr(X = x) = \frac{\exp - U(x)}{Z}
\]

with \(U(x) = \sum_c V_c(x)\)
Posterior distribution

- **new Gibbs distribution**

\[
\Pr(X = x \mid Y = y) = \frac{\exp - \mathcal{U}(x \mid y)}{Z'}
\]

\[
\mathcal{U}(x \mid y) = \sum_{s \in S} - \log(P(Y_s = y_s \mid X_s)) + \sum_c V_c(x)
\]

\[
\max_{x \in \Omega} \Pr(X = x \mid Y = y) \Leftrightarrow \min_{x \in \Omega} \mathcal{U}(x \mid y)
\]

posterior field is also markovian!
Posterior distribution

- **Likelihood term**

\[
\sum_s - \log(P(Y_s = y_s | X_s))
\]

Link between the data and the label (data attachment term)

- **Prior term**

\[
U(x) = \sum_c V_c(x_s, s \in c)
\]

Regularization term (does not depend on the data) to introduce prior knowledge on the searched for solution

- **MAP estimate**

trade-off between the data attachment term and the regularization term
Optimization

Search for the “optimal” configuration (minimizing the energy)

- **Simulated Annealing**

 Gibbs distribution (for the posterior field) with decreasing temperature

 Drawback: slow convergence (stochastic algorithm) but global minimum

- **ICM (Iterated Conditional Modes)**

 Drawback: local minimum (deterministic algorithm) but fast convergence
Optimization

- **ICM (Iterated Conditional Modes)**
 - Initialization \(x^{(0)} \) close to the solution
 - Sequence of images \(x^{(n)} \): at step \(n \) (updating of all the sites)
 - random selection of \(s \)
 - state updating = max of local probabilities
 \[
 x^{(n)}_s = \arg\max_{\xi \in E} P(X_s = \xi \mid y, V^{(n-1)}_s)
 \]
 - stop criterion: change rate < threshold

Characteristics

- Deterministic algorithm, result depends on initialization
- Fast convergence
- No guarantee on the minimum of \(\mathcal{U}(x \mid y) \).
Example 1
Example 1
Example 1: brain imaging

- **likelihood**: independence for the conditional probability

\[
P(Y = y \mid X = x) = \prod_{s \in S} P(Y_s = y_s \mid X_s = x_s)
\]

Gaussian case: supervised learning of the pdf of each class \(i\): \(\mathcal{N}(\mu_i, \sigma_i)\)

\[
P(Y_s = y_s \mid X_s = i) = \frac{1}{\sqrt{2\pi\sigma_i}} \exp \left(-\frac{(y_s - \mu_i)^2}{2\sigma_i^2}\right)
\]

- **regularisation**

Local interactions between labels: Potts model,

\(\Rightarrow\) Posterior dist. \(P(X \mid Y)\): Gibbs dist. with local conditional energy:

\[
\mathcal{U}(x_s \mid y, V_s) = \log \sigma_{x_s} + \frac{(y_s - \mu_{x_s})^2}{2\sigma_{x_s}^2} + \beta \sum_{r \in V_s} 1(x_s \neq x_r)
\]

- **optimization - MAP estimate \(\hat{x}\)**

Simulated Annealing (random init.); ICM (likelihood estimate for initialization)
Example 1
Example 2
Example 2: remote sensing image

- **Likelihood: conditional independence**

 \[P(Y = y \mid X = x) = \prod_{s \in S} P(Y_s = y_s \mid X_s = x_s) \]

 Gamma pdf

 \[P(Y_s = y_s \mid X_s = x_s) = \frac{2L^L y_s^{2L-1}}{\Gamma(L) \mu_{x_s}} \exp\left(-\left(\frac{Ly_s^2}{\mu_{x_s}}\right)\right) \]

- **regularisation**

 Local interactions between labels: Potts model,

- **Posterior: Gibbs distribution** Local conditional energy:

 \[U(x_s \mid y, V_s) = L \frac{y_s^2}{\mu_{x_s}} - \log \mu_{x_s} + \beta \sum_{r \in V_s} 1(x_s \neq x_r) \]

- **optimization: simulated annealing or ICM**
Exemple 2
Example 3: segmentation and data combination

○ problem

\(K = \text{number of channels (sources)} \Rightarrow \text{vector of attributes } Y = (Y^1, \ldots, Y^K) \)

\(M = \text{number of classes } \Lambda = \{\lambda_1, \ldots, \lambda_M\} \)

○ likelihood: independent sources

\[
p(Y|X) = \prod_{s \in S} P(Y_s|X_s) = \prod_{s \in S} P(\{Y^1_s, Y^2_s, \ldots, Y^K_s\}|X_s) = \prod_{s \in S} P(Y^1_s|X_s) \ldots P(Y^K_s|X_s) = \prod_{s \in S} \prod_{k=1}^{K} P(Y^k_s|X_s)
\]

\[\Rightarrow V(y_s|\lambda) = \sum_{k} V(y^k_s|\lambda)\]

○ confidence coefficients (reliability) \(C_{(k, \lambda)} : \text{source } k \rightarrow \text{class } \lambda \)

\[
V((y^k_s)_k|\lambda) = \frac{1}{\sum_k C_{(k, \lambda)}} \sum_k C_{(k, \lambda)} V(y^k_s|\lambda)
\]
Segmentation and data combination

- **Likelihood** $V(y^k_s|\lambda)$ piecewise linear

 \[
 U \Rightarrow \text{supervised definition (histogram, thresholding,...)}

 \Rightarrow \text{automatic definition (histogram multi-scale analysis,...)}

- **weighting coefficients** $C_{(k,\lambda)}$ for sensor k relative to λ

 $= 0$ if k is not significant for λ

 $= 0.5$ if k is moderately reliable

 $= 1$ if k is reliable for λ
Segmentation and data combination

- **Contextual term**: Markovian label field

 \[U(x) = \sum_{c \in C} V_c(x_c) \]

- **Prior knowledge on class adjacency**: adjacency matrix \((\gamma(\lambda_i, \lambda_j))_{i,j \in \{1,\ldots,M\}}\)

 - Regularization potential: \(V_{c=(s,t)}(x_s, x_t) = \gamma(x_s, x_t)\)

 - Forbidden adjacency between \(\lambda_1\) and \(\lambda_3\) \(\Rightarrow \gamma(\lambda_1, \lambda_3) = +\infty\)

 - Favorable adjacency for \(\lambda_1\) and \(\lambda_2\) \(\Rightarrow \gamma(\lambda_1, \lambda_2) = 0\)

- **Parameter choice**

 Comparison of local energies for different configurations

 L-curve
Multi-spectral labeling of AVHR RNOAA ice areas
Degradation Detection Measure

\[x \rightarrow \text{Degradation Detection Measure} \rightarrow y \]

original scene

observation

\[\Pr(Y = y / X = x) \]

\[\circ \text{Additive white gaussian noise} \]

\[
\begin{align*}
 y &= x + \epsilon \\
 y_s &= x_s + \epsilon_s \ \forall s \in S \\
 \epsilon_s &\rightarrow \mathcal{N}(0, \sigma^2)
\end{align*}
\]

\[
\Pr(Y = y / X = x) = \prod_{s \in S} \Pr(Y_s = y_s / X_s = x_s) \propto \prod_{s \in S} \exp - \frac{(y_s - x_s)^2}{2\sigma^2}
\]
Loi du processus de formation des observations (suite)

- **convolution**

\[
y = h \cdot x + \epsilon \\
y_s = \sum_{r \in S} h_{rs} \cdot x_r + \epsilon_s \quad \forall s \in S \quad \epsilon_s \rightarrow \mathcal{N}(0, \sigma^2)
\]

- blurring (uniform)

- blurring (gaussian)
Denoising with additive white gaussian noise

\[
\Pr(Y = y | X = x) = \prod_{s \in S} \Pr(Y_s = y_s | X_s = x_s) \propto \prod_{s \in S} \exp - \frac{(y_s - x_s)^2}{2\sigma^2}
\]

○ regularity of solution

\[
\exp - \beta \sum_{(r,s) \in C} \Phi(x_r, x_s)
\]

\[
\Pr(X = x) = \frac{\exp - U(x / y)}{Z'}
\]

○ new Gibbs distribution \(\Pr(X = x / Y = y) = \frac{\exp - U(x / y)}{Z'}\)

\[
U(x / y) = \sum_{s \in S} \frac{(y_s - x_s)^2}{2\sigma^2} + \beta \sum_{(r,s) \in C} \Phi(x_r, x_s)
\]

\[
\max_{x \in \Omega} \Pr(X = x / Y = y) \Leftrightarrow \min_{x \in \Omega} U(x / y)
\]

○ regularization \(\Phi(x_r, x_s) = \Phi(\{(x_r - x_s)\}) = \Phi(u)\)
Image denoising : choice of Φ

- quadratic regularization

 Gaussian field

 $$\Phi(u) = u^2$$

 good regularization of homogeneous areas

 edge blurring

- suppressing the regularization term on discontinuities

 - intuitively : quadratic term \Rightarrow truncated quadratic term

 - introduction of a line process
Restoration taking into account discontinuities

- Line process \(B \)

 \(B = (B_{st}) \)

 \(b_{st} = 1 \) if there is an edge, else \(b_{st} = 0 \)

- Posterior field

 \[
 P((X, B)|Y) = \frac{P(Y|(X, B))P(X, B)}{P(Y)} = \frac{P(Y|X)P(X, B)}{P(Y)}
 \]

- Prior field energy

 \[
 U(x, b) = \sum_{s,t} (1 - b_{st})(x_s - x_t)^2 + \gamma b_{st}
 \]
Restoration taking into account discontinuities

- **Minimization of the energy in** \((x, b)\)

\[
\min_{(x, b)} U(x, b) = \min_x \sum_{s,t} \min_{b_{st}} f(x_s - x_t, b_{st})
\]

\[
\min_{b_{st}} f(x_s - x_t, b_{st}) = \min((x_s - x_t)^2, \gamma)
\]

\[
\min_{(x, b)} U(x, b) = \min_x \bar{U}(x)
\]

\[
\min_{b_{st}} f(x_s - x_t, b_{st}) = \phi(x_s - x_t)
\]

implicit model ⇔ explicit model

(weak membrane model)
Restoration taking into account discontinuities

○ examples of regularization functions $\phi(x_s - x_r)$

Geman and Mac Clure 85

$$\phi(u) = \frac{u^2}{1 + u^2}$$

Hebert and Leahy 89

$$\phi(u) = \log(1 + u^2)$$

Charbonnier 94

$$\phi(u) = 2\sqrt{1 + u^2} - 2$$

○ conditions on ϕ

1. $$\lim_{u \to 0^+} \frac{\phi'(u)}{2u} = 1$$
2. $$\lim_{u \to +\infty} \frac{\phi'(u)}{2u} = 0$$
3. $\frac{\phi'(u)}{2u}$ is continuous, strictly decreasing $[0, +\infty[$
Theorem

Soit :

\[\phi : [0, +\infty[\to [0, +\infty[\]

\(\phi(\sqrt{u}) \) strictly concave on \(]0, +\infty[\)

and let

\[L = \lim_{u \to +\infty} \frac{\phi'(u)}{2u} \] and \[M = \lim_{u \to 0^+} \frac{\phi'(u)}{2u} \]

then :

— \(\exists \psi \) strictly convex and decreasing : \([L, M] \mapsto [\alpha, \beta] \), such that :

\[\phi(u) = \inf_{L \leq b \leq M} (bu^2 + \psi(b)) \]

\[\alpha = \lim_{u \to \infty} \phi(u) - u^2 \frac{\phi'(u)}{2u} , \quad \beta = \lim_{u \to 0^+} \phi(u) - u^2 \frac{\phi'(u)}{2u} \]

— \(\forall u \ b_u = \frac{\phi'(u)}{2u} \)

is the unique value for which infimum is reached
Image restoration: Geman and Reynolds potential

- **Formulation**

\[\beta \Phi(u) = \frac{-\beta}{1 + \left(\frac{u}{\delta} \right)^2} \]

- \(\beta \): "range" of the potential
- \(\delta \): "Amplitude" of the potential

- \(\Rightarrow \) choice of \(\beta \) and \(\delta \) controlling the regularization
Implicit ϕ-function vs explicit line process

to preserve discontinuities it is strictly equivalent to minimize

- **an explicit expression with line process**

 $U(x, b|y) = \sum_s (y_s - x_s)^2 + \lambda \sum_{(r,s)} b_{rs}(x_s - x_r)^2 + \mu \sum_{(r,s)} \psi(b_{rs})$

- **an implicit equivalent expression**

 $U(x|y) = \sum_s (y_s - x_s)^2 + \lambda' \sum_{(r,s)} \phi(x_s - x_r)$

- **the equivalent b_{rs} is given by**

 $b_{rs} = \frac{\phi'(x_s - x_r)}{2(x_s - x_r)}$
Minimization algorithms

○ **GNC Graduated non convexity (Blake et Zisserman)**
 — Principle: approximating the energy by a convex function and graduated modification
 — deterministic algorithm
 — proof of convergence for some cases

○ **MFA Mean Field Annealing**
 — explicit line process
 — temperature decrease and mean field approximation
 — iterative estimation of the line process and the solution

○ **Artur et Legend**
 — explicit line process
 — iterative computation of the line process (closed form expression) then with fixed b estimation of x (gradient descent)
MRF and graphical models

- **Graphical models to capture independence**
 node = random variable, edge = probabilistic interaction

\[u_1 \quad u_2 \quad u_3 \quad \ldots \quad u_n \quad u_1 \quad u_2 \quad u_3 \quad \ldots \quad u_n \]

total independence a Markov random field complete dependence

- **Factor graphs**

 connecting groups of variables through the factor \(f_k \)
MRF and graphical models

MRF

Statistical dependence of random variables and factorization

\[P(x) = \prod \psi_c(x_s, s \in c) = \frac{1}{Z} \prod_c \exp(-V_c(x)) \]
MRF and Conditional Random Fields (CRF)

- **Conditional (discriminative) Random Fields**

- The clique potentials can depend on the vector of observations (external field)
- Often used in a supervised training context with a learning of $V_c(x_s, y)$ (unitary potentials) and $V_c(x_s, x_t, y)$ pairwise potentials (ex: logistic classifiers)