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Topics

◦ Image labeling

. Problem modeling

. Solution with pixel independence

. Solution with Markov Random Field

. Exemples

◦ Image restoration

. Problem modeling

. Line process

◦ Extensions and links with related topics
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Bayesian analysis in image processing
Data acquisition process modeling

x → Degradation Detection Measure → y

original scene observation

Pr(Y= y / X= x)

◦ Space state

— restoration : ys and xs in E (space of gray-levels)

— labeling : ys in E, xs in Λ (space of labels)
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Posterior distribution

◦ problem modeling : y → x ?

Pr(X = x / Y = y) =
Pr(Y = y / X = x) . Pr(X = x)

Pr(Y = y)
[Bayes]

Pr(X = x / Y = y) ∝ Pr(Y = y / X = x) . Pr(X = x)

↓ ↓ ↓
posterior probability formation prior

of x of the observations on the solution

◦ MAP estimate : x̂ = arg max
x∈Ω

Pr(X = x / Y = y)
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Punctual (per pixel) bayesian labeling

◦ Example Let us suppose a brain image labeling with 6 classes

Λ = λ1, λ2, ..., λ6

with background, skin, bone, Gray Matter, White Matter, ventricules

◦ Per pixel model

Ech pixel is conditionally independent from its neighbors for P (X|Y ) :

P (X|Y ) = ΠsP (Xs|Ys)

The problem boils down to look for the “best” label maximizing P (Xs|Ys) for

each pixel s.

P (Xs|Ys) ∝ P (Ys|Xs)P (Xs)

(per pixel MAP estimate)
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Punctual bayesian labeling

◦ Likelihood

Term P (Ys = ys|Xs = xs)

depends on the sensor (acquisition process) and considered labels.

⇒ physical modeling, supervised learning by manual selection of region of

interest, unsupervised learning by iterative estimation (EM)

◦ Prior (per pixel)

Term P (Xs = xs)

Prior knowledge on the proportion of classes
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Punctual bayesian labeling

◦ Example

Gaussian distributions of the gray levels conditionally to the class

no prior on the class proportion

◦ Limits

no spatial coherency

model not adapted for image processing

⇒ global prior on X = Markov Random Field
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Image labeling
Data acquisition process

MAP criterion P (X = x|Y = y) ∝ P (Y |X)P (X)

◦ Term P (Y |X) - Hypotheses

Pr(Y = y|X = x) =
∏
s∈S

Pr(Ys = ys|x) =
∏
s∈S

Pr(Ys = ys|Xs = xs)

P (Y |X) = exp(−[
∑
s

− log(P (Ys|Xs)])

◦ Conditional probabilities P (Ys|Xs)

depend on the sensor, on the considered classes
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Prior model : properties of real images (image of labels)

◦ (if pixel independence)

P (X = x) =
∏
s∈S

P (Xs = xs)

back to the per pixel bayesian classification

P (Ys = ys / Xs = xs)P (Xs) ∝ P (Xs = xs / Ys = ys)

◦ MRF hypothesis for X

⇒ interaction between a pixel and its neighbors (region regularity, ...)

Pr(X = x) =
exp −U(x)

Z

with U(x) =
∑
c Vc(x)
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Posterior distribution

◦ new Gibbs distribution

Pr(X = x / Y = y) =
exp −U(x / y)

Z ′

U(x / y) =
∑
s∈S
− log(P (Ys = ys / Xs)) +

∑
c

Vc(x)

max
x∈Ω

Pr(X = x / Y = y) ⇔ min
x∈Ω

U(x / y)

posterior field is also markovian !
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Posterior distribution

◦ Likelihood term

∑
s

− log(P (Ys = ys|Xs))

Link between the data and the label (data attachment term)

◦ Prior term

U(x) =
∑
c

Vc(xs, s ∈ c)

Regularization term (does not depend on the data) to introduce prior

knowledge on the searched for solution

◦ MAP estimate

trade-off between the data attachment term and the regularization term
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Optimization

Search for the “optimal” configuration (minimizing the energy)

◦ Simulated Annealing

Gibbs distribution (for the posterior field) with decreasing temperature

Drawback : slow convergence (stochastic algorithm) but global minimum

◦ ICM (Iterated Conditional Modes)

Drawback : local minimum (deterministic algorithm) but fast convergence
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Optimization

◦ ICM (Iterated Conditional Modes)

. Initialization x(0) close to the solution

. Sequence of images x(n) : at step n (updating of all the sites)

— random selection of s

— state updating = max of local probabilities

x(n)
s = argmax

ξ∈E
P (Xs = ξ | y, V (n−1)

s )

. stop criterion : change rate < threshold

Characteristics

. Deterministic algorithm, result depends on initialization

. Fast convergence

. No guarantee on the minimum of U(x | y).
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Example 1
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Example 1
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Example 1 : brain imaging

◦ likelihood : independence for the conditional probability

P (Y = y | X = x) =
∏
s∈S

P (Ys = ys | Xs = xs)

Gaussian case : supervised leraning of the pdf of each class i : N (µi, σi)

P (Ys = ys | Xs = i) =
1√

2πσi
exp−

(
(ys − µi)2

2σ2
i

)
◦ regularisation

Local interactions between labels : Potts model,

⇒ Posterior dist. P (X | Y ) : Gibbs dist. with local conditional energy :

U(xs | y, Vs) = log σxs
+

(ys − µxs
)2

2σ2
xs

+ β
∑
r∈Vs

1(xs 6=xr)

◦ optimization - MAP estimate x̂

Simulated Annealing (random init.) ; ICM (likehood estimate for initialization)
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Example 1
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Example 2

18



Example 2 : remote sensing image

◦ Likelihood : conditional independence

P (Y = y | X = x) =
∏
s∈S

P (Ys = ys | Xs = xs)

Gamma pdf

P (Ys = ys | Xs = xs) =
2LL

Γ(L)

y
(2L−1)
s

µxs

exp−
(
Ly2

s

µxs

)
◦ regularisation

Local interactions between labels : Potts model,

◦ Posterior : Gibbs distribution Local conditional energy :

U(xs | y, Vs) = L
y2
s

µxs

− logµxs + β
∑
r∈Vs

1(xs 6=xr)

◦ optimization : simulated annealing or ICM
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Exemple 2
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Example 3 : segmentation and data combination

◦ problem

K = nomber of channels (sources) ⇒ vector of attributes Y = (Y 1, ..., Y K)

M number of classes Λ = {λ1, ..., λM}

◦ likelihood : independent sources

p(Y |X) =
∏
s∈S

P (Ys|Xs) =
∏
s∈S

P ({Y 1
s , Y

2
s , ..., Y

K
s }|Xs)

=
∏
s∈S

P (Y 1
s |Xs)...P (Y Ks |Xs) =

∏
s∈S

K∏
k=1

P (Y ks |Xs)

⇒ V (ys|λ) =
∑
k

V (yks |λ)

◦ confidence coefficients (reliability) C(k,λ) : source k → class λ

V ((yks )k|λ) =
1∑

k C(k,λ)

∑
k

C(k,λ)V (yks |λ)
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Segmentation and data combination

◦ Likelihood V (yks |λ) piecewise linear
U

⇒ supervised definition (histogram, thresholding,...)

⇒ automatic definition (hisogram multi-scale analysis,...)

◦ weighting coefficients C(k,λ) for sensor k relative to λ

= 0 if k is not significant for λ

= 0,5 if k is moderately reliable

= 1 if k is reliable for λ
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Segmentation and data combination

◦ Contextual term : Markovian label field

U(x) =
∑
c∈C

Vc(xc)

◦ Prior knowledge on class adjacency : adjacency matrix

(γ(λi, λj))i,j∈{1,...,M}

regularization potential : Vc=(s,t)(xs, xt) = γ(xs, xt)

� forbidden adjacency between λ1 and λ3 ⇒ γ(λ1, λ3) = +∞

� favorable adjacency for λ1 and λ2 ⇒ γ(λ1, λ2) = 0

◦ Parameter choice

comparison of local energies for different configurations

L-curve
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Multi-spectral labeling of AVHR RNOAA ice areas

channel 1 channel 3 labeling
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x → Degradation Detection Measure → y

original scene observation

Pr(Y= y / X= x)

◦ Additive white gaussian noise
y = x+ ε ys = xs + εs ∀s ∈ S εs → N (0, σ2)

Pr(Y = y / X = x) =
∏
s∈S

Pr(Ys = ys / Xs = xs) ∝
∏
s∈S

exp− (ys − xs)2

2σ2
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Loi du processus de formation des observations (suite)

◦ convolution[
y = h x+ ε ys =

∑
r∈S

hrs xr + εs ∀s ∈ S εs → N (0, σ2)

- blurring (uniform)

R
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Denoising with additive white gaussian noise

Pr(Y = y|X = x) =
∏
s∈S

Pr(Ys = ys|Xs = xs) ∝
∏
s∈S

exp− (ys − xs)2

2σ2

◦ regularity of solution

Pr(X = x) =

exp − β
∑

(r,s)∈C

Φ(xr, xs)

Z

◦ new Gibbs distribution Pr(X = x / Y = y) =
exp −U(x / y)

Z ′
!

U(x / y) =
∑
s∈S

(ys − xs)2

2σ2
+ β

∑
(r,s)∈C

Φ(xr, xs)

max
x∈Ω

Pr(X = x / Y = y) ⇔ min
x∈Ω

U(x / y)

◦ regularization Φ(xr, xs) = Φ((xr − xs)) = Φ(u)
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Image denoising : choice of Φ

◦ quatratic regularization

Gaussian field

Φ(u) = u2

good regularization of homogeneous areas

edge blurring

◦ suppressing the regularization term on discontinuities

— intuitively : quadratic term ⇒ truncated quadratic term

— introduction of a line process
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Restoration taking into account discontinuities
x x

x

x

x

x

x

x

x

x

x

x

◦ Line process B

B = (Bst)

bst = 1 if there is an edge, else bst = 0

◦ Posterior field

P ((X,B)|Y ) =
P (Y |(X,B))P (X,B)

P (Y )
=
P (Y |X)P (X,B)

P (Y )

◦ Prior field energy

U(x, b) =
∑
s,t

(1− bst)(xs − xt)2 + γbst
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Restoration taking into account discontinuities

◦ Minimization of the energy in (x, b)

min
(x,b)

U(x, b) = min
x

∑
s,t

min
bst

f(xs − xt, bst)

min
bst

f(xs − xt, bst) = min((xs − xt)2, γ)

min
(x,b)

U(x, b) = min
x
Ũ(x)

min
bst

f(xs − xt, bst) = φ(xs − xt)

implicit model ⇔ explicit model

(weak membrane model)
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Restoration taking into account discontinuities

◦ examples of regularization functions φ(xs − xr)

Geman and Mac Clure 85 φ(u) =
u2

1 + u2

Hebert and Leahy 89 φ(u) = log(1 + u2)

Charbonnier 94 φ(u) = 2
√

1 + u2 − 2

◦ conditions on φ

1. lim
u−>0+

φ′(u)

2u
= 1

2. lim
u−>+∞

φ′(u)

2u
= 0

3.
φ′(u)

2u
is continuous, strictly decreasing [0,+∞[
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Theorem
Soit :

φ : [0,+∞[→ [0,+∞[

φ(
√
u) strictly concave on ]0,+∞[

and let

L = lim
u→+∞

φ′(u)

2u
and M = lim

u→0+

φ′(u)

2u

then :

— ∃ ψ strictly convex and decreasing : [L,M ] 7→ [α, β], such that :

φ(u) = inf
L≤b≤M

(
bu2 + ψ(b)

)
α = lim

u→∞
φ(u)− u2φ

′(u)

2u
, β = lim

u→0+
φ(u)− u2φ

′(u)

2u
—

∀u bu =
φ′(u)

2u

is the unique value for which infimum is reached
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Image restoration : Geman and Reynolds potential

◦ formulation

β Φ(u) =
−β

1 +
(u
δ

)2

−2
β−

β Φ

δ

− β β : “range” of the potential

δ : “Amplitude” of the potential

◦ ⇒ choice of β and δ controlling the regularization
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Implicit φ-function vs explicit line process

to preserve discontinuitites it is strictly equivalent to minimize

◦ an explicit expression with line process

U(x, b|y) =
∑
s

(ys − xs)2 + λ
∑
(r,s)

brs(xs − xr)2 + µ
∑
(r,s)

ψ(brs)

◦ an implicit equivalent expression

U(x|y) =
∑
s

(ys − xs)2 + λ′
∑
(r,s)

φ(xs − xr)

◦ the equivalent brs is given by

brs =
φ′(xs − xr)
2(xs − xr)
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Minimization algorithms

◦ GNC Graduated non convexity (Blake et Zisserman)

— Principle : approximating the energy by a convex function and

graduated modification

— deterministic algorithm

— proof of convergence for some cases

◦ MFA Mean Field Annealing

— explicit line process

— temperature decrease and mean field approximation

— iterative estimation of the line process and the solution

◦ Artur et Legend

— explicit line process

— itertive computation of the line process (closed form expression) then

with fixed b estimation of x (gradient descent)
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MRF and graphical models

◦ Graphical models to capture independence

node = random variable, edge = probabilistic interaction

◦ Factor graphs

connecting groups of variables through the factor fk
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MRF and graphical models ◦ MRF

Statistical dependence of random variables and factorization

P (x) =
∏

ψc(xs, s ∈ c) =
1

Z

∏
c

exp(−Vc(x))
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MRF and Conditional Random Fields (CRF)

◦ Conditional (discriminative) Random Fields

direct modeling of the posterior field

P (x|y) =
1

Z
exp(−

∑
c

Vc(x, y))

• The clique potentials can depend on the vector of observations (external field)

• Often used in a supervised training context with a learning of Vc(xs, y)

(unitary potentials) and Vc(xs, xt, y) pairwise potentials (ex : logistic classifiers)
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