

How to recover 3D information with SAR sensors ?

Florence Tupin, Jean Marie Nicolas

Figures © CNES, ESA, DLR, ONERA, Télécom Paris, J. Mohr course

SAR systems

Why using SAR ?

- All time / all weather acquisition system
- Phase information !....
- Polarimetric information !...

Applications

- Continental applications :
 - Agriculture / vegetation (forest) monitoring
 - Urban mapping, urban growth monitoring
 - Rapid mapping (disaster management, flood)
 - Digital surface model and movement monitoring
- Maritime applications :
 - Ice monitoring, ship monitoring
 - Oil spill detection

- Distance sampling and geometric distorsions
- Mono-image elevation
- Radargrammetry
- Interferometry

Slope facing the sensor :

- Forshortening in the image (a wider area of the ground is seen in the pixel)
- Opposite side of the sensor:

Institut Mines-Télécom

Dilation on the image (a smaller ground area in 1 pixel)

Foreshortening / dilation

IDS/IMAGES

Geometric distorsions

Overlay:

• If $\alpha > \theta$: inversion of the points and mixing of the target responses

Shadow phenomenon:

- No illumination of the back-slope (obstacle) $\alpha' > pi/2 \vartheta$
- Influence of the incidence angle (increase in the swath) :
 - Near range : lay-over ; far range : shadow

Geometric distorsion – Mount Etna

Influence of relief on the cell size

Mosaïc on Google

Level lines: step of 256m

Example of shadow TERRASAR-X : Gizeh

Geometric distorsions - building

Increased effects for buildings: vertical walls

Geometric distorsions - building

- Top of the roof
- Lay-over
- Ground / wall corner reflector

New-York and sky-scrapers – TerrSAR-X

Institut Mines-Télécom

Geometric distorsions - summary

Local slope :

Foreshortning / dilation

Slope superior than the incidence angle

Lay-over

Slope superior than the $\frac{\pi}{2}$ – incidence angle

Shadow

How recovering 3D information with SAR data ?

SAR data and 3D

Backscattered electro-magnetic wave: $z=A{ m e}^{j\phi}$

- Amplitude: backscattering coefficient of the scene
- Phase: geometric information + cell scatterers contribution

Distance sampling:

• Geometric distorsions (lay-over, shadow)

3D information :

- Radarclinometry & shape from shading (amplitude)
- Stereoscopy radargrammetry (amplitude)
- Interferometry (phase)
- Tomography (n-D phase)

- Distance sampling and geometric distorsions
- Mono-image elevation
- Radargrammetry
- Interferometry

Elevation from amplitude Lay-over / shadow

- Data : 1 amplitude image
- Elevation from lay-over and shadow
 - Layover area and shadow area measurement to recover elevation information

Cas 2 : $h_{b\hat{a}ti} > h_{limite}$

Man-made structures Example of processing chain (1)

Cas 1 : h_{bâti} < h_{limite}

Processing chain

- Building footprint detection
- h optimization

Elevation extraction:

- Hypothesis of elevation h
- Computation of a radiometric signature using h, building shape and sensor parameters
- Energy minimization depending on h

Limits

Rectangular shape, flat roof

Man-made structures Example of processing chain (2)

Figures extracted from :

Deep learning based single-image height reconstruction from very-high-resolution SAR intensity data, M. Recla and M. Schmitt, ISPRS 2022 © ISPR Int. Journal of Photogrammetry and Remote Sensing

Processing chain

- Network trained to predict height from amplitude information
- Supervised training : dataset obtained from airborne laser scanning and projected in SAR geometry

Test phase:

- Amplitude image
- « Similar » acquisition angle

- Distance sampling and geometric distorsions
- Mono-image elevation
- Radargrammetry
- Interferometry

Radargrammetry / stereovision

Data : 2 amplitude images

Principle :

- Point matching in Im1 and Im2
- Geometric equations to recover 3D information

Institut Mines-Télécom

Institut Mines-Télécom

Radargrammetry – processing chain

Steps:

- Pseudo-epipolar resampling (tie points and low-order polynomial)
- Window based matching
- Disparity map regularization
- Conversion of disparities to 3D coordinates
- Point cloud transformation into gridded DSM

Limits

- Sparse matching
- Corner reflectors: mostly on the ground

3D reconstruction – Radarg./optic

- Distance sampling and geometric distorsions
- Mono-image elevation
- Radargrammetry
- Interferometry

Phase of a single image (backscattered)

$$\phi(t) = 2\pi f_0 t + \phi_{pr}$$
$$t = 2\frac{R}{c} = 2\frac{R}{\lambda f_0}$$
$$\phi(t) = 4\pi \frac{R}{\lambda} + \phi_{pr}$$

Combination of a geometric information (related to the range R) and the resolution cell contribution (phase shift due to cell scatterer organization)

Institut Mines-Télécom

IDS/IMAGES

Interferferometry - principle

IDS/IMAGES

The path length difference between the round-trip from the master antenna location S_{ref} to point P(h) and the round-trip from the *n*-th antenna location S_n to point P(h) determines the phase-shift. In the radar frame (orthogonal frame defined by the range and elevation directions, with origin S_{ref}), point P(h) has coordinates $P(h) = [R_0, h]$, the master antenna $S_{\text{ref}} = [0, 0]$ and the antenna on the *n*-th track $S_n = [a_n, b_n]$. The round-trip distance from S_{ref} to point P(h) is equal to $2\sqrt{R_0^2 + h^2}$. Given that $R_0 \gg h$, this distance can be expanded under the form $2R_0 + \frac{h^2}{R_0} + \mathcal{O}\{R_0^{-2}\}$ where $\mathcal{O}\{R_0^{-2}\}$ designates terms that are asymptotically equivalent to R_0^{-2} and may then be neglected. A similar reasoning leads to the following expansion of the round-trip distance from S_n to P(h): $2\sqrt{(R_0 - a_n)^2 + (h - b_n)^2} = 2(R_0 - a_n) + \frac{(h - b_n)^2}{R_0 - a_n} + \mathcal{O}\{(R_0 - a_n)^{-2}\}$. The path difference Δ_p can then be expressed as a function of the elevation h of point P(h): $\Delta_p(h) \approx -2a_n + \frac{b_n^2}{R_0 - a_n} - 2\frac{b_n}{R_0 - a_n}h + \frac{a_n}{R_0(R_0 - a_n)}h^2$. Given that both $a_n \ll R_0$ and $b_n \ll R_0$, the last term can be neglected (it is comparable to the terms in R_0^{-2} previously dropped) and $R_0 - a_n \approx R_0$, which leads to the linear approximation: $\Delta_p(h) \approx \Delta_p(0) - 2\frac{b_n}{R_0}h$, with $\Delta_p(0) = -2a_n + \frac{b_n^2}{R_0/R_0}$. The phase shift $\Delta\varphi$ in the interferogram formed between the *n*-th image and the master image is then, with $\Delta\varphi_0 = (2\pi/\lambda)\Delta_p(0)$:

$$\Delta \varphi = \Delta \varphi_0 - \frac{4\pi b_n}{\lambda R_0} h \pmod{2\pi}.$$
 (1)

Interferometry - principle

Measurement of path length differences :

- When finely registered (same cell sizes), it depends on the point elevation in the radar cell: topographic fringes
- Before fine resampling, ground range cells have different size, it implies a phase contribution along the swath (in range): orbital fringes

Conditions:

- The same scatterers organization should be measured by both sensors (no change of the ground)
- The atmospheric conditions should be the same
- The noise should be limited
- There should be no movement of the ground between the two acquisitions

Interferometry – processing chain

Interferometric processing chain

- Acquisition of 2 SAR images in interferometric configuration
- Fine registration of the 2 images
- Computation of the phase difference
- Phase unwrapping

Interferometry – processing chain

Interferometric processing chain

- Acquisition of 2 SAR images in interferometric configuration
- Fine registration of the 2 images
- Computation of the phase difference
- Phase unwrapping

Interferometry – Main steps

Acquisition of 2 SAR images in interferometric configuration

Conditions

- Slight difference of incidence angle
- No change of scatterers
- Same atmospheric conditions
- Repeat pass interferometry
 - Same orbit, same incidence angle
 - Revisit time

Single pass interferometry (simultaneous acquisitions)

- SRTM (Shuttle Radar Topographic Mission)
- Airborne acquisitions
- TanDEM-X / TerraSAR-X

Satellites for SAR Interferometry: ERS-1

1990	1995	2000	2005	2010
© ESA		ERS-1 fully deployed inside the Interspace Test facility, Toulouse, France.	 Operated by Launched 199 C-Band (5.6 d) 15.5 MHz ban 35 day repeat Highly succes Initiated cross along track S interferometric 	ESA 91 (†2000) m) dwidth polar orbit, ssful mission s track and AR

Satellites for SAR Interferometry: ERS-2

2000

1990 1995

http://earth.esa.int/rootcollection/eeo/_foto21b.gif

Operated by ESA

Launched 1995

SAR instrument and orbit identical to ERS-1

2005

• 1 day time delay

ERS-1/2 tandem operation 1995-1998

- controlled baseline
- 1 day time lag \rightarrow low decorrelation \rightarrow DEM generation

2010

Acquisition - SAR multi-pass (Terrasar-X)

Exploitation of the revisit of the sensor on the same orbit

Acquisition - SAR mono-pass

Institut Mines-Télécom

Acquisition - SAR mono-pass

TerraSAR-X: 2007 TanDEM-X: 2011

HELIX satellite formation for TanDEM-X

Fig. 1. Examples of data acquisition modes for TanDEM-X. (Left) Pursuit monostatic mode, (middle) bistatic mode, and (right) alternating bistatic mode.

Interferometry – Main steps

Processing chain

- Acquisition of 2 SAR images in interferometric configuration
- Fine registration of the 2 images
- Computation of the phase difference
- Phase unwrapping

Registration

Repeat pass interferometry :

- Same orbital track, same incidence angle, same mode, same polarization
- Different times, different positions (baseline)
- Parallel baseline: relative image shift
- Orthogonal baseline: range cell size variation along flat earth

Registration in practice – different approaches

Accurate knowledge of sensor parameters: geometric registration

- Orbit, speed, clocks, times
- Resampling of one image (« slave ») in the « master » image geometry

Image processing driven re-sampling

- Over-sampling with a factor of 100 (range)
- Complex cross-correlation maximization
- Computation of an affine transform

lmage 1

Image 2

Registration in practice – coarse registration

Image processing registration

- Search for a global translation between the two amplitude images
- Minimization of the MSE between the master image and the translated slave image

$$MSE(k,l) = \sum_{(i,j)} (A_1(i,j) - A_2(i+k,j+l))^2$$

 Maximization of the correlation = convolution between the inverse of the translated master image and the slave image

$$z_1 = A_1 e^{j\phi_1}$$
$$z_2 = A_2 e^{j\phi_2}$$

Image 1

$$Corr(k,l) = \sum_{(i,j)} A_1(i,j) A_2(i+k,j+l) = \tilde{A}_1 * A_2(k,l)$$
 (See practical work session)

 $Corr(k, l) = TF^{-1}(TF(A_1)^*.TF(A_2))$

Registration in practice – coarse registration

Image processing registration

- The correlation peak gives the translation values between the master and the slave image
- Sub-pixelic registration: to be perfectly aligned the phase shift due to the difference of pixel size should be taken into account
- Two strategies:
 - Resampling of the slave image
 - Phase ramp correction= orbital fringe correction

$$z_1 = A_1 e^{j\phi_1}$$
$$z_2 = A_2 e^{j\phi_2}$$

Image 2

(See practical work session)

Flat earth: two incidence angles

Re-sampling in time of one of the image to have similar ground cells

Phase shift for one pixel

Phase contribution of flat earth

$$\Delta r = \frac{c\Delta t}{2} \qquad \Delta x = \frac{\Delta r}{\sin \theta} = \frac{c}{2 F_e \sin \theta}$$
Pixel size for master and slave images:

$$\Delta x_M = \frac{c}{2 F_e \sin \theta} \qquad \Delta x_S = \frac{c}{2 F_e \sin (\theta + \delta \theta)}$$

Pixel size difference

$$\Delta x_M - \Delta x_S = \frac{c}{2F_e} \left(\frac{1}{\sin \theta} - \frac{1}{\sin(\theta + \delta\theta)}\right)$$

Phase shift for one pixel

Pixel size difference and induced phase shift

$$\Delta x_M - \Delta x_S = \frac{c}{2F_e} \left(\frac{1}{\sin\theta} - \frac{1}{\sin(\theta + \delta\theta)}\right)$$
$$\sin(\theta + \delta\theta) = \sin\theta\cos\delta\theta + \sin\delta\theta\cos\theta$$
$$\Delta x_M - \Delta x_S \approx \frac{c}{2F_e\sin\theta} \frac{\sin\delta\theta\cos\theta}{\sin\theta}$$
$$\Delta_{CS} = \Delta x_M - \Delta x_S \approx \Delta x \frac{B_\perp}{R} \frac{\cos\theta}{\sin\theta}$$
$$\Delta_{R} = \Delta_{CS}\sin\theta \approx \Delta x \frac{B_\perp}{R}\cos\theta$$
$$\Delta_{R} = \Delta_{CS}\sin\theta \approx \Delta x \frac{B_\perp}{R}\cos\theta$$

Phase shift for one pixel

Phase contribution due to uncorrected pixel size difference between the two sensors (flat earth)

$$\Delta \phi_{orb} = \frac{4\pi \Delta_R}{\lambda} = \frac{4\pi B_\perp}{\lambda R} \cos \theta \Delta x$$

- Can be computed using the sensor parameters
- Create fringes in the range direction = orbital fringes are parallel to the track
- To correct the orbital fringes:

- compute the phase ramp

$$z_{orb}(n) = e^{jn\Delta\phi_{orb}}$$

Correct the phase shift

$$z_s^c(n) = z_s(n) \mathrm{e}^{jn\Delta\phi_{orb}}$$

Example of orbital fringes

 $z_m z_s^{c*}$

Institut Mines-Télécom

 $z_m z_s^*$

Interferometry – Main steps

Processing chain

- Acquisition of 2 SAR images in interferometric configuration
- Fine registration of the 2 images
- Computation of the phase difference
- Phase unwrapping

Computation of phase difference

Two finely registered complex images:

$$z_1(m,n) = A_1(m,n)e^{i\phi_1(m,n)}$$
$$z_2(m,n) = A_2(m,n)e^{i\phi_2(m,n)}$$

Hermitian product

 $z_1(m,n)z_2^*(m,n) = A_1(m,n)A_2(m,n)\exp(\phi_1(m,n) - \phi_2(m,n))$

Interferometric product (multi-look)

$$\gamma(i,j)e^{i\phi(i,j)} = \frac{\sum_{(m,n)} z_1(m,n) z_2^*(m,n)}{\sqrt{\sum_{(m,n)} |z_1(m,n)|^2} \sqrt{\sum_{(m,n)} |z_2(m,n)|^2}}$$

Assume local stationarity

Interferometric product

Interferometric phase

• Less noisy when large window but loss of resolution

Interferometric coherence

- In [0,1]
- High coherence: similar complex values = reliable interferometric phase information
- Low coherence: variable complex values (temporal changes, no signal – shadow / smooth areas, high difference of incidence angles, atmospheric conditions, ...)

Interferometric filtering

Replace the square window averaging by sample selection

Example of interferometric coherence

Mount ETNA ERS1/2 Tandem Mission

Some parameters

Altitude of ambiguity

• Wrapped phase :

$$\psi_{1,2} = \frac{4\pi B_{\perp_{1,2}}}{R\sin(\theta)\lambda}h$$
$$\psi_{1,2} = \alpha_{geom_{1,2}}h$$

• Elevation causing one topographic fringe

$$\psi_{1,2} = 2\pi$$

$$h_{amb} = \frac{\lambda R \sin \theta}{2B_{\perp_{1,2}}}$$

- Increase of the baseline : decrease of the altitude of ambiguity :
 - increase the topographic sensitivity
 - More difficult to unwrapp !

$$\sigma_h = \sigma_\psi \frac{h_{amb}}{2\pi}$$

ERS SAR Image

Bachu, China

approx. 100 km \times 80 km

Interferometric Phase

Bachu, China

approx. 100 km \times 80 km

Institut Mines-Télécom

InSAR DEM (ERS-1/2)

Bachu, China

approx. 100 km \times 80 km

Institut Mines-Télécom

Interferometric Sensitivity as a Function of Wavelength

 $h_{amb} = \frac{R\sin(\theta)\lambda}{2B_{\perp_{1,2}}}$

X-band

C-band

L-band

Fig.: Mt. Etna data: SRL-2 (© DLR)

Altitude of ambiguity

• The largest the baseline : the best the sensitivity

$$\sigma_h = \sigma_\psi \frac{h_{amb}}{2\pi}$$

Critical orthogonal baseline

- The largest the baseline : the noisiest the phase
- Difference of incidence angles: geometric decorrelation (the scatterers are seen with different viewing angles)

Critical baseline :

Same backscattering of the pixels ⇒ angle difference should be limited

$$\Delta\phi_{orb} = 2\pi \iff \frac{4\pi B_{\perp}}{\lambda R} \cos\theta \Delta x = 2\pi$$

$$B_{\perp}^{crit} = \frac{\lambda R}{2\cos\theta \Delta x} = \frac{\lambda R \tan\theta}{2\Delta r}$$
Département TSI
Institut Mines-Télécom

Interferometry – Main steps

Processing chain

- Acquisition of 2 SAR images in interferometric configuration
- Fine registration of the 2 images
- Computation of the phase difference
- Phase unwrapping

Phase unwrapping

 $\Phi(P)=\phi(P)+2k\pi$

Interferometric Phase is Ambiguous

good fringe quality ERS-1/2, 13/14 Jan. 1996 bad fringe quality

ERS-1/2, 23/24 March 1996

сом

Find the "Most Likely" Solution

this is much more likely ...

... than this

Data: SRTM © DLR Institut Mines-Télécom Data: SRTM ©

Unwrapping approaches

Local approaches

- Local unwrapping by adding the 2kπ values
- Problem : uncoherencies when unwrapping condition not fulfilled

Global approaches

 Global optimization of a functional (likelihood given by wrapped phase values + prior smoothness constraint)

Multi-channel / multi-frequency approaches

• Phase becomes non - ambiguous

Mission	mode	Planimetric accuracy	Altimetric accuracy
SRTM (2000)	Bande X Mono-pass interferometry	60m (30m)	16m abs. 10m rel.
TanDEM-X WorldDEM (2011)	Mono & multi pass interferometry	12m	4m abs. 2m rel.

Differential Interferometry

Sensitivity for Displacement

$$\psi_{t,t'} = \frac{4\pi\delta R}{\lambda}$$
$$\Delta R = \Delta y \sin\theta - \Delta z \cos\theta$$
$$\psi_{t,t'} = 2\pi \iff \delta R = \frac{\lambda}{2}$$

for ERS:

1 fringe (2π) corresponds to

2.8 cm in R

3.0 cm in z (e.g. subsidence)

7.2 cm in y (motion)

Massonnet et al., The displacement field of the Landers earthquake mapped by radar interferometry, Nature 364, 1993.

Differential interferometry

Differential interferometry

©http://www.comet.nerc.ac.uk

Baseline = 0.5 m !!

1 frange \leftrightarrow 5 cm

10 km

Coseismic Deformation of Bam Earthquake 26 Dec 2003

Differential interferometry

Glacier Flow Field Derived from D-InSAR

Antarctic Thwaites glacier Data: ERS-1/2, ©ESA

approx. 500 km x 500 km

(Lang et al., 2004)

Differential interferometry + radargramm.

Chamonix - Mont Blanc

0 1250 2500

Lat/Long Projection WG S 1984

Multi-temporal SAR interferometric data

Point target analysis

- Exploitation of highly stable points limited temporal and geometric decorrelation (corners –man-made structures-, rocks,...)
- Permanent scatterers (PS) approaches
 - Exploitation of the whole set of interferograms
 - Inversion constrained by a deformation model

Distributed targets

- Small Baseline (SBAS approaches)
 - Selection of interferograms with sufficient correlation (limited temporal and geometric decorrelation)
 - Temporal inversion

Permanent Scatterers for subsidence

Subsidence of Pomona: animation of Politechnico di Milano

Summary: SAR Interferometry ...

... combines two or more complex-valued SAR images to derive geometric information about the imaged objects (compared to using a single image) by exploiting phase differences.

 \Rightarrow Images must differ in at least one aspect (= "baseline")

baseline type	known as		applications: measurement of	
$\Delta heta$	across-track		topography, DEMs	
$\Delta t = \mathrm{ms}$ to s	along-track		ocean currents, moving object detection, MTI	
$\Delta t = \text{days}$	differential		glacier/ice fields/lava flows, Snow Water Equivalent (SWE), hydrology	
$\Delta t = \text{days}$ to years	differential		subsidence, seismic events volcanic activities, crustal displacements	
$\Delta t = ms$ to years	coherence estimator		sea surface decorrelation times land cover classification	
Institut	Mines-Télécom		ParisTech	

Zhu et al.14

$$g_n = \int_{\Delta s} \gamma(s) \exp(-j2\pi\xi_n s) \, ds, \qquad n = 1, \dots, N$$

 $\mathbf{g} = \mathbf{R} \boldsymbol{\gamma}$

Inversion :

- Spectral analysis methods
- Parse methods

 N_r

Interferometric Phase Error Sources

InSAR limits

$$\phi = \phi_{orb} + \phi_{topo} + \phi_{mvt} + \phi_{atm} + \phi_{noise}$$

Many error sources:

- Atmospheric decorrelation
- Temporal decorrelation
- Baseline (geometric) decorrelation + lay-over and shadows
- Phase noise

Corrections :

- Mono-pass systems
- Atmospheric corrections
- Phase filtering
- Multi-sensors combination

