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Backscattering mechanisms: surface and 
volume 

® Strong influence on the backscattered radiometries
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Targets and object appearance

¢ Bright targets :
• Trihedral / dihedral structures (man-

made objects, urban areas)
¢ Surface area:

• Depends on the roughness
• Depends on the geometric

configuration 
• Dielectric properties (water content, 

humidity)
¢ Many objects in the resolution cell:

• Speckle
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Volume scattering mechanisms
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Backscattering of a cell

¢ A(x,y) is characteristic of the imaged area
¢ A(x,y) can be complex :

• Amplitude : backscattering coefficient
• Phase : delays or delocalisation inside the pixel

¢®Directivity of the backscattered signal : depends
on A(x,y)
• The  diagram of the local ground antenna is not 

known
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Backscattering of a cell

¢ An object on the ground is defined by its RCS (Radar 
Cross Section) or SER (Section Efficace Radar) :
• Depends on the material (dielectric properties, 

roughness)
• Depends on the shape (geometry)

¢ SER 
• Ratio between emitted power and backscattered 

power
• Depends of the antenna gain 
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Influence of  lateral viewing 

)sin(q
rxCS D

=D=

Since the incidence angle varies along the swath:
Variable resolution from near range to far range
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Geometrical distorsions
Variable incidence angle: variable resolution

q=6°, dx q=60°, dx/10

Airborn system: same dr, variable dx along the swath

©ONERA
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Influence of relief on cell size
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Effets de la variation de la case sol en 
fonction de la pente locale : le Cap Vert

Image ERS
Mosaïque sur Google
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Cell size and local slope
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X

H

Ground range:  Case a = q

¢ Range cell : Dr
¢ Ground range : Dx
¢ Influence of local slope

A

B

A and B in the same range cell
Relation between X, H et q

X
H

=qtan
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Relief – lay-over

¢ Weak slope : A first, then B
¢ Slope = incidence angle: A and B in the same cell
¢ Strong slope : B first, then A : « lay-over »

• Lay-over condition:

A

B

A

B

A

B

qtanXH >
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¢ Lay-over: C and A

¢ Inversion: C before B

¢ Shadow: D

Relief – geometric distorsions
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¢ Example of a vertical post

Geometrical distorsions
Lay-over / shadow

Slant range image

Top of the post + ground

Ground + facade

Bottom of the post 

shadow

sensor
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Eiffel tower
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Lateral viewing

¢ Terrasar-X, q~34°
¢ Relationship between 
h and BP
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Urban areas: optic / SAR
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ÓDLR

ÓDLR

Urban areas: optic / SAR
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Pyramid example  30° and 60°
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TERRASAR-X :Gizeh

¢ Side : 232m
¢ Height : 146m
¢ Slope : 51°
¢ Incidence : 53°

©DLR
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Gizeh : incidence 40°
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Urban areas
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Influence of the viewing direction 

X-SAR image of Brooklyn, New-York, resolution 6.5m
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Geometric effects 

¢ In urban areas:
• Shadow areas behind over-ground objects 
• Overlay phenomenon (lay-over)
• Corner reflector wall / ground  
• Strong backscattering of facades oriented towards 

the sensor
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Geometric effects
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Geometric effects
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SAR data visualization

¢ Data: 1 complex number per pixel
¢ Amplitude (modulus of electro-magnetic field)
¢ Dynamic:
• Very widespread
• Display of images on 8 bits gray-levels (0 to 255 

values)
• 8-bits coding should be adapted ! 
Dynamic truncation with
max = mean + 3sigma
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Desert in Australia (Terrasar-X)
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Sonar: underwater ground 

page 34
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Echography 
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Desert of Mauritania (ERS)
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Sea – near Bergen (Terrasar-X Spotlight)
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Forest in Guyana (ERS)
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Phenomenological analysis (Terrasar-X)
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Two areas in Australia
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Speckle principle

¢ Size of resolution cell >> λ
• Elementary scatterers inside the 

resolution cell

¢ Coherent sum of the waves:
• Each scatterer backscatters the e.m 

wave
• Phenomenon of interferences
• Vectorial addition in the complex 

plane

Sensor

Resolution cell

©SAR-EDU
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Resolution cells

What is Speckle?

Re

Im

Re

Im

Constructive combination

Destructive combination

High radiometry

Low radiometry

Sensor

SAR Image

©SAR-EDU
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¢ No acces to the scatterers inside the resolution  
cells (even if it is deterministic!)

¢ Random variable modeling:
backscattering modeled by a r.v !

¢ Why developing models for the backscattered field ?
• Prediction of the performances of image processings 
• Choice of the thresholds
• Developement of model based methods

Speckle principle
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Speckle modeling
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Statistical modeling of speckle in SAR imaging

SAR data acquisition

Sensor trajectory

Azimuthal direction

Antenna lobe

Radar
antenna

Range
direction

Radar sensor

Range
Resolution

Ground

Radar
wavebeam

Plane wave

Range
direction

Line
of sight

Synthetic aperture radar (SAR) imagery
Active sensor: emits a wave and measures its echoes
SAR: At each pixel: complex amplitude of the echo z = Aej'

Amplitude: A = |z|
Intensity: I = A2 = |z|2

Phase: ' = arg z

F. Tupin, L. Denis, C. Deledalle, and G. Ferraioli 10 years of patch-based approaches for SAR imaging July 31, 2019 7 / 36
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Speckle modeling 
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Statistical modeling of speckle in SAR imaging

Origins of speckle in SAR / coherent imaging systems / interferences

Coherent illumination

Resolution cell

Elementary target

Return
measured inside

the resolution cell

Return of an
elementary

target
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see [Goodman, 1976]

Coherent summation of N punctual echos

z =
NX

i

zi, zi 2 C .

Goodman model (rough surfaces):
1 z1, ..., zN iid,
2 <(zi) and =(zi) iid,
3 |zi| and arg zi independent.

By the law of large numbers wrt N

p(z|R) , p(<(z),=(z)|R)

=
1

⇡R
exp

✓
�
|z|2

R

◆

where R > 0 is the quantity of interest.
R is linked to the radar cross-section

(R = reflectivity).

F. Tupin, L. Denis, C. Deledalle, and G. Ferraioli 10 years of patch-based approaches for SAR imaging July 31, 2019 8 / 36
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Speckle modeling 
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Statistical modeling of speckle in SAR imaging

Statistics of the circular complex Gaussian distribution
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z = Aej' is distributed according to a complex circular Gaussian, thus
' = arg(z) uniformly distributed in [�⇡,⇡], ) phase is non-informative.

I = |z|2 exponentially distributed: p(I | R) =
1

R
exp
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A = |z| Rayleigh distributed: p(A | R) =
2A

R
exp

✓
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A2

R

◆
.

) heavy right tail.
I or A are sufficient statistics for R: E[I] = E[A2] = R.

) many SAR applications focus only on |z|.
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Coefficient of variation

hererogeneity measure =
coefficient of variation 
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Goodman model - amplitude

Amplitude distribution:

Rayleigh pdf

• n

•
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Goodman model (homogenous area) 

Data Pdf

Real part 
Imaginary part 

Gaussian pdf
0 mean

Phase Uniform pdf

Intensity Negative exponential pdf

Amplitude Rayleigh pdf
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Multi-look processing 

¢ Averaging N i.i.d samples reduces the variance by N

¢ Which data ? 
• Complex data ?
• Intensity data ? 
• Amplitude data ?  

page 52
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Multi-vues
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Statistical modeling of speckle in SAR imaging

Multi-looking

Increase signal to noise ratio using spatial/temporal average
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Intensity multi-looking 

¢ Averaging of L intensity samples: 
• Convolution of  neg. exp. pdf : Gamma pdf
• L: number of looks 

page 54
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Amplitude multi-looking 

¢ Square root of the average of L intensity samples
• Nakagami pdf
• L: number of looks 

page 55
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Multi-looking 

¢ Which samples ? 
• Historically : 

- Azimuth sub-band decomposition of the complex spectrum

- Decrease of spatial resolution to improve radiometric resolution
• Spatial samples 

- Mean filter

- Loss of spatial resolution
• Temporal samples 

- Not iid ? 

page 56
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Multi-looking : less speckle, less resolution

¢ 10x10 multi-looking : easier image interpretation
page 57
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Spatial multi-looking

page 58
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Temporal multi-looking (13 images) 
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Original TerraSAR-X image 
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Video of the temporal multi-looking
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ÓDLR

Temporal average of 26 images TSX

Very efficient 
Very simple
Only valid for stable areas
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Equivalent number of looks (ENL)

¢ For a multi-look image:
• The number of looks is usually less than the 

theoretical number of views because of the 
correlation between samples  

• ENL computation 

- Choice of a physically homogeneous area

- Computation of the coefficient of variational

- Inversion of the relationship (amplitude or intensity) 
¢ Use:
• To adjust statistical models  
• To evaluate the efficiency of a filtering method 

page 65
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Multiplicative model

¢ Modeling of  the  speckle noise as multiplicative: 

¢ Texture modeling with scene pdf: 

page 67
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Homomorphic approaches 

page 68

2. Extending Gaussian denoisers to SAR intensity images

Goodman model of fully developed speckle
SAR intensity is distributed according to a Gamma distribution:

pI(I|R) =
LLIL�1

�(L)RL
exp

✓
�L

I

R

◆
with R the radar reflectivity.

! E[I] = R
! Var[I] = R2/L

The log of the intensity follows a Fisher-Tippett distribution:

py(y|x) =
LL

�(L)
eL(y�x) exp

�
�Ley�x�

! E[y] = x� logL+ (L)
! Var[y] =  (1, L) ( : polygamma)

noisy image noiseless image stationary noise

additive stationary noise

noisy image noiseless image exponential noise

multiplicative speckle noise

log

MuLoG Deledalle, Denis, Tupin IGARSS 2018, Valencia, Spain 8 / 30
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2. Extending Gaussian denoisers to SAR intensity images

Gaussian approximation of log-transformed speckle

0

approximate log-transformed speckle as additive white Gaussian noise
! not very good for small L: asymmetry towards lower values

! not centered (a debiaising step is needed)

MuLoG Deledalle, Denis, Tupin IGARSS 2018, Valencia, Spain 9 / 30
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Texture 

¢ Texture modeling
• Use of a multiplicative model: 
Image (I) = texture (R ) x speckle (S)
Distribution modeling:

- Speckle: fully developed speckle (Goodman model)

- Texture: proposal of different distributions 
• Probabilistic tools:

- Mellin transform

- Log-statistics

page 71
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Mellin convolution and associated tools

¢ Mellin convolution for positive r.v:

¢ Modeling of many textures on SAR:

page 72
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Mellin convolution

¢ Convolution and Fourier transform:

• Adapted to additive noise

¢ Mellin convolution and Mellin transform:

• Adapted to multiplicative noise
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Statistics et log-statistics

¢ Statistics : pdf defined on Â
• Use of  the Fourier transform
• Convolution: additive noise
• Characteristic functions 
• Gaussian pdf: defined on Â

¢ Log-statistics : pdf defined on Â+

• Use of Mellin transform
• Mellin convolution: multiplicative noise
• Characteristic function of  «second kind»
• Gamma pdf : defined on Â+
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Characteristic functions, moments and cumulants 
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Convolution and Mellin convolution
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Estimation of moments and log-moments
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Moments et log-moments

L=2
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Example of Rayleigh-Nakagami pdf
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Practical use of log-cumulants to analyze 
textures

¢ Computation of  log-cumulants:

¢ For known pdf : inversion to recover pdf parameters

¢ For unknown pdf: positioning in the log-cum3 / log-
cum2 diagram 
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Log-cum3 / log-cum2 diagram
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Summary of the session (1) 

¢ Backscattering of the objects 
• Parameters: roughness, geometric configuration, di-

electric properties
¢ Geometric effects in SAR imagery 
• Especially for HR SAR and urban areas (shadows, lay-

overs, corner reflectors) 
¢ Speckle phenomenon:
• Well modeled by Goodman model for rough surfaces  
• Amplitude: Rayleigh - Nakagami
• Intensity: Gamma  
• Homogeneity measure: coefficient of variation 
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Summary of the session (2) 

¢ Multi-looking: averaging of L samples  
• Incoherent (intensity) 
• ENL deduced from coefficient of variation

¢ Log-statistics
• Give more reliable estimates to compute the 

distribution parameters 
• The log-cum1 / log-cum2 diagram allows an easy 

visualization of the distribution positioning
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