

Acquisition of SAR images (SAR : Synthetic Array Radar)

Jean Marie NICOLAS Florence TUPIN

IMA207

- Principle of radar acquisition
- Examples of SAR images
- SAR image acquisition
 - Range direction and chirp
 - Azimuth direction and synthetic aperture

Some SAR systems and applications

Physic measure

Radar sensors – wavelengths

Frequency

Why using SAR?

Advantages

- All time sensor
- All weather sensor

- Complementary information compared to optic
 - Sensitivity to different properties of medium
 - Sensitivity to topography
 - Penetration capabilities (subsoil, biomass,...)

Drawbacks

- Speckle (strong radiometric fluctuations)
- Sensitivity to geometry

Examples of SAR images

Terrasar-X : first image, june 15th 2007

Terrasar-X (~2m) : ideal case (no speckle)

Terrasar-X (~2m) : ideal case (no speckle)

Sentinel image (~4x10m) : ideal case (no speckle)

Backscattering mechanisms: surface and volume

\rightarrow Strong influence and the backscattered radiometries

page 14

Backscattering mechanisms: metallic objects

No propagation in the metal

Wave fully backscattered

TSX and CSK on Martigny (ideal case):pylons

Snell Descartes

$$\theta_1' = \theta_1$$
$$\frac{1}{c_2} \sin \theta_2 = \frac{1}{c_1} \sin \theta_1$$

Only backscattered wave : « full backscattering »

- No recorded signal at the emitting antenna
- Water is (poorly) conductive

Roselend lake(Terrasar-X) : black water....

2θ+ 2θ'=π >> the wave is backscattered towards the sensor

Canonical targets : triedre « corner reflector »

- triedral: 3 sides of length a with 90°
- 3 back. signals
- All the signal back. in the same cell

$$\sigma_{trièdre} = \frac{4\pi a^4}{3 \lambda^2}$$

$$\theta_a = \pm 20^\circ$$

 $\theta_b = \pm 20^\circ$

Institut Mines-Telecom

Isolated target

Ideal case : « corner reflector »

- Almost omnidirectional
- Prevails all the backscattered signals in the resolution cell

Man-made targets on the glacier

Man-made targets on the glacier

Man-made targets : suite.... Roselend lake (Terrasar-X)

Targets and object appearance

Bright targets :

 Trihedral / dihedral strucures (manmade objects, urban areas)

Surface area:

- Depends on the roughness
- Depends on the geometric configuration
- Dielectric properties (water content, humidity)

Many objects in the resolution cell:

Speckle

Volume scattering mechanisms

2) Trunk scattering

4) Attenuated soil scattering

6) Trunk-branch interaction

7) Soil-branch interaction

Examples of main backscattering mechanisms on the forest

Volume backscattering mechanisms generally rely on interaction mechanisms which are highly complex and still not well-known. Main trends:

→ Backscattering coefficient **>** when vegetation volume (biomass) **>**

→ Wavelength penetration **>** when frequency **>**, i.e. when wavelenght **>**

Backscattering of a cell

$$U_{\omega}(P,t) \approx \frac{1}{R(P)} \iint_{\Sigma} e^{j4\pi \frac{x \sin\theta}{\lambda}} A(x,y) \, ds$$

- A(x,y) is characteristic of the imaged area
- A(x,y) can be complex :
 - Amplitude : backscattering coefficient
 - Phase : delays or delocalisation inside the pixel
- →Directivity of the backscattered signal : dépends on A(x,y)
 - The diagram of the local ground antenna is not known

Backscattering of a cell

$$U_{\omega}(P,t) \approx \frac{1}{R(P)} \iint_{\Sigma} e^{j4\pi \frac{x \sin\theta}{\lambda}} A(x,y) \, ds$$

- An object on the ground is defined by its RCS (Radar Cross Section) or SER (Section Efficace Radar) :
 - Depends on the material (dielectric properties, roughness)
 - Depends on the shape (geometry)

SER

- ratio between emitted power and backscattered power
- Depends of the antenna gain

Variable orientation \Rightarrow variable backscattering

Same incidence angle Between june and september 2009

Institut Mines-Télécom

Les bases du RSO

33

Image Terrasar-X (~2m) : speckle

Image Terrasar-X (~2m) : speckle

Image Terrasar-X (~2m) : speckle

Speckle (Sentinel, decametric resolution)

- Principle of radar acquisition
- Examples of SAR images
- SAR image acquisition
 - Range direction and chirp
 - Azimuth direction and synthetic aperture

Some SAR systems and applications

SAR history

- Principles defined by Wiley (1951)
- Imaging of moon surface (Apollo 17)
- First american experiment SEASAT (1978)
- URSS realizations (Kosmos et Almaz)
- Use of the Shuttle : SIR (1982,1984 et 1994) and SRTM (2000)
- Europe (ESA) : ERS (1991,1995) et Envisat (2002)
- Japan (1992,2006) and Canada (1995)

Principles of radar: transmitter and receiver

2 principles of SAR acquisition

- Range direction: time (= distance) sampling
- Azimuth direction (flight) : antenna spread

Two dimensions :

- 1 pulse in range = 1 line
- Sampling in time = time cell

page 42

TELECOM ParisTech

Sampling (time, range, ground) $\Delta t \leftrightarrow \Delta r \leftrightarrow \Delta x$

ERS : $\tau \approx 37 \,\mu s$ resolution: a few km (5 km)

Improvement of the resolution by chirp emission

Backscattering of a target

Emitted signal: $s_e(t)$

Target at distance *d* :

• Outward :

Target backscattering : R(t)

Target at distance d :

Backward:

Backscattered signal : s_r(t)

$$s_r(t) = \delta\left(t - \frac{2d}{c}\right) * R(t) * s_e(t)$$

Target at distance d

Backscattering of the target : R(t)

$$s_r(t) = \delta\left(t - \frac{2d}{c}\right) * R(t) * s_e(t)$$

Other target at distance d'

Backscattering of the target : R'(t)

$$s'_r(t) = \delta\left(t - \frac{2d'}{c}\right) * R'(t) * s_e(t)$$

0.8

0.6

0.4

0.2

Example of « ideal » emitted

0.8 Ο. 0.2

-4

-8

-6

-8-

-2

8

6

4 t

Signal and backscattering

Signal reçu : convolution

Two targets: radial resolution

Pulse compression

Linearly varying frequency around fo: « modulated frequency» :

- Linear term in frequency : f_0
- Quadratic term in phase : K
- « chirp » of duration T

 $e^{j2\pi f_0 t} e^{j\pi K t^2}$ $-\frac{T}{2},\frac{T}{2}$

Matched filter: short apparent pulse

$$f_{i} = \frac{1}{2j\pi} \frac{\partial \varphi}{\partial t} = f_{0} + Kt$$
$$\mathsf{B}=\mathsf{KT} \qquad f_{i} \in \left[f_{0} - K\frac{T}{2}, f_{0} + K\frac{T}{2}\right]$$

Fourier transform

$$TF\left[e^{j\pi Kt^{2}}\right] \approx \sqrt{\frac{j}{K}} e^{-j\pi \frac{1}{K}f^{2}} \quad f \in \left[-\frac{KT}{2}, \frac{KT}{2}\right]$$

Frequential matched filter

$$\left[\sqrt{\frac{j}{K}} e^{-j\pi\frac{1}{K}f^2}\right] \cdot \left[\sqrt{\frac{j}{K}} e^{-j\pi\frac{1}{K}f^2}\right]^* = \frac{1}{K} \quad f \in \left[-\frac{KT}{2}, \frac{KT}{2}\right]$$

Inverse Fourier transform

$$\mathrm{TF}^{-1}[\mathrm{Id}]_{\mathrm{f}\in[-0.5,0.5]} = \frac{\sin(2\pi x)}{2\pi x}$$

Result of the matched filter

$$e^{j2\pi f_0 t} e^{j\pi K t^2} \qquad t \in \left[-\frac{T}{2}, \frac{T}{2}\right]$$

Chirp of duration T, of bandwith B=KT, « sinc » :

Compressed pulse and chirp

- Emission of a linearly modulated frequency with Bandwith B=KT
- Equivalent to a duration τ
- Compression factor KT²

$$s_r(t) * s_e^*(-t) = \delta\left(t - \frac{2d}{c}\right) * R(t) * s_e(t) * s_e^*(-t)$$
$$= \delta\left(t - \frac{2d}{c}\right) * R(t) * \operatorname{sinc}$$

Conclusion on range resolution

The radial resolution of a SAR sensor depends on the bandwith

	Bandwith	« range »
		resolution
ERS	15.55 MHz	9,6m
Radarsat 1	30 MHz	5m
Terrasar-X	150 MHz	1m

$$\delta r = \frac{c\,\tau}{2} = \frac{c}{2B}$$

◆ The <u>pixel size</u> is defined by the sampling frequency Fs

The range <u>resolution</u> is defined by the modulation Bandwidth B^{chirp}

Numerical example: ERS Fs = 18.96 MHzPixel $_{slant range} = 7,9 m$ $Pixel_{ground_range} = 26 \ to \ 18 \ m$ $B = \frac{1}{\tau^{comp}} = 15.5 \, MHz$ $Res_{slant range} = 9.7 m$ $Res_{ground range} = 22 to 32 m$

The pixel size is generally "built" slightly smaller than the resolution: Fs≥Bchirp © copyright CNI

- Principle of radar acquisition
- Examples of SAR images
- SAR image acquisition
 - Range direction and chirp
 - Azimuth direction and synthetic aperture
- Some SAR systems and applications

Plane is moving and acquiring pulses along its trajectory

Lateral viewing antenna

pag e 64

Institut Mines-Télécom

Numerical example:

 $L \approx 4m$, $R \approx 4$ km (airborne radar), $\lambda \approx 3$ cm (X band) \rightarrow resolution ≈ 30 m

©ESA/CNES

Real antenna is too small \rightarrow It measures a too big area

By moving, multiple acquisitions of the same point

A same point is seen by different antenna positions The synthetic antenna « sees » a small area

TELECOM ParisTech

Institut Mines-Telecom

The antenna progression along the orbit allows to observe each given point at different times

Resolution improvement in the azimuth direction

Visibility of a target in the swath

Creating an antenna of size L'

The compression rate Na equals the number of coherently added echoes (complex addition). It is no resolution gain in the azimuth direction

Does not depend on the distance to the target !!Does not depend on the wavelength

Illumination time depends on L et λ

Dimension de l'antenne synthétique

21		L	λ	ω	D	L _S
$\omega = \frac{2\lambda}{L}$		(m)	(cm)		(km)	(km)
	ENVISAT (θ=30°)	10	5,66	0,324°	912	10,32
	CSK (θ=30°)	5,7	3,1	0,311°	714	7,76
	TSX (θ=30°)	4,8	3,1	0.370°	593	7,65
	ALOS (θ=30°)	8,9	23,5	1.513°	799	42,2

Synthetic aperture and signal processing Sensor trajectory, target plan

Linearly varying frequency: « modulated frequency» ! « natural » chirp in azimuth direction : matched filter

Institut Mines-Télécom

Summary of SAR imaging: chirp + synthetic aperture

- Range: pulse compression and matched filter
- Azimuth: natural chirp and matched filter = big synthetic aperture

PSF :

- Cardinal sinus in range
- Cardinal sinus in azimuth

$$PSF \propto \frac{\sin(\pi B t)}{\pi B t} \frac{\sin(\pi B_y y)}{\pi B_y y} \propto \frac{\sin(\pi B_r r)}{\pi B_r r} \frac{\sin(\pi B_y y)}{\pi B_y y} \qquad B_r = \frac{2B}{c} B_y = \frac{2\lambda}{L_S}$$

Carrier frequency + cardinal sinus (Ox et Oy)

Example of SAR data : RAW data (km res)

Institut Mines-Télécom

Matched filter in range direction (chirp)

Institut Mines-Télécom

Matched filter in azimuth direction (synt. aperture

Institut Mines-Télécom

- Principle of radar acquisition
- Examples of SAR images
- SAR image acquisition
 - Range direction and chirp
 - Azimuth direction and synthetic aperture

Some SAR systems and applications

ERS-1

Radar européen ERS longueur d'onde radar : 5cm Rappel : vert 0,0005 mm

Antenna of 1m x 10m 10 panels

Emitting – receiving antenna

- « antenna swath »Shape of the antenna
 - D : around 1000 km
 - λ : a few cm
 - L : limited size
 - → resolution of RAR (real aperture radar) : a few km

 λD

ENVISAT : from antenna to « phased array »

16 modules for a tile

• A tile : 0,65m x 1m

4 tiles for a panel

- A panel : 1,30m x 2m
- 5 panels on ASAR
 - Antenna : 1,30m x 10m
- 320 modules
 - Choice of the phase for each module

Terrasar-X (DLR)

Geometry of SAR images

Consequences of lateral viewing

Influence of lateral viewing

Geometrical distorsions Variable incidence angle: variable resolution

θ =6°, dx

page

 θ =60°, dx/10

Airborn system: same δr , variable δx along the swath

Influence of relief on cell size

Effets de la variation de la case sol en fonction de la pente locale : le Cap Vert

Mosaïque sur Google

Ground range: Case $\alpha = \theta$

- Range cell : ∆r
- **Ground range :** Δx
- Influence of local slope
- A and B in the same range cell
 Relation between X, H et θ

- Weak slope : A first, then B
- Slope = incidence angle: A and B in the same cell
- Strong slope : B first, then A : <u>« lay-over »</u>
 - Lay-over condition:

Institut Mines-Télécom

Lateral viewing

- Terrasar-X, θ~34°
- Relationship between h and BP

$$H = \frac{\Delta X}{\tan \theta}$$
$$H = \frac{\Delta R}{\cos \theta}$$

TERRASAR-X:Gizeh

- Side : 232m
- Height : 146m
- **Slope : 51°**
- Incidence : 53°

Gizeh : incidence 40°

Influence of the viewing direction

X-SAR image of Brooklyn, New-York, resolution 6.5m

Terrasar-X Descending pass

Terrasar-X and map + simulated radiometry (SAR geometry)

Polarimetry

Comparison between HH and HV images

Composition of TerraSAR-X images HH and HV polarizations

Sensitivity of the signal

Polarisation HH

Polarisation VV

Interferometry

(3) Interferferometry - principle $\phi = \frac{4\pi R}{\lambda} + \phi_{pr}$ \mathbf{B}_{orth} $\delta = \frac{B_{orth}h}{R\sin\theta}$ $\phi_2 - \phi_1 = \frac{4\pi (R_2 - R_1)}{\lambda} = \psi_{1,2}$ $\psi_{1,2} = \frac{4\pi B_{\perp_{1,2}}}{R\sin(\theta)\lambda}h$ $\psi_{1,2} = \alpha_{geom_{1,2}}h$ h θ $\delta \theta$ $\sin(\delta\theta) = \frac{\delta}{AC}$ $\sin(\delta\theta) = \frac{Borth}{R}$

Interferometry - principle

Interferometric processing chain

- Acquisition of 2 SAR images in interferometric configuration
- Fine registration of the 2 images
- Computation of the phase difference
- Phase unwrapping

Interferometry – Main steps

- Acquisition of 2 SAR images in interferometric configuration
 - Repeat pass interferometry
 - Same orbit, same incidence angle, time revisit
 - Single pass interferometry
 - SRTM (Shuttle Radar Topographic Mission)
 - Airborne acquisitions
 - TanDEM-X / TerraSAR-X
 - SWOT

page

ERS SAR

Bachu, China

approx. 100 km \times 80 km

ERS-1/2 © ESA

Interferometric Phase

Bachu, China

approx. 100 km \times 80 km

InSAR DEM (ERS-1/2)

Bachu, China

approx. 100 km \times 80 km

Use of SAR data

Use of SAR data

Land applications

- Agriculture and vegetation monitoring
- Urban areas monitoring
- Disaster management
- Defense and security
- Digital terrain modeling (interferometry)
- Ground movement monitoring *(interferometry)*

Ocean aplications

- Specific processing (Doppler analysis) for sea surface current
- Ice monitoring (ice state and movement)
- Ship detection and supervision
- Pollution detection

Agriculture monitoring (polarimetry)

BIOMASS measurement

)M ch

Flood monitoring

©RadarSat-2

Avant

Après

Positionnement quasi parfait des images RSO

Glacier de Saleina Uniquement visible sur passes ascendantes Evolution entre mai 2009 et octobre 2009

-33 cm/yr

0 cm/yr

© RADARSAT-2 Data and Products @MacDonald, Dettwiller and Associates Ltd. (2009) - All Rights Reserved. Données et produits de RADARSAT-2 @ Macdonald, Dettwiler and Associates Ltd. (2009) - tous droits réservés.

