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Why using graphs ?

• Interest: they give a compact, strctured and complete representation, easy to

handle

• Applications:

• Image processing: segmentation, boundary detection

• Pattern recognition: printed characters, objects (buildings 2D ou 3D, brain

structures, ...), faces, ...

• Image registration

• Understanding of structured scenes

• ...
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Definitions

Graph : G = (X,E)

• X set of nodes (|X| order of the graph)

• E set of edges (|E| size of the graph)

• complete graph (size
n(n−1)

2
)

• partial graph G = (X,E′) with E′ part of E

• subgraph F = (Y,E′), Y ⊆ X et E′ ⊆ E

• degree of a node x : d(x) = number of edges

• connected graph: for each pair of nodes you find a path linking them

• tree: connected graph without cycle

• clique: complete subgraph

• dual graph (face → node)

• segment graph (edge → node)

• hypergraph (n-ary relations)

• weighted graphs: weights on the edges
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Notations

Graph : G = (X,E)

• weight of an edge linking i et j : wij

• adjacency matrix W of size |X| × |X| defined by

Wij =

{

wij if eij ∈ E

0 else

for undirected edges W is symetric

• Laplacian matrix of an undirected graph

di =
∑

eij∈E wij

Lij =











di if i = j

−wij if eij ∈ E

0 else

L = D −W

with Dii = di
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Representation

Adjacency matrix, adjacency lists

a

d

f c e

b

a b c d e f

a 0 1 1 1 0 0

b 1 0 0 0 0 0

c 1 0 0 0 1 1

d 1 0 0 0 1 0

e 0 0 1 1 0 0

f 0 0 1 0 0 0
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Representation

Adjacency matrix, adjacency lists

(figure from “Image processing and analysis with graphs”, Lézoray - Grady)
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Examples of graphs

• Attributed graph : G = (X,E, µ, ν)

• µ : X → LX nodes interpreter (LX = attributes of nodes)

• ν : E → LE edges interpreter (LE = attributes of edges)

Exemples :

• graph of pixels

• region adjacency graph (RAG)

• Voronoï regions / Delaunay triangulation

• graph of primitives with complex relationships

• Random graph : edges and nodes = random variables

• Fuzzy graph : G = (X,E = X ×X,µf , νf )

• µf : X → [0, 1]

• νf : E → [0, 1]

• avec ∀(u, v) ∈ X ×X νf (u, v) ≤ µf (u)µf (v) or

νf (u, v) ≤ min[µf (u)µf (v)]
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Examples of image graphs

(figure from “Image processing and analysis with graphs”, Lézoray - Grady)
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Examples of image graphs
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RAG (Region Adjacency Graph)
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Examples of image graphs

Voronoï diagram (in blue) and Delaunay triangulation (pink)
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Examples of image graphs

(figure from “Image processing and analysis with graphs”, Lézoray - Grady)
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Examples of graphs

• Graph of fuzzy attributes : attributed graph with fuzzy value for each attribute

• Hierarchical graph :

multi-level graph and and bi-partite graph between 2 levels

(multi-level approaches, object grouping, ...)

Exemples :

• quadtrees, octrees

• hierarchical representation of the brain

• Graph for reasoning

decision tree, matching graph
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Graph examples

(figure from “Image processing and analysis with graphs”, Lézoray - Grady)
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Graph examples

(figure from M.T. Pham PhD, 2016)
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Graph examples
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Graph examples
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Graph examples - BPT Binary Partition Tree
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Some classical algorithms

Search of the minimum spanning tree

• Kruskal algorithm O(n2 +mlog2(m))

• Prim algorithm O(n2)

Shortest path problems

• positive weights: Dijkstra algorithm O(n2)

• arbitrary weights but without cycle: Bellman elgorithm O(n2)

Max flow and Min cut

• G = (X,E)

• partitioning in two sets A et B (A ∪B = X, A ∩B = ∅)

• cut(A,B) =
∑

x∈A,y∈B w(x, y)

• Ford and Fulkerson algorithm

Search of maximal clique in a graph

• decision tree

• cut of already explored branches
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Segmentation by minimum spanning tree

Constantinidès (1986)

• graph of pixels weighted by the gray levels (or colors) (weights = distances)

• search of the minimum spanning tree

• spanning tree ⇒ partitioning by suppressing the most costly edges

12800

128

0

les plus coûteuses
suppression des arêtesarbre couvrant de poids minimal

12800

0

02550255

image graphe des pixels attribué

0255255

0
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Computation of the minimum spanning tree

Kruskal algorithm

• Starting from a partial graph without any edge, iterate (n− 1) times : choose the

edge of minimum weight creating no cycle in the graph with the previsouly chosen

edges

• In practice:

1. sorting of edges by increasing weights

2. while the number of edges is less than (n− 1) do:
• select the first edge not already examined
• if cycle, reject
• else, add the edge in the graph

• Complexity: O(n2 +mlog2(m))

Prim algorithm

• Extension from near to near of the current tree

• Complexity: O(n2)

F. Tupin - Graphes – p.23/91



Constantinidès (1986)
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Segmentation by graph-cut

Graph-cut definition:

• graph G = (X,E)

• partitioning in 2 parts A et B (A ∪B = X, A ∩B = ∅)

• cut(A,B) =
∑

i∈A,j∈B wij
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Segmentation by graph clustering

Clustering : partitioning of the graph in groups of nodes based on their similarities

Each cluster (group): a closely connected component

The clustering corresponds to:

• edges between different groups have low weights (weak similarities)

• edges inside a group have high weights (high similarities)

Possible cost functions for the cut:

• minimum cut Cut(A1, ..., Ak) =
∑i=k

i=1 Cut(Ai, Ai)

• minimum cut normalized by the size of each part (RatioCut)

RatioCut(A1, ..., Ak) =
∑i=k

i=1
1

|Ai|
Cut(Ai, Ai)

(|Ai| number of vertices in Ai)

• minimum cut normalized by the connectivity of each part (NCut)

NCut(A1, ..., Ak) =
∑i=k

i=1
1

vol(Ai)
Cut(Ai, Ai)

(vol(Ai) =
∑

k∈Ai
dk sum of the weight of all edges of vertices in Ai)
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Toy example

Wu and Leavy (93): search for the MinCut
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Influence of the number of edges: Cut(A,B) = 4b, Cut(A′, B′) = 3b
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Normalized cut

• Principle: graph clustering

• + suppression of the influence of the number of edges: normalized cut

Ncut(A,B) =
cut(A,B)

assoc(A,X)
+

cut(A,B)

assoc(B,X)

assoc(A,X) =
∑

a∈A,x∈X

w(a, x)

• Measuring the connectivity of a cluster:

Nassoc(A,B) =
assoc(A,A)

assoc(A,X)
+

assoc(B,B)

assoc(B,X)

Ncut(A,B) = 2−Nassoc(A,B)

minimizing the cut ⇔ maximizing group connectivity
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Graph theory and cuts

MinCut by combinatorial optimization

• Stoer-Wagner algorithm

• Principle: iterative reducing of the graph by fusion of the nodes linked by the

maximal weights

Min K-cut by combinatorial optimization

• Partitioning the (un-oriented graph) graph in many components

• Gomory-Hu algorithm

minCut in oriented graph by combinatorial optimization

• Ford-Fulkerson algorithm (oriented graph with two terminal nodes (sink / tank)

• Principle: MaxFlow search (MinCut equivalence) by search for an augmenting

chain to increase the flow
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Graph theory and cuts

Laplacian matrices

D = diag(di) with di =
∑

j wij

W = (wij)

• Graph Laplacian matrix
L = D −W

• Normalized graph Laplacian matrix

Ln = D− 1

2 LD− 1

2 = I −D− 1

2 WD− 1

2

Spectral clustering algorithms and cuts

• Computation of the eigen-values and eigen-vectors of some matrix (L, Ln, or

generalized eigen problems Lu = λDu)

• selection of the k smallest eigen-values and associated k eigen-vectors uk

• U = (u1, ..., uk) ∈ Rn×k

• let yi ∈ Rk be the ith row of U (i = 1, ..., n)

• cluster the points (yi)1≤i≤n with the k-means algorithm into clusters C1, ..., Ck

• clusters A1, ..., Ak with Ai = {j|yj ∈ Ci}
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Examples (univ. Berkeley)

http://www.cs.berkeley.edu/projects/vision/Grouping/
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Examples (univ. Berkeley)
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Examples (univ. Alberta) with linear con-

straints
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Examples (Mean Shift et Normalized Cut)
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Examples (texture classification with point-wise

graph)
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Graph-cuts
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Full scene labeling (scene parsing)

Figure from Farabet et al., PAMI 13

Tenenbaum and Barrow (1977)

• Segmentation in regions

• Building of the Region Adjacency Graph

• Labeling using a set of rules (expert system) :

1. on objects (size, color, texture,...)

2. on contextual relationships between objects (above, inside, near ...)

Generalization with fuzzy attributed graphs
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Markovian labeling (random graphs)

E(l) =
∑

i

Φ(di, li) + β
∑

ij

Ψ(li, lj)

• Low-level applications:

• pixel graphs

• segmentation, classification, restoration

• High-level applications:

• graph of super-pixels (SLIC, watershed, ...)

• graph of primitives (edges, key-points, lines,...)

⇒ pattern recognition, full scene labeling
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Example on a region adjacency graph (T.

Géraud)
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Example on a line graph
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Example on a region adjacency graph
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Example on a region adjacency graph
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Markov random fields and graph-cut optimiza-

tion

Binary labeling (Greig et al. 89) :

E(l) =
∑

i

Φ(di|li) +
∑

(i,j)

β(li − lj)
2

• source S (label 1), sink P (label 0)

• edges connected to terminal nodes with likelihood weights Φ(di|li)

• edges between neighbor nodes with weights β

Minimizing E(l) ⇔ Min Cut search

cut(ES , EP ) =
∑

i∈ES

Φ(di|1) +
∑

i∈EP

Φ(di|0) +
∑

(i∈Es,j∈EP )

β

(li = 1 for i ∈ ES , li = 0 for i ∈ EP )
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MRF and graph-cut optimization

(li = 1 for i ∈ ES , li = 0 for i ∈ EP )

S(label 0)

P (label 1)

i

Vc(yi|0)

Vc(yi|1)

β β β β

coupe
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MRF and graph-cut optimization

(figure from “Image processing and analysis with graphs”, Lézoray - Grady)
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MRF/CRF and graph-cut optimization

Multi-level labeling (Boykov, Veksler 99) :

⇒ generalization of the previous binary labeling

Definition of two space moves (to go back to the binary labeling)

• α-expansion : source S and sink P correspond to label α and the current label α
(Ψ should be a metric)

• α− β swap: source S for α and sink P for β (Ψ should be a semi-metric)

Optimization by iterative mincut search:

• graph: nodes for super-pixels

• weights: depending on the current labeling

• good trade off time / efficiency compared to simulated annealing or ICM

But for multi-labeling no garantee on optimality of the solution
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MRF/CRF and graph-cut optimization

Image restoration :

⇒ exact optimization for quantized levels when Ψ is convex

• Ishikawa (2003): building of a multi-layer graph (one layer for each label) and

mincut search

• Darbon (2005): decomposition of the solution on level-sets and binary mincut

search on each level-set

⇒ exact solution for convex functions !
⇒ but need of (potentially) huge memory size !....
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Examples - multi-labeling optimization
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Interactive segmentation: “hard” constraints

Principle Background and object manually defined

⇒ finding of a binary labeling minimizing an energy including “hard” constraints

Method Mincut search and edges with high weights (should not be cut)

Advantages

• easy introduction of “hard” constraints

• the manually defined areas permit to do a fast learning

• iterative algorithm
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Graph construction
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Graph weights
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Illustrations
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Interactive methods with mincut

Grab-cut

• take into account color

• two labels (background and object but with a Gaussian Mixture Model)

• CRF (conditional random field): regularization term weighted by the image gradient

• iterative semi-supervised learning of the GMM parameters (after manual

initialization and after each cut)
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Illustrations -GrabCut-
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Deep learning and graph labeling for full scene

labeling

Farabet et al., PAMI, 2013
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Deep learning and graph labeling for full scene

labeling

Φ(di, li) = exp(−αdi,a)1(li 6= a)

Ψ(li, lj) = exp(−β||∇I||i)1(li 6= lj)

Farabet et al., PAMI, 2013
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Pattern recognition

• Object: defined by a set of primitives (nodes of the graph)

• Binary relationship of compatibility between nodes (edges of the graph)

• Clique: sub-set of primitives all compatible between each other

= possible object configuration

• recognition by maximal clique detection

Search of maximal cliques :

• NP-hard problem

• Building of a decision tree: a node of the tree = 1 clique of the graph

• pruning of the tree to suppress already found cliques

• Theorem: let S be a node of the search tree T , and let x be the first unexplored

child of S to be explored. If all the sub-trees of S ∪ {x} have been generated, only

the sons S not adjacent to x have to be explored.
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Example: buiding reconstruction by the maxi-

mal clique search (IGN)
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Example: buiding reconstruction by the maxi-
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Example: buiding reconstruction by the maxi-
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Example: buiding reconstruction by the maxi-

mal clique search (IGN)
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Graph matching

Correspondance problem:

• Graph(s) of the model (atlas, map, model of object)

• Graph built from the data

• Graph matching:

G = (X,E, µ, ν) →? G′ = (X′, E′, µ′, ν′)

Graph isomorphism: bijective function f : X → X′

• µ(x) = µ′(f(x))

• ∀e = (x1, x2), ∃e′ = (f(x1), f(x2)) / ν(e) = ν′(e′) and conversely

Too strict ⇒ isomorphisms of sub-graphs
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Sub-graph isomorphisms
• There exists a sub-graph S′ of G′ such that f is an isomorphism from G to S′
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• There exists a sub-graph S of G and a sub-graph S′ of G′ such that f is an

isomorphism from S to S′
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Graph isomorphisms: searching the maximal

clique

search of the maximal clique of the association graph

• principle: building of the association graph

• maximal clique: sub-graph isomorphism

a

a

a

b

a a a

b

(4,4’)

(1,1’)

(1,2’) (1,4’)

(2,1’)

(2,2’)

(2,4’)

(3,3’)(4,1’)

(4,2’)

1

2 3

4

3’

1’
2’

4’
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Sub-graph isomorphism: Ullman algorithm

• Principle : extension of the association set (vi, wxi ) until the G graph has been

fully explored. In case of failure, go back in the association graph (“backtrack”).

Acceleration: “forward checking” before adding an association.

• Algorithm:

• matrix of node associations
• matrix of future possible associations for a given set of associations matrice

• list of updated associations by “Backtrack” et “ForwardChecking”

• Complexity : worst case O(mnn2) (n ordre de X, m de X′, n < m)
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Error tolerant graph-matching

• Real world: noisy graphs, incomplete graphs, distorsions

• Distance between graphs (editing, cost function,...)

• Sub-graph isomorphism with error tolerance: search of the sub-graph G′ with the

minimum distance to G

• Optimal algorithms: A∗

• Approximate matching: genetic algorithms, simulated annealing, neural networks,

probablistic relaxation,...

• iterative minimistion of an objective function

• better adapted for big graphs

• problem of convergence and local minima
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Decomposition in common sub-graphs

Messmer, Bunke
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Example

3D reconstruction by graph matching between a graph (data) and a library of model

graphs (IGN)
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Example - building reconstruction

Model graph
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Example - building reconstruction

Model graph and data graph matching
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Example - building reconstruction

Model graph and data graph matching
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Matching with geometric transformation

• Graph = representation of the spatial information

• Matching = computation of the geometric transformation

• polynomial deformation

• elastic transformation (morphing)

• Matching approaches :

• translation: maximum of correlation
• Hough transform (in the parameter space)

• RANSAC method: select randomly a set of matching points, compute the

transformation, compute the score (depends on the number of matched pairs

for the transformation)

• AC-RANSAC: RANSAC + a contrario framework reducing the number of

parameters (NFA to be set)
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Example - MAC-RANSAC (PhD Julien Rabin)
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Example - MAC-RANSAC (PhD Julien Rabin)
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Inexact matching

Optimization of a cost function

• Dissimilarity cost beween nodes

cN (aD, aM ) =
∑

αid(a
N
i (aD), aNi (aM ))

∑

αi = 1

• Dissimilarity cost between edges

CE((a1D, a2D), (a1M , a2M )) =
∑

βjd(a
A
j (a1D, a2D), aAj (a1M , a2M ))

∑

βj = 1

• Matching cost function h :

f(h) =
α

|ND|

∑

aD∈ND

cN (aD, h(aD))+
1− α

|ED|

∑

(a1

D
,a2

D
)∈ED

cE((a1D, a2D), (h(a1D), h(a2D)))

Optimization methods:

• Tree search

• Expectation Maximization

• Genetic algorithms

• ...
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Example: brain structures (A. Perchant)
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Example : face structures (R. Cesar et al.)
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Spectral method for graph matching (1)

Optimization of a cost function

• weighted adjacency matrix M

• nodes = potential assignments a = (i, i′) (can be selected by descriptor matching)

• edges = M(a, b) agreement between the pairwise matchings a and b (geometric

constraints)

• correspondance problem = finding a cluster C of assigments maximizing the

inter-cluster score S =
∑

a,b∈C M(a, b) with additional constraints

• cluster C = vector x (with x(a) = 1 if a ∈ C and 0 else)

S =
∑

a,b∈C

M(a, b) = xTMx

x∗ = argmax(xTMx)

+ constraints (one to one mapping)

F. Tupin - Graphes – p.84/91



Spectral method for graph matching (2)

Search of the optimal cluster

• number of assigments

• inter-connection between the assignments

• weights of the assignment

Spectral method: relaxation of the constraints on x

x∗ = principal eigenvector(xTMx)

+ introduction of the one-to-one correspondance constraints

(iterative selection of a∗ = argmaxa∈L(x
∗(a))

and suppression in x∗ of the incompatible assignments)
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Example: point matching (Leordeanu, Hebert)

dab =
dij+q

di′j′+q

αab = angle between the matchings

(with centring and normalization)

M(a, b) = (1− γ)cα + γcd F. Tupin - Graphes – p.86/91



Example:feature matching (Leordeanu, Hebert)
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Example:factorized graph matching (Zhou, de

la Torre)

F. Tupin - Graphes – p.88/91



Spatial reasoning in images
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Spatial reasoning in images
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