IMA206 Course

Patch based approaches for image processing

Florence TUPIN (LTCI, Télécom Paris, Institut Polytechnique de Paris)

May, 2022

Outline

- Introduction
- Non-local means
- Extended non-local means
- Dictionaries based approaches
- CNN and patch-based approaches

Outline

- Introduction
- Non-local means
- Extended non-local means
- Dictionaries based approaches
- CNN and patch-based approaches

What do we denote by "image patches"?

Definition [Oxford dictionary]

patch (noun)

A small area or amount of something

Image patches

Sub-regions of the image

- shape: typically rectangular
- size: much smaller than image size

ightarrow most common use: square regions between 5 imes 5 and 21 imes 21 pixels

→ tradeoff:

size $\nearrow \Rightarrow$ more distinctive/informative size $\searrow \Rightarrow$ more likely to find similar patches

non-rectangular / deforming shapes: computationally complexity \nearrow



→ patches capture *local context*: geometry and texture

F. Tupin IMA 206

May 2022

Origins of patch-based image processing

3 success stories of patch-based models at the origin of these methods

Starting points of patch-based methods

- model for human vision (primary visual cortex)
 Theoretical and experimental works on the primary visual cortex have shed new light on the importance of patch-level image coding
- method to synthetize textures
 Examplar-based synthesis method by Efros and Leung

Efros et al., ICCV, 1999

method to denoise images

F. Tupin IMA 206 May 2022

Main approaches

Linear filtering

(a) Linear filtering

Main approaches

- Linear filtering
- Anisotropic diffusion Perona et Malik, 1990

(b) Anisotropic diffusion

Main approaches

- Linear filtering
- Anisotropic diffusion Perona et Malik, 1990
- Prior modeling of images and energy minimization (MRF, TV,...) Rudin et al., 1992

(b) Anisotropic diffusion

(c) TV

Main approaches

- Linear filtering
- Anisotropic diffusion Perona et Malik, 1990
- Prior modeling of images and energy minimization (MRF, TV....) Rudin et al., 1992
- Wavelet approaches Donoho et al., 1994

(b) Anisotropic diffusion

(c) TV

(d) Wavelets

Common ideas

- Averaging pixels sharing the same information
- Where finding them ?

(a) Linear filtering

Common ideas

- Averaging pixels sharing the same information
- Where finding them ?

(a) Linear filtering

(b) Anisotropic diffusion

Common ideas

- Averaging pixels sharing the same information
- Where finding them ?

(a) Linear filtering

tering (b) Anisotropic diffusion

(c) Oracle

• Oracle: anywhere in the image as soon as the pixels share the same un-noisy value!

Common ideas

- Averaging pixels sharing the same information
- Where finding them ?

(a) Linear filtering

(b) Anisotropic diffusion

(c) Oracle

Oracle: anywhere in the image as soon as the pixels share the same un-noisy value!

→ non-local means

F. Tupin IMA 206 May 2022

Selection-based filtering

u(x) "true" value of pixel x v(x) noisy value (observed) of pixel xGoal: finding the "best" $\hat{u}(x)$

Variance reduction

- If $X_1,...,X_N$ are N i.i.d samples of mean μ and standard deviation σ , their average has a standard deviation of $\frac{\sigma}{\sqrt{N}}$
- local linear filtering

$$\hat{u}(x) = \sum_{y} w(x, y) v(y)$$

averaging samples spatially close to the pixel x, $w(x,y) = k \exp(-\frac{\operatorname{dist}^2(x,y)}{2h^2})$

• improving local linear filtering: taking gray (color) level into account

$$w(x,y) = k \exp(-\frac{\mathsf{dissi}(x,y)}{2h'^2})$$

averaging samples $\mbox{ radiometrically close}$ to the pixel (if $\mbox{dissi}(x,y)$ is high, w(x,y) is small) [Yaroslavski 84]

F. Tupin IMA 206 May 2022

Selection-based filtering

u(x) "true" value of pixel x v(x) noisy value (observed) of pixel x Goal: finding the "best" $\hat{u}(x)$

Variance reduction

- If $X_1,...,X_N$ are N i.i.d samples of mean μ and standard deviation σ , their average has a standard deviation of $\frac{\sigma}{N}$
- local linear filtering

$$\hat{u}(x) = \sum_{y} w(x, y)v(y)$$

averaging samples spatially close to the pixel x $w(x,y) = k \exp(-\frac{\operatorname{dist}(x,y)}{2h^2})$

• improving local linear filtering: taking gray (color) level into account

$$w(x,y) = k \exp(-\frac{\mathsf{dissi}(x,y)}{2h'^2})$$

averaging samples $\mbox{ radiometrically close}$ to the pixel (if $\mbox{dissi}(x,y)$ is high, w(x,y) is small) [Yaroslavski 84]

 \Rightarrow If the noise level is high $\operatorname{dissi}(x,y)$ is difficult to compute \Rightarrow Use patches to compute it !

Outline

- Introduction
- Non-local means
- Extended non-local means
- Dictionaries based approaches
- CNN and patch-based approaches

• Local filter: in each pixel x, average the noisy values v(y) of the pixels y in x neighborhood.

- Local filter: in each pixel x, average the noisy values v(y) of the pixels y in x neighborhood.
- Non-local: All pixels y values are used to do the denoising, with a weight reflecting the color or radiometric similarity of y with x:

$$\hat{u}(x) = \sum_{y} v(y)$$

- Local filter: in each pixel x, average the noisy values v(y) of the pixels y in x neighborhood.
- Non-local: All pixels y values are used to do the denoising, with a weight reflecting the color or radiometric similarity of y with x:

$$\hat{u}(x) = \sum_{y} w(x, y) v(y)$$

- ullet Local filter: in each pixel x, average the noisy values v(y) of the pixels y in x neighborhood.
- Non-local: All pixels y values are used to do the denoising, with a weight reflecting the color or radiometric similarity of y with x:

$$\hat{u}(x) = \sum_{y} w(x, y)v(y)$$

weight depends on the dissimilarity between x and y:

$$w(x,y) = \operatorname{dissi}_{(x,y)}$$

- ullet Local filter: in each pixel x, average the noisy values v(y) of the pixels y in x neighborhood.
- Non-local: All pixels y values are used to do the denoising, with a weight reflecting the color or radiometric similarity of y with x:

$$\hat{u}(x) = \sum_{y} w(x, y)v(y)$$

weight depends on the dissimilarity between x and y:

$$w(x,y) = e^{-\mathsf{dissi}(x,y)}$$

- ullet Local filter: in each pixel x, average the noisy values v(y) of the pixels y in x neighborhood.
- Non-local: All pixels y values are used to do the denoising, with a weight reflecting the color or radiometric similarity of y with x:

$$\hat{u}(x) = \sum_{y} w(x, y)v(y)$$

• weight depends on the dissimilarity between x and y:

$$w(x,y)=e^{-\frac{\mathsf{dissi}_{(x,y)}}{2h^2}}$$

F. Tupin IMA 206 May 2022

- ullet Local filter: in each pixel x, average the noisy values v(y) of the pixels y in x neighborhood.
- Non-local: All pixels y values are used to do the denoising, with a weight reflecting the color or radiometric similarity of y with x:

$$\hat{u}(x) = \sum_{y} w(x, y) v(y)$$

weight depends on the dissimilarity between x and y:

$$w(x,y) = \frac{e^{-\dfrac{\mathsf{dissi}_{(x,y)}}{2h^2}}}{\sum_z e^{-\dfrac{\mathsf{dissi}_{(x,z)}}{2h^2}}}$$

F. Tupin IMA 206 May 2022

- Local filter: in each pixel x, average the noisy values v(y) of the pixels y in x neighborhood.
- Non-local: All pixels y values are used to do the denoising, with a weight reflecting the color or radiometric similarity of y with x:

$$\hat{u}(x) = \sum_{y} w(x, y)v(y)$$

weight depends on the dissimilarity between x and y:

$$w(x,y) = \frac{e^{-\frac{\mathsf{dissi}_{(x,y)}}{2h^2}}}{\sum_z e^{-\frac{\mathsf{dissi}_{(x,z)}}{2h^2}}}$$

weight depends on the dissimilarity betwwen patches around x and y

$${\sf dissi}(x,y) = \frac{1}{s^2} \|V(x) - V(y)\|^2 \triangleq \frac{1}{s^2} \sum_{\delta} (V(x+\delta) - V(y+\delta))^2$$

where V is the vector of all the values in the patch and s^2 is the size of the patch.

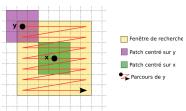
F. Tupin IMA 206 May 2022

Non-local means - Algorithm in practice

- 3 loops:
 - 1 Go through all the pixels \boldsymbol{x}

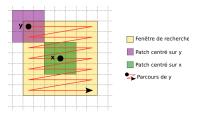
Non-local means - Algorithm in practice

- 3 loops:
 - 1 Go through all the pixels x
 - 2 Compare the patches centered on x and y to compute the weighted mean (in practice the y pixels are taken in a search window centered on x)

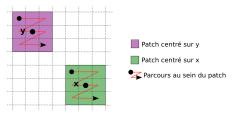


Non-local means - Algorithm in practice

- 3 loops:
 - 1 Go through all the pixels x
 - 2 Compare the patches centered on x and y to compute the weighted mean (in practice the y pixels are taken in a search window centered on x)



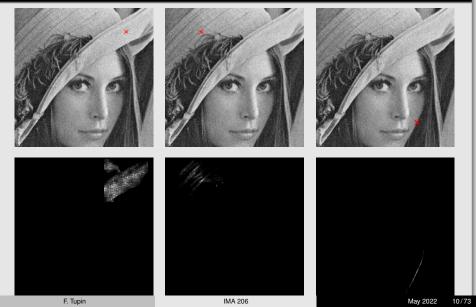
3 The dissimilarity between patches (euclidean distance between the vectors of pixel values) represents the dissimilarity between all the pixels of the patches taken 2 by 2 (quadratic sum of their differences).



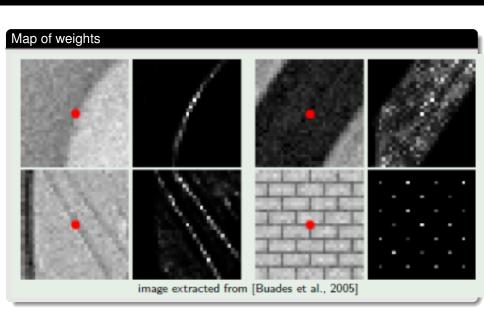
F. Tupin IMA 206 May 2022

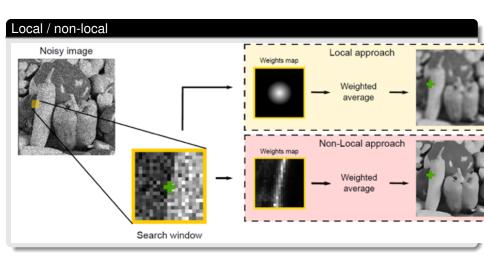
Non-local means - Map of weights

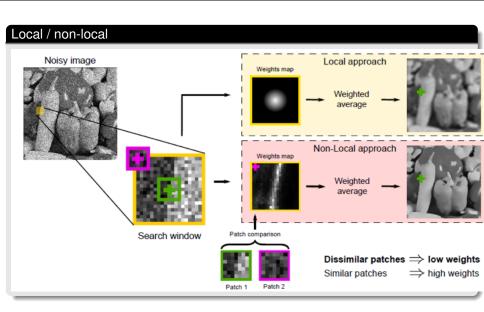
Map of weights



Non-local means - Map of weights







Local / non-local Noisy image Local approach Weights map Weighted average Non-Local approach Weights map Weighted average Patch comparison Search window Dissimilar patches ⇒ low weights Similar patches ⇒ high weights How to compare noisy patches? Patch 2 Patch 1

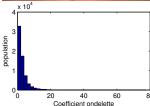
Non-local means - Illustration

NL-means denoising

Denoising

Ill-posed problem: hypotheses have to be done

- On the kind of signal to denoise:
 - Constant / smooth
 - bounded variation / piecewise constant
 - sparcity in a wavelet basis.



Denoising

Ill-posed problem: hypotheses have to be done

- On the kind of signal to denoise:
 - Constant / smooth
 - bounded variation / piecewise constant
 - sparcity in a wavelet basis.
- On the kind of noise:
 - additive / multiplicative / impulsive...
 - white / colored

Denoising

Ill-posed problem: hypotheses have to be done

- On the kind of signal to denoise:
 - Constant / smooth
 - bounded variation / piecewise constant
 - sparcity in a wavelet basis.
- On the kind of noise:
 - additive / multiplicative / impulsive...
 - white / colored

There is no denoising without hypotheses

Denoising

Ill-posed problem: hypotheses have to be done

- On the kind of signal to denoise:
 - Constant / smooth
 - bounded variation / piecewise constant
 - sparcity in a wavelet basis.
- On the kind of noise:
 - additive / multiplicative / impulsive...
 - white / colored

There is no denoising without hypotheses

Hypotheses of NLmeans:

- Similar patches have similar central values.
- There are similar patches in the image (self-similarity = redundancy).
- The noise is additive Gaussian and white.

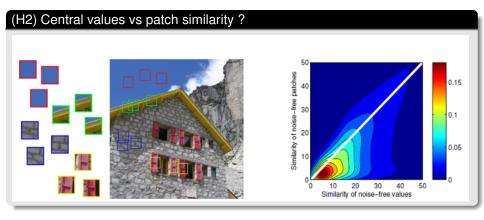
Non-local means - Hypotheses

Main hypotheses

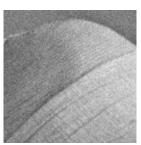
- (H1) Redundancy: there are many similar patches in an image
- (H2) If the noisy patches are similar, their central values are similar

Non-local means - Hypotheses

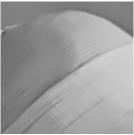
(H1) Redundancy?



Low contrasted textures and details



Noisy image ($\sigma = 10$)



Restored image

- Low contrasted textures and details
- Contrasted rare patches

Noisy image ($\sigma = 10$)

Restored image

- Low contrasted textures and details
- Contrasted rare patches
- Non gaussian noise

Salt and pepper noise

Restored image

- Low contrasted textures and details
- Contrasted rare patches
- Non gaussian noise
- Time computation

- Low contrasted textures and details
- Contrasted rare patches
- Non gaussian noise
- Time computation
- Parameter choice

Bias-Variance decomposition

- Case of a white gaussian noise $\mathcal{N}(0, \sigma^2)$.
- If u is the original image and v the noisy image (NLu and NLv their non local versions), we have:

$$\begin{split} E|NLv(x) - u(x)|^2 &= \underbrace{E|NLv(x) - NLu(x)|^2}_{\text{"variance"}} + \underbrace{E|NLu(x) - u(x)|^2}_{\text{"bias"}} \\ &+ 2\underbrace{E\left((NLv - NLu(x))(NLu(x) - u(x))\right)}_{\approx 0}. \end{split}$$

Variance term

$$E|NLv(x) - NLu(x)|^2 = E|\sum_y w(x, y)n(y)|^2 = \sigma^2 \sum_y (w(x, y))^2$$

Minimal when $w(x,y) = \frac{1}{\operatorname{card}(W)}$ uniform mean on the whole image $(h \to +\infty)$

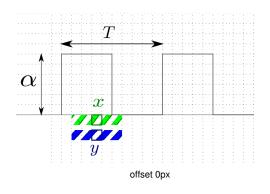
Bias term

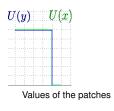
$$E|NLu(x) - u(x)|^2 = |\sum_{x} w(x, y)(u(y) - u(x))|^2$$

Minimal when w(x, y) = 1 for u(x) = u(y) and 0 elsewhere.

Bias / variance compromise

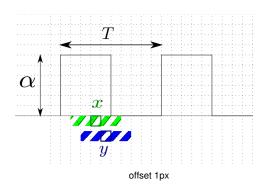
Variance reduction is ensured by a high value of h (tolerant selection) whereas bias limitation needs a small h (strict selection).

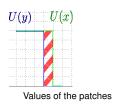




22/73

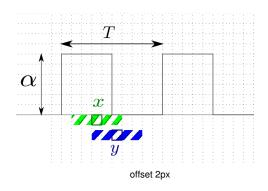
Distance between patches: $\|U(x) - U(x)\|^2 = 0$

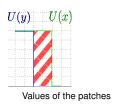




22/73

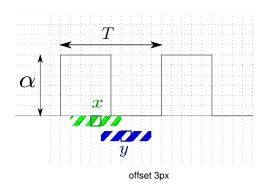
Distance between patches: $\|U(x) - U(x+1)\|^2 = \frac{\alpha^2}{s}$

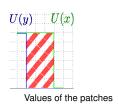




22/73

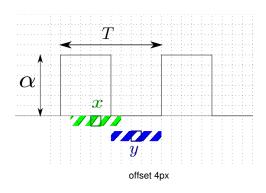
Distance between patches: $\|U(x) - U(x+2)\|^2 = \frac{2\alpha^2}{s}$

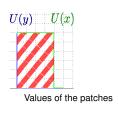




22/73

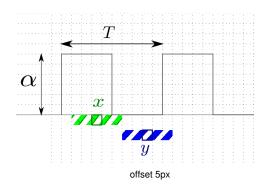
Distance between patches: $\|U(x)-U(x+3)\|^2=\frac{3\alpha^2}{s}$

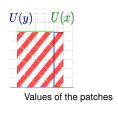




22/73

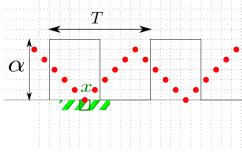
Distance between patches: $\|U(x) - U(x+4)\|^2 = \frac{4\alpha^2}{s}$





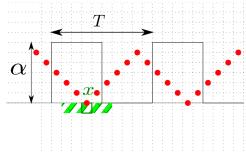
22/73

Distance between patches:
$$\|U(x) - U(x+5)\|^2 = \frac{5\alpha^2}{s}$$



Distances to U(x)

Distance between patches:
$$\|U(x) - U(x+j)\|^2 = \frac{|j|\alpha^2}{s}$$



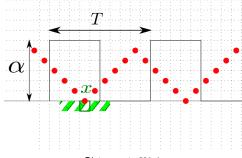
Distances to U(x)

Therefore:

$$NLu(x) = \frac{\sum_{-\frac{T}{2} < j \le \frac{T}{2}} e^{-\frac{\|U(x) - U(x+j)\|^2}{2h^2}} u(x+j)}{\sum_{-\frac{T}{2} < j \le \frac{T}{2}} e^{-\frac{\|U(x) - U(x+j)\|^2}{2h^2}}}$$

F. Tupin IMA 206

May 2022



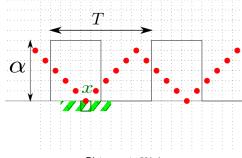
Distances to $U(\boldsymbol{x})$

Therefore:

$$NLu(x) = \frac{\alpha \left(\sum_{j=0}^{j_1} e^{-rj} - 1 + \sum_{j=0}^{j_2} e^{-rj}\right) + 0}{2\sum_{j=0}^{\frac{T}{2}-1} e^{-rj} - 1 + e^{-r\frac{T}{2}}}$$

F. Tupin IMA 206

May 2022

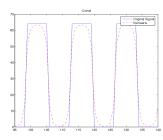


Distances to $U(\boldsymbol{x})$

Therefore:

$$NLu(x) = \frac{\alpha}{(1 - e^{-r\frac{T}{2}})(1 + e^{-r})} \left(1 - e^{-r} - 2e^{-\frac{1}{2}(\frac{T}{2} + 1)r} \cosh rx \right)$$

F. Tupin IMA 206 May 2022



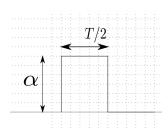
$$NLu(x) = \frac{\alpha}{(1 - e^{-r} \frac{T}{2})(1 + e^{-r})} \left(1 - e^{-r} - 2e^{-\frac{1}{2}(\frac{T}{2} + 1)r} \cosh rx \right)$$

with $r = \frac{2}{s} \frac{\alpha^2}{h^2}$. Comments:

- Even perfectly periodic signals are modified!
- ullet Non-linear filter: r depends on lpha
- \bullet "checking" : if $h \to +\infty, NLu(x) \sim \frac{\alpha}{2}$ (uniformy gray image)

F. Tupin IMA 206 May 2022

Example: isolated step



In the same way:

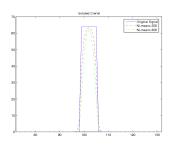
$$NLu(x) = \alpha \frac{1 - e^{-r} - 2e^{-\frac{1}{2}(\frac{T}{2} + 1)r} \cosh rx}{(1 - e^{-r}) \left(2\sum_{j=0}^{\frac{T}{2}} e^{-rj} - 1 + (N - T - 1)e^{-r\frac{T}{2}}\right)}.$$

with $r = \frac{2}{s} \frac{\alpha^2}{h^2}$. Remarques:

- ullet The result depends on the size N of the image / the size W of the search window.
- Weights of the background pixel are $e^{-r\frac{T}{2}}=e^{-\frac{T\alpha^2}{sh^2}}$. When s is large, they have an increased influence.

F. Tupin IMA 206 May 2022 25/73

Example: isolated step



In the same way:

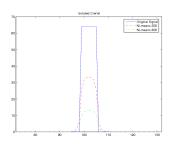
$$NLu(x) = \alpha \frac{1 - e^{-r} - 2e^{-\frac{1}{2}(\frac{T}{2} + 1)r} \cosh rx}{(1 - e^{-r}) \left(2\sum_{j=0}^{\frac{T}{2}} e^{-rj} - 1 + (N - T - 1)e^{-r\frac{T}{2}}\right)}.$$

with $r = \frac{2}{s} \frac{\alpha^2}{h^2}$. Remarques:

- ullet The result depends on the size N of the image / the size W of the search window.
- Weights of the background pixel are $e^{-r\frac{T}{2}}=e^{-\frac{T\alpha^2}{sh^2}}$. When s is large, they have an increased influence.

F. Tupin IMA 206 May 2022 25/73

Example: isolated step



In the same way:

$$NLu(x) = \alpha \frac{1 - e^{-r} - 2e^{-\frac{1}{2}(\frac{T}{2} + 1)r} \cosh rx}{(1 - e^{-r}) \left(2\sum_{j=0}^{\frac{T}{2}} e^{-rj} - 1 + (N - T - 1)e^{-r\frac{T}{2}}\right)}.$$

with $r = \frac{2}{s} \frac{\alpha^2}{h^2}$. Remarques:

- ullet The result depends on the size N of the image / the size W of the search window.
- Weights of the background pixel are $e^{-r\frac{T}{2}}=e^{-\frac{T\alpha^2}{sh^2}}$. When s is large, they have an increased influence.

F. Tupin IMA 206 May 2022 25/73

Example: loss of details

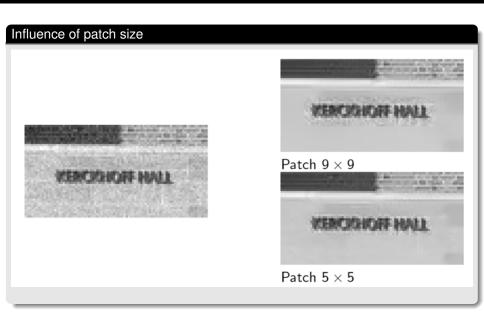
Noisy image

Example: loss of details

Search window $W=61\times61$

- ullet Details are lost when the search window W is too big.
- This effect increases with s.

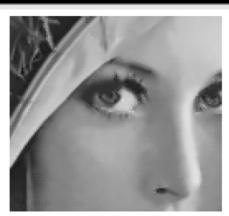
Example: influence of parameters



Example: influence of parameters

Influence of patch size

Patch 3 × 3



May 2022

Patch 5 × 5

Parameters and influence

F. Tupin IMA 206 May 2022 29/73

Comment on bias

Problems

- Even the estimation of periodic signals is biased.
- The size of the search window W has a strong impact: it should not be too large \dots
- Weakly contrasted details are erased.
- An area is more strongly attenuated if it is "rare" in the image (infuence of the background pixels).

Diagnostic

- A patch size too large makes more similar fine details and background.
- A patch size too small keeps noise fluctuations.
- Un-matching pixels may have a low weight but it is non zero because of the gaussian kernel.
 Their number increases with the search window W.
- → the strength of non-local means is the patch not the non-locality!

F. Tupin IMA 206 May 2022

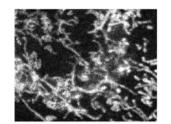
Outline

- Introduction
- Non-local means
- Extended non-local means
- Oictionaries based approaches
- 6 CNN and patch-based approaches

F. Tupin IMA 206

May 2022

Noise adaptation



(a) Mitochondrion in microscopy

(d) Plane wreckage in SONAR imagery

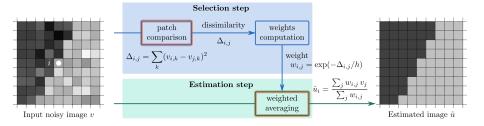
(b) Supernova in X-ray imagery

(e) Urban area using SAR imagery

(c) Fetus using ultrasound imagery

(f) Polarimetric SAR imagery

Patch-based denoising - Selection-based filtering

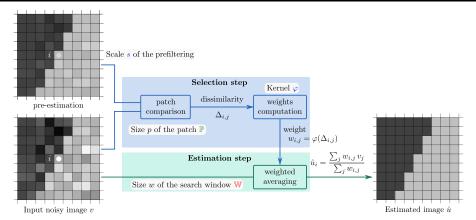


General idea

Goal: estimate the image \boldsymbol{u} from the noisy image \boldsymbol{v}

- Choose a pixel i to denoise
 - Inspect the pixels j around the pixel of interest i
 - ullet Select the suitable candidates j
 - ullet Average their values and update the value of i
- Repeat for all pixels i
- 2 key-steps:
 - Computation of patch similarity
 - Estimation step

Patch-based denoising – Selection-based filtering



Key parameters:

- Patch size
- Search window
- Kernel to convert similarity to weight (up to now Gaussian kernel)
- Pre-filtering step (preliminary filtering to improve the patch comparison)

F. Tupin IMA 206 May 2022

Patch-based denoising: extensions

Improvements of the nl-means method:

- Extension to different noise models
- Iterative approaches
- Automatic setting of parameters
- (Patch shapes)
- Block of patches

F. Tupin IMA 206 May 2022 34/73

Noise models and estimation step

We suppose that a noise model is available: p(v|u) is known (white noise here, v noisy value, u "true" value)

Estimation step

- Weighted sample mean
- Weighted maximum likelihood estimator (WMLE)
- Linear Minimum Mean Square Error estimator (LMMSE) (after wavelet transform and a first estimation step)

Estimation step: example of Gaussian or Gamma distributed data with WMLE

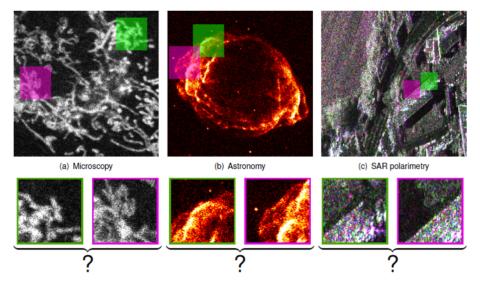
$$\hat{u}_i = \operatorname*{arg\,max}_{u_i} \left\{ \sum_j w_{i,j} \log p(v_j|u_i) \right\} = \frac{\sum_j w_{i,j} v_j}{\sum_j w_{i,j}}$$

F. Tupin IMA 206 May 2022

Maximum likelihood estimate

F. Tupin IMA 206 May 2022 36/73

Noise adaptation

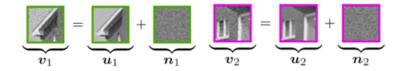


How to take into account the noise model?

F. Tupin IMA 206 May 2022 37/73

Buades et al.

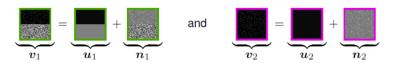
- Euclidean distance between patches
- Additive White Gaussian noise implicit assumption



F. Tupin IMA 206 May 2022

Other noise models

- Example: signal dependent noise
- Bad behavour of the euclidean distance



when
$$oldsymbol{u}_1 = oldsymbol{u}_2: \qquad igg(oldsymbol{u}_1 - oldsymbol{u}_2 igg)^2 = oldsymbol{v}_2$$

when
$$oldsymbol{u}_1
eq oldsymbol{u}_2: \qquad \left(oldsymbol{0} - oldsymbol{0}
ight)^2 = oldsymbol{0}_2$$

F. Tupin IMA 206 May 2022 39/73

40/73

NI-means and AWGN

- · Left: noisy image
- Middle: restored image with oracle-based patch weights (patch comparison is done using the un-noisy image)
- Right: restored image with noisy-based patch weights (patch comparison is done using the noisy image)

F. Tupin IMA 206 May 2022

NI-means and signal dependent noise

- Left : noisy image (multiplicative noise)
- Middle: restored image with oracle-based patch weights (patch comparison is done using the un-noisy image)
- Right: restored image with noisy-based patch weights (patch comparison is done using the noisy image)

Taking into account the noise distribution

- When comparing two patches, all pixel values are compared two by two
- So the problem boils down to the comparison of v_1 and v_2 (noisy values)
- Idea: replacing the distance by an hypothesis test :

$$\mathcal{H}_0: u_1 = u_2 = u_{12}$$

 $\mathcal{H}_1: u_1 \neq u_2$

- Performances measured by
 - False alarm rate: deciding "dissimilar" under \mathcal{H}_0
 - Detection rate: deciding "dissimilar" under \mathcal{H}_1
- Likelihood ratio test :

$$L(v_1, v_2) = \frac{p(v_1, v_2 | \mathcal{H}_0, u_{12})}{p(v_1, v_2 | \mathcal{H}_1, u_1, u_2)}$$

F. Tupin IMA 206 May 2022

Taking into account the noise distribution

- ullet To compute the Likelihood Ratio Test, the true values u_1 and u_2 should be known
- \bullet Since they are unknown, they are replaced by their maximum likelihood estimates \hat{u}_1 and \hat{u}_2 using the observed values v_1 and v_2
- Generalized Likelihood Ratio Test:

$$L(v_1, v_2) = \frac{p(v_1, v_2 | \mathcal{H}_0, \hat{u}_{12})}{p(v_1, v_2 | \mathcal{H}_1, \hat{u}_1, \hat{u}_2)}$$

From pixel similarities to patch similarities and weights

Commining pixel GLRT to define weights:

$$L(P_1, P_2) = \Pi_k L(v_{1k}, v_{2k})$$

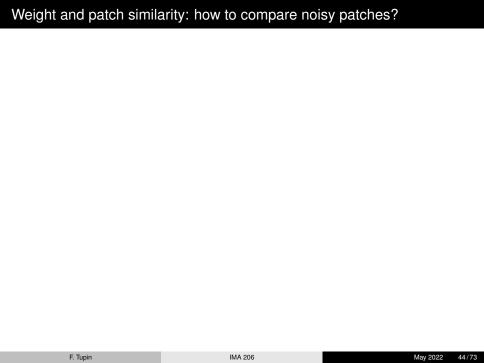
Link between weight and dissimilarities :

$$dissi(P_1, P_2) = -\log(w(P_1, P_2))$$

Dissimilarity associated to GLRT:

$$\begin{aligned} \mathsf{dissi}(P_1, P_2) &= -\log(L(P_1, P_2)) \\ &= \sum -\log(L(v_{1k}, v_{2k})) \end{aligned}$$

F. Tupin



Example of AWGN

the noise model is given by

$$p(v|u) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(v-u)^2}{2\sigma^2})$$

• the Maximum Likelihood estimate of u if only v is available is the value \hat{u} maximizing p(v|u): $\hat{u} = \operatorname{argmax} - \log p(v|u) = v$

$$\hat{u}_{12} = \operatorname{argmax} - \log p(v_1|u)p(v_2|u) = \frac{1}{2}(v_1 + v_2)$$

Therefore $\hat{u}_1 = v_1$, $\hat{u}_2 = v_2$ and $\hat{u}_{12} = \frac{1}{2}(v_1 + v_2)$

Generalized Likelihood Ratio Test:

$$L(v_1, v_2) = \frac{p(v_1, v_2 | \mathcal{H}_0, \hat{u}_{12})}{p(v_1, v_2 | \mathcal{H}_1, \hat{u}_1, \hat{u}_2)} = \frac{p(v_1 | \hat{u}_{12}) p(v_2 | \hat{u}_{12})}{p(v_1 | v_1) p(v_2 | v_2)} = \exp(-\frac{(v_1 - v_2)^2}{4\sigma^2})$$

Dissimilarity between pixels:

$$\operatorname{dissi}(v_1, v_2) = \frac{(v_1 - v_2)^2}{4\sigma^2}$$

Euclidean distance between pixel values !...

Patch similarity

- Example for multiplicative noise (Rayleigh-Nakagami distribution)
 - Likelihood test of the observed values to be explained by the same reflectivity (detection approach)
 - Generalized likelihood ratio test

$$-\log \operatorname{GLR}(v_1, v_2) = 2L \log \left(\sqrt{\frac{v_1}{v_2}} + \sqrt{\frac{v_2}{v_1}} \right) - 2L \log 2$$

GLR
$$\left\{ \begin{array}{ll} \text{when } u_1=u_2: & -\log GLR \left(\begin{array}{c} \\ \\ \end{array}, \begin{array}{c} \\ \end{array} \right) &= \begin{array}{c} \\ \\ \end{array} \right.$$
 when $u_1 \neq u_2: & -\log GLR \left(\begin{array}{c} \\ \end{array}, \begin{array}{c} \\ \end{array}, \begin{array}{c} \\ \end{array} \right) &= \begin{array}{c} \\ \end{array} \right.$

F. Tupin IMA 206

Noisy patch comparison

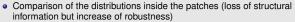
Patch similarity

- Example for multiplicative noise (Rayleigh-Nakagami distribution)
 - Likelihood test of the observed values to be explained by the same reflectivity (detection approach)
 - Generalized likelihood ratio test.

$$-\log \operatorname{GLR}(v_1,v_2) = 2L\log\left(\sqrt{\frac{v_1}{v_2}} + \sqrt{\frac{v_2}{v_1}}\right) - 2L\log 2$$

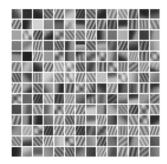
- Other strategy: information approach
 - Kullback-Leibler divergence similarity on denoised data for iterative scheme

$$\mathcal{D}_{\mathsf{KL}}(u_1, u_2) = L \frac{(u_1 - u_2)^2}{u_2 u_1}$$

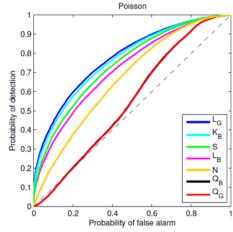


- estimation approach
 - Sigma-preselection to select the patch samples

Noisy patch similarity



- Generalized likelihood ratio
- Variance stabilization
- Euclidean distance
- Maximum joint likelihood
- Mutual information kernel
- Bayesian likelihood ratio
- Bayesian joint likelihood



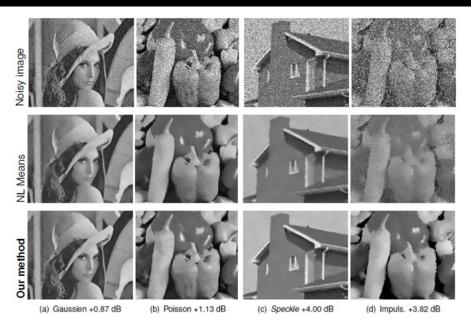
[Alter et al., 2006]

[Seeger, 2002] [Minka, 1998, Minka, 2000]

[Yianilos, 1995, Matsushita and Lin, 2007]

F. Tupin IMA 206 May 2022 48/73

Extended non-local means for various noise models

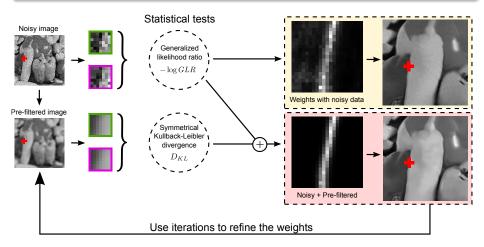


F. Tupin IMA 206 May 2022 49/73

Iterative approaches

Iterative framework

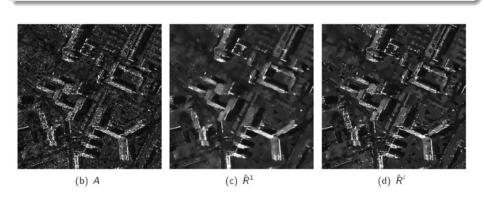
similarity improvement using the current denoised estimate



Iterative approaches

Iterative framework

similarity improvement using the current denoised estimate

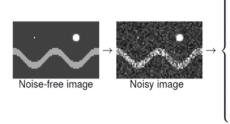


Many parameters

- Search window: rare patch effect, influence of small weights
- Patch size: rare patch effect, noise halo
- Kernel (shape, discriminative power): more or less selective, bias / variance trade-off
- Pre-filtering strength: improvement for high noise level, but blurring effect

antagonist criteria: no best parameter tuning!

× Cannot preserve all structures!



small patches

large patches

Parameter choice should be adapted to the signal content

A good choice for a specific area can be a bad one for another one : combination of results to select locally the best one

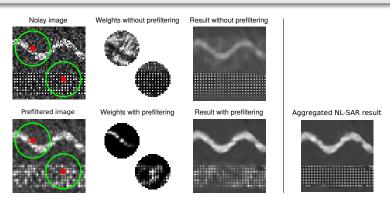
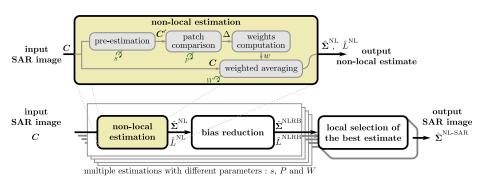


Figure: (left) Top: non local means result by comparing 7×7 patches extracted from the noisy image. Bottom: Same except patches are extracted in a prefiltered image. Two pixels of interest (in red) are focused and their associated weights in the circle searching window (in green) are displayed. (right) NL-SAR result that is an aggregation of several non local means results obtained for different prefiltering strengths, patch sizes and search window sizes.

Parameter choice should be adapted to the signal content

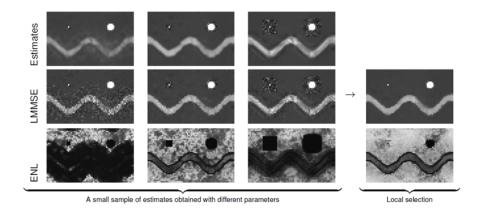
A good choice for a specific area can be a bad one for another one : combination of results to select locally the best one



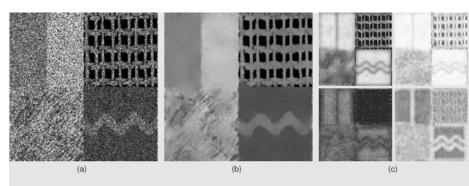
F. Tupin IMA 206 May 2022

Parameter choice should be adapted to the signal content

A good choice for a specific area can be a bad one for another one : combination of results to select locally the best one



F. Tupin IMA 206 May 2022 53/73



- (a) Noisy image.
- (b) Result of the adaptive approach.
- (c) From left to right, top to bottom:

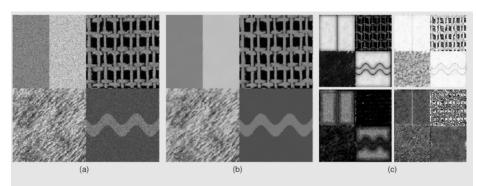
- smoothing strength
- search window sizes
- the patch size
- prefiltering strength

(range: $[0, 20 \times 20]$),

(range: $[0, 20 \times 20]$),

(range: $[3 \times 3, 11 \times 11]$),

(range: [1, 3]).



- (a) Noisy image.
- (b) Result of the adaptive approach.
- (c) From left to right, top to bottom:

- smoothing strength
- search window sizes
- the patch size
- prefiltering strength

(range: $[0, 20 \times 20]$),

(range: $[0, 20 \times 20]$),

(range: $[3 \times 3, 11 \times 11]$),

(range: [1, 3]).

55/73

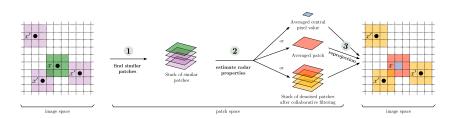
F. Tupin IMA 206 May 2022

Denoising of 3D blocks of patches

Block of patches

- Global denoising of the block of patches
- Combination of denoised patches

More efficient use of information!



BM3D (Dabov et al.)

Principle of BM3D

- 2-steps filtering
- Step 1: global 3D filtering of the block (grouping, collaborative filtering, aggregation)
- Step 2: block of noisy and current estimate patches and second global filtering of the 3D noisy block driven by current estimates, followed by aggregation

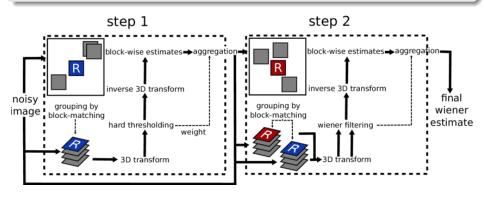


Figure: figure of Marc Lebrun (IPOL)

BM3D (Dabov et al.)

Principle of BM3D

- 2-steps filtering
- Step 1: global 3D filtering of the block (grouping, collaborative filtering, aggregation)
- Step 2: block of noisy and current estimate patches and second global filtering of the 3D noisy block driven by current estimates, followed by aggregation

NLBayes (Lebrun et al.)

Principle of NLBayes (Non Local Bayes)

- Main idea: using a model for the patch distribution
- Gaussian multivariate pdf with a mean (mean patch) and a covariance matrix
- Step1 : these parameters are computed empirically using the block of similar noisy patches \overline{P}_v and C_{P_v} ; an analytic formula gives the expression of the denoised patch (MAP estimate) called basic estimate

$$\hat{P}_u = \overline{P}_v + (C_{P_v} - \sigma^2 I)C_{P_v}^{-1}(P_v - \overline{P}_v)$$

 Step 2: improvement of the Gaussian pdf using the block of basic estimate patches and new estimation

Application to color images

- Color space: YUV system separating luminance and chromatic parts (transformation from RGB to YUV, processing, inverse transform)
- Processing of each channel separately (the distance between patches for grouping can combine the 3 channels

F. Tupin IMA 206 May 2022

NLBayes (Lebrun et al.)

Noisy image ($\sigma = 30$)

NL-Bayes ($\sigma = 30$)

Outline

- Introduction
- Non-local means
- Extended non-local means
- Dictionaries based approaches
- 6 CNN and patch-based approaches

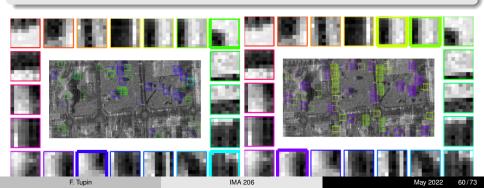
F. Tupin IMA 206 May 2022

Dictionaries of patches

redundancy / dictionary

- Limits of patch-based approaches
 - Rare patch effect: redundancy not verified
 - Low contrast situations: not enough similar samples
- Solutions
 - Use a database with many examples
 - Create representative atoms of an image
 - Create a dictionary of models

- K-SVD: search the representative patches
- FoE (Field of Experts): model and learn the clique potentials (clique = neighborhood = patch)
- EPLL: create dictionaries of models of Gaussian distributed patches (GMM: Gaussian Mixture Models)



General idea

The method is based on the optimization of a functional $\sum_{ij} ||D\alpha_{ij} - P_{v_{ij}}||^2$ combining the following elements:

- ullet Sparse coding $lpha_{ij}$ of the patches of the image using a patch dictionary D
- Improvement (updating) of the dictionary to improve the sparse coding of the image
- ullet Reconstruction of the image v using the final dictionary with aggregation

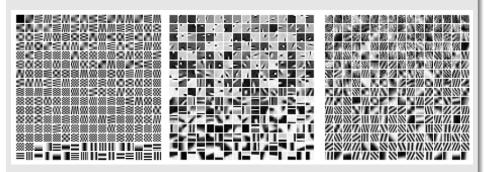


Figure: Examples of dictionaries: on the left DCT dictionary, middle K-SVD dictionary on a set of natural image, on the right K-SVD update for Barbara image

General idea

The method is based on the optimization of a functional $\sum_{ij} ||D\alpha_{ij} - P_{v_{ij}}||^2$ combining the following elements:

- ullet Sparse coding $lpha_{ij}$ of the patches of the image using a patch dictionary D
- Improvement (updating) of the dictionary to improve the sparse coding of the image
- ullet Reconstruction of the image v using the final dictionary with aggregation

Figure: Examples of K-SVD denoising: from left to right original image, noisy image, K-SVD denoising (256 atoms in \mathcal{D})

General idea

Instead of using a dictionary of fixed atoms, atoms are replaced by Gaussian Mixture Models.

- A patch is a sample of a Gaussian multi-variate distribution $\mathcal{N}(\mu_k, \Sigma_k)$.
- ullet Create the dictionary of GMM using a database of natural image (ex 200 components learnt on 10^6 patches)
- \bullet Solve the following optimization problem $||u-v||^2 \log(\Pi_i p(P_{u_i}|k_i))$

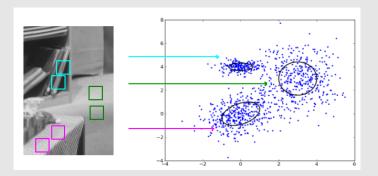


Figure: Each patch comes from one of the GMM.

General idea

Instead of using a dictionary of fixed atoms, atoms are replaced by Gaussian Mixture Models.

- ullet A patch is a sample of a Gaussian multi-variate distribution $\mathcal{N}(\mu_k, \Sigma_k)$.
- ullet Create the dictionary of GMM using a database of natural image (ex 200 components learnt on 10^6 patches)
- \bullet Solve the following optimization problem $||u-v||^2 \log(\Pi_i p(P_{u_i}|k_i))$

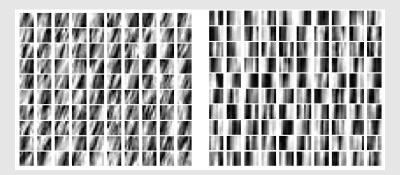


Figure: Examples of patches drawn from 2 Gaussian models, one encoding a stripe pattern (on the left) and one encoding a vertical edge (on the right)

General idea

Instead of using a dictionary of fixed atoms, atoms are replaced by Gaussian Mixture Models.

- A patch is a sample of a Gaussian multi-variate distribution $\mathcal{N}(\mu_k, \Sigma_k)$.
- \bullet Create the dictionary of GMM using a database of natural image (ex 200 components learnt on 10^6 patches)
- Solve the following optimization problem $||u-v||^2 \log(\Pi_i p(P_{v_i}|k_i))$

Figure: Denoising of an image using GMM: on the left original image, middle noisy image, on the right denoising with EPLL and 200 GMM.

General idea

Instead of using a dictionary of fixed atoms, atoms are replaced by Gaussian Mixture Models.

- ullet A patch is a sample of a Gaussian multi-variate distribution $\mathcal{N}(oldsymbol{\mu}_k, oldsymbol{\Sigma}_k).$
- ullet Create the dictionary of GMM using a database of natural image (ex 200 components learnt on 10^6 patches)
- \bullet Solve the following optimization problem $||u-v||^2 \log(\Pi_i p(P_{v_i}|k_i))$

Figure: Denoising of an image using GMM: on the left original image, on the right the color code represents the chosen GMM. Similar textures are represented by the same model.

Outline

- Introduction
- Non-local means
- Extended non-local means
- Dictionaries based approaches
- CNN and patch-based approaches

F. Tupin IMA 206 May 2022

CNN and denoising

Convolutive neural networks

- Combines non linear steps (such as truncating values below a threshold) and local filtering
 - Hierarchy of non-linear features
 - many layers: increases the considered neighborhood (receptive field)
- Different strategies
 - Residual learning: ex DnCNN (restores the noise residual image -easier to train)
 - Auto-supervised learning: ex Noise2noise (uses only noisy samples to do the training)
- Pros and Cons
 - Very effective to preserve geometric structure and textures
 - May invent plausible structures (hard to tell artifacts)

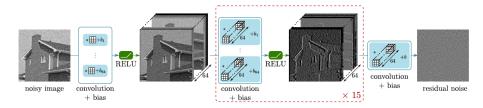


Figure: Architecture of DnCNN, Zhang et al.

Example of CNN / non-local combination (1)

General idea

Training a network using non-local information: increasing the number of channels using image redundancy, Davy et al.

- Principle
 - find the K most similar patches
 - collect the central values of these patches
 - concatenate them to form K additional layers
- Key idea: the denoising can be improved when making available values from similar patches that are quite far apart

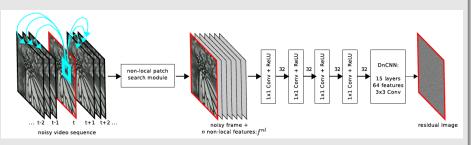


Figure: Architecture of Davy et al. network exploiting patch redundancy to create additional channels ["Non-local video denoising by CNN"].

Example of CNN / non-local combination (2)

General idea

Iterate CNN and non-local methods to reduce the artifacts created by the CNN.

- Principle
 - 1 The noisy and current estimate are combined iteratively: $\bar{z}_k = \lambda_k z + (1 \lambda_k)\hat{y}_{k-1}$
 - The current estimate is obtained by a CNN taking the decreasing noise variance into account followed by a non-local filter with updated threshold
- Key idea: correct the drawback of one method by the other

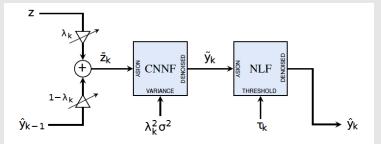


Figure: Algorithm of Cruz et al. : iterative (CNN+NLM) approach ["Nonlocality-reinforced convolutional neural networks for image denoising"]. NLF: simple averaging of the k-nearest neighbors with threshold τ_k , CNNF trained CNN with decreasing λ_k .

F. Tupin IMA 206 May 2022

Example of CNN / non-local combination (3)

General idea

Introducing a non-local block inside the network to exploit the redundancy in the image or in the feature maps.

- Principle
 - The non local block is trained to generate continuous nearest neighbors versions of the input
 - It is then used as a building brick to define new networks architectures
 - The new architecture is then trained in a usual way
 - Key idea: introduce redundancy at different feature levels

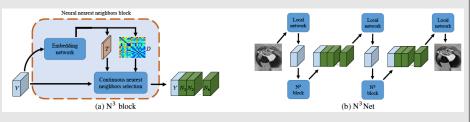


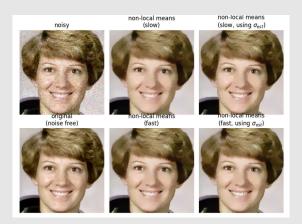
Figure: Architecture of Plotz et al. : N^3 brick and new architecture including N^3 component ["Neural Nearest Neighbors Networks"].

F. Tupin IMA 206 May 2022

Practice of non-local approaches

Python

- Library skimage (scikit-image, image processing in python)
- from skimage.restoration import denoise_nl_means
- https://scikit-image.org/docs/dev/auto_examples/filters/plot_ nonlocal_means.html



Practice of non-local approaches

IPOL

- Image Processing On Line (reproducible research, online demo + detailed paper on implementation tricks)
- https://www.ipol.im
- Topics: Enhancement and restoration (Denoising)

F. Tupin IMA 206 May 2022

Take home messages

Patch-based methods

- Exploit the redundancy in images
- Key ingredients: patch distance, parameters, aggregation step ⇒ must be adapted to the noise statistics
- State of the art methods before deep learning
- Recent trends try to combine the efficiency of both approaches