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Overview of the session - first part

◦ Introduction

◦ Neighborhoods and cliques

◦ Definition of a Markov Random Field

◦ Hammersley-Clifford theorem and conditional probability

◦ Sampling MRF (Gibbs, Metropolis)

◦ Optimization
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Introduction

◦ Historical background

- Probability theory for physical phenomena (crystal structure)

- Geman and Geman article (84)

◦ Main idea of MRF

contextual relations are necessary to model images

a local neighborhood is enough for natural images
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A prior for natural images : local context
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Introduction

◦ Low-level applications

- Restoration

- Segmentation

- Edge detection

- Compression

◦ Higher-level applications

- Object recognition

- Graph matching
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Markov random field

◦ Probabilitic model

S = {s} ⊂ Zd set of sites (discrete and finite)

xs ∈ E space of the “gray-levels”

(E = {0..255} {0..q − 1} (labels) IR)

Xs random variable associated to s

X = {Xs}s∈S random field

x = {xs}s∈S = {xs} ∪ xs configuration (image)

Ω = E|S| space of configurations

◦ probabilities

P (Xs = xs) local probability

P (X = x) = P (X1 = x1, X2 = x2 . . . Xs = xs . . .) joint probability

Pr(Xs = xs / Xt = xt, t 6= s)conditional probability
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Spatial context in natural images

Vs

x s

s
s : site

Vs : (spatial) neighborhood of s

◦ homogeneous regions

xs ↔ radiometries of neighborhing pixels mean

◦ textured regions

xs ↔ radiometries of neighborhing ( ! !) pixels local pattern function

global image ⇔ local neighborhood

global probability ⇔ local [conditional] probability
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Topology for Markov Random Fields

◦ neighborhood system - definition (mutual relationship)

neighborhood of site s : Vs
properties : s /∈ Vs s ∈ Vr ⇔ r ∈ Vs

s

V = {Vs}s∈S neighborhing system

x→ Vs = {xr}r∈Vs local configuration of the neigh-

borhood

s

◦ cliques

c ⊂ S is a clique / V iff :

— card (c) = 1 (single-site)

— card (c) ≥ 2 and ∀ r 6= s ∈ c ⇒ r, s neigh-

bors

◦ notations c = (r, s, t, . . .); C = {c}
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Topology for Markov Random Fields (2)

◦ 4-connexity

ordre 1

ordre 2

4-connexité

◦ 8-connexity

ordre 1

ordre 2

ordre 3

ordre 4

8-connexité
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MRF : definition

Vs

x s

s
s : site

Vs : voisinage (spatial) de s

Pr(Xs = xs / {Xr = xr} , r 6= s) = Pr(Xs = xs / {Xr = xr} , r ∈ Vs)
= Pr(Xs = xs / Vs)

Global Local

Probability ↔ Probability

◦ MRF = 2D extension of Markov chain

(n-1) (n)
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Hammersley-Clifford theorem :
P (X = x) > 0 ∀x ∈ Ω is a MRF iff

P (X = x) =
exp −U(x)

Z
Gibbs distribution

U(x) =
∑
c∈C

Vc(x) global energy

Vc(x) = Vc(xs, s ∈ c) clique potential

Z =
∑
y∈Ω

exp −U(y) partition function

◦ Example : cliques

r r s

s t

r

U(x) = A
∑
s∈S

f(xs) +B
∑
(r,s)

g(xr, xs) + C
∑

(r,s,t)

h(xr, xs, xt)

possible non-stationarity : A→ As , B → Brs . . .

◦ important : low energy U(x) ⇔ high probability P (X = x)
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Conditional probability

Pr(Xs = xs / Vs) =
1

Zs
exp−Us(xs, Vs)

with :

Us(xs, Vs) =
∑

c⊂C,s∈c
Vc(xs, Vs) local conditional energy

Zs =
∑
ξ∈E

exp −Us(ξ, Vs) local partition function

s Vs

◦ ⇒ local form of the Gibbs distribution
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Local conditional probability (2)

◦ demonstration

Pr(Xs = xs / X
s = xs) =

Pr(Xs = xs, X
s = xs)

Pr(Xs = xs)

=
Pr(Xs = xs, X

s = xs)∑
ξ∈E

Pr(Xs = ξ, Xs = xs)
=

Pr(X = x)∑
ξ∈E

Pr(X = x′)

◦ → Let U(x) = U(xs / Vs) +
∑

c∈C,s/∈c

Vc(x)

↖W

Pr(Xs = xs / X
s = xs) = Pr(Xs = xs / Vs) =

exp −U(xs / Vs)∑
ξ∈E

exp −U(ξ / Vs)
↙ Zs
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Local conditional probability : example

binary field (E = {0, 1})

◦ Neighborhood 4-connexity

◦ Clique potentials

cliques of order 2

Vc=(s,t)(xs, xt) = β1xs 6=xt (0 if xs = xt, β if not)

◦ Local conditional probabilities

U(xs = 0, Vs = (0, 0, 0, 1)) = β

U(xs = 1, Vs = ((0, 0, 0, 1)) = 3β

P (Xs = 0|Vs) =
exp(−β)

exp(−β) + exp(−3β)

P (Xs = 1|Vs) =
exp(−3β)

exp(−β) + exp(−3β)
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Sampling of MRF

◦ problem

X (P(X=x)) being defined (neighborhood system, clique potentials)

how sampling a configuration following P(X) ?

◦ solutions

two possible algorithms :

— Gibbs sampler

— Metropolis algorithm
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Gibbs sampler

◦ principle building a sequence of configurations x(n) by visiting each site

(randomly sampled)

◦ local change : x = {xs, xs} → x′ = {ξ, xs}
Pr(X = x′)

Pr(X = x)
=

Pr(Xs = ξ / Xs = xs) Pr(Xs = xs)

Pr(Xs = xs / Xs = xs) Pr(Xs = xs)
=

Pr(Xs = ξ / Vs)

Pr(Xs = xs / Vs)

◦ ⇒ sampling of the new state according to the conditional

probability

Z 
s
T

=ξs s

ξE

Pr(X  =     /   V  )
ξ s

T
exp − U(    /  V  )
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Metropolis sampling

◦ principle

sampling of a site s and a new state x′s

computation of the energy variation between the two states x = (xs, xt, t 6= s)

and x′ = (x′s, xt, t 6= s)

— if ∆U = U(x′)− U(x) < 0 accept the new state

— else, accept (reject) the new state with the probability p = exp(−∆U)

(1− p)
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Sampling of a MRF

◦ Markov chain

(n-1) (n)

Pr(X(n) = x(n) / X(0) = x(0), X(1) = x(1) . . . X(n−1) = x(n−1))

= Pr(X(n) = x(n) / X(n−1) = x(n−1))

◦ transition kernel

Qn(x, y) = Pr(X(n) = y / X(n−1) = x) x→ y
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◦ homogeneous Markov chain : Qn(x, y) independant of n

◦ Sampling : Markov chain of images !

 . . . . .

X
(n-1)

X
(n)

X
(1)

X
(0)

X(0), X(1) . . . X(n−1), X(n), X(n+1) . . .

◦ homogeneous sampling : finding Q(x, y) such that

lim
n→+∞

Pr(X(n) = x) = P(X = x)
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Examples of Markov models

◦ Ising model

U(x) = −β
∑

c=(s,t)

xs xt −B
∑
s∈S

xs E = {−1,+1}

U(x) = β
∑

c=(s,t)

1xs 6=xt E = {0, 1}

◦ Potts model

U(x) = β
∑

c=(s,t)

1xs 6=xt
E = {0..q − 1}

◦ Gaussian Markov model

U(x) = β
∑

c=(s,t)

(xs − xt)2 + α
∑
s∈S

(xs − µs)2 E = IR
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Ising model in 4-connexity and B = 0

A B

C D

- A : random image : β = 0 - B : weak regularization : β = 0.2

- C : “critical” regularization : β ≈ 0.44 - D : strong regularization : β = 4.0
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Potts model in 4-connexity and B = 0 (q = 4)

A B

C D

- A : random image : β = 0 - B : weak regularization : β = 0.2

- C : “critical” regularization : β ≈ 1, 099 - D : strong regularization : β = 4.0
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Gaussian Markov model in 4-connexity

U(x) = β
∑

c=(s,t)

(xs − xt)2

+ α
∑
s∈S

(xs − µs)2

A B

C D

- A : α = 5.10−4 - B : α = 5.10−3

- C : α = 2.10−3 - D : α =∞ (µ = 127 for all simulations)
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Gaussian Markov models

◦ model with independent pixels

Pr(X = x) =

[√
α

π

]|S| ∏
s∈S

e−α (xs − µ)
2

⇔ exp −U(x)

Z

with U(x) = α
∑
s∈S

(xs − µ)2

◦ General case - auto-normal model

U(x) = α
∑
s∈S

(xs − µs)2 + β
∑

c=(s,t)

(xs − xt)2

↓ ↓
local mean coupling

- variable illumination µs

- constant illumination µs = µ = 128
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Conditional probability for γ connexity : gaussian

Pr(Xs = xs / Vs) =
1

z
exp−

α(xs − µs)2 + β
∑

c=(s,t), t∈Vs

(xs − xt)2



=

√
2 (α+ β γ)

π
. exp− (α+ β γ)

xs −

α µs + β

∑
t∈Vs

xt

α+ β γ




2

◦ conditional expectation

IE[Xs / Vs] =

α µs + β
∑
t∈Vs

xt

α+ β γ
=

α µ+ β
∑
t∈Vs

xt

α+ β γ
→ gravity center (µs = µ)

◦ conditional variance

var(Xs / Vs) =
1

2 (α+ β γ)
→ independent of µs and xt, t ∈ Vs

◦ ⇒ statistics computation for fixed XV =
∑
t∈Vs

xt
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Sampling versus optimization

◦ Finding the configuration with highest probabibility

equivalent to searching for the global minimum of the energy

◦ Problem categorization

— global / local inima

— continuous / discrete labels

— convex / non convex energy
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ICM - Iterated Conditional Modes

◦ Discrete labels and local minimum

Sequential update of each site :

— choice of a site

— computation of the conditional probabilities (conditional local energies)

for the fixed local neighborhood

— choice of the state maximizing (minimizing) the conditional probability

(conditional local energy)

◦ ICM algorithm

— converges to a local minimum

— depends very much of the initial configuration

— very fast

— similar to a “gradient descent” with continuous labels
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Gibbs distribution with temperature parameter

PT (X = x) =
1

ZT
exp−U(x)

T

U(x) =
∑
c∈C

U c(x) global energy

ZT =
∑
y∈Ω

exp−U(y)

T
partition function
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Behaviour for extreme temperatures

◦ intuition

PT (X = y)

PT (X = x)
= exp− [U(y)− U(x)]

T
∀x, y ∈ Ω

T →∞ exp− [U(y)− U(x)]

T
→ 1 ∀x, y ∈ Ω fini

T → 0 exp− [U(y)− U(x)]

T
→ 0 si U(y) > U(x)

◦ demonstration for T →∞

PT (X = x) =
exp−U(x)

T∑
y∈Ω

exp−U(y)

T

=
1∑

y∈Ω

exp− [U(y)− U(x)]

T

→ 1

Card Ω
∀x ∈ Ω equidistribution on Ω
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Gibbs distribution with temperature parameter (2)

◦ deemonstration for T → 0

U∗ = min
x∈Ω

U(x) Ω∗ = {x ∈ Ω | U(x) = U∗}

PT (X = x) =
exp− [U(x)− U∗]

T∑
y∈Ω

exp− [U(y)− U∗]
T

=
exp− [U(x)− U∗]

T

Card Ω∗ +
∑

y∈Ω,y /∈Ω∗

exp− [U(y)− U∗]
T

→


1

Card Ω∗
si x ∈ Ω∗

0 si x /∈ Ω∗
equidistribution on Ω∗

(Recall : exp− [U(y)− U(x)]

T
→ 0 si U(y) > U(x) )
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Gibbs distribution with temperature parameter(3)
P  (x)

θ

+θ 

θ     0 +

"normal"θ =

U(x)

Ω
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Simulated Annealing

◦ theorem (Geman and Geman 1984)

— building a sequence of images with sampling for PTn
(X)

with Tn decreasing slowly and initializing the sampler with the current

configuration

— the configuration obtained when the temperature is close to 0 is a global

minimum of the energy

— Conditions : temperature decrease should be very low (cooling schedule

with logarithmic rate) and initial temperature should be high enough
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Simulated Annealing

◦ theorem (Geman and Geman 1984)

if Qn(x, y) with Tn ↘ 0 , Tn ≥
T0

log(1 + n)

then lim
n→+∞

Pr(X(n) = x) =
1

Ω∗
δ(x ∈ Ω∗)← energy global minimum

building a sequence of images with samplers for PTn
(X)

and Tn following a logarithmic decreasing

◦ theoretical condition

T0 = ∆ Umax Metropolis — T0 =
∑
s∈S

δ U(. / Vs)max Gibbs

◦ in practice : Tn = T0 α
n with :

T0 ≈ δ U(. / Vs)max , α ≈ 0.98
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Simulated Annealing

B

A

Ω

U

U*

x*
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