Graphs for image processing, analysis and pattern recognition

Florence Tupin

Florence.Tupin@telecom-paris.fr

http://perso.telecom-paris.fr/~tupin

Télécom Paris - LTCI

Palaiseau - France

Overview

1. Definitions and representation models

- 2. Single graph methods
 - Segmentation or labeling and graph-cuts
 - Graphs for pattern recognition

- 3. Graph matching
 - Graph or subgraph isomorphisms
 - Error tolerant graph-matching
 - Approximate algorithms (inexact matching)

Overview

1. Definitions and representation models

- 2. Single graph methods
 - Segmentation or labeling and graph-cuts
 - Graphs for pattern recognition

- 3. Graph matching
 - Graph or subgraph isomorphisms
 - Error tolerant graph-matching
 - Approximate algorithms (inexact matching)

Why using graphs?

- Interest: they give a compact, structured and complete representation, easy to handle
- Applications:
 - Image processing: segmentation, boundary detection
 - Pattern recognition: printed characters, objects (buildings 2D ou 3D, brain structures, ...), faces, ...
 - Image registration
 - Understanding of structured scenes
 - •

Definitions

$$Graph: G = (X, E)$$

- \bullet X set of nodes (|X| order of the graph)
- E set of edges (|E| size of the graph)
- complete graph (size $\frac{n(n-1)}{2}$)
- partial graph G = (X, E') with E' part of E
- subgraph $F = (Y, E'), Y \subseteq X$ et $E' \subseteq E$
- degree of a node x : d(x) = number of edges
- connected graph: for each pair of nodes you find a path linking them
- tree: connected graph without cycle
- clique: complete subgraph
- dual graph (face \rightarrow node)
- segment graph (edge \rightarrow node)
- hypergraph (n-ary relations)
- weighted graphs: weights on the edges

Notations

$$Graph: G = (X, E)$$

- ullet weight of an edge linking i et j : w_{ij}
- adjacency matrix W of size $|X| \times |X|$ defined by

$$W_{ij} = \left\{ egin{array}{ll} w_{ij} & \mbox{if} & e_{ij} \in E \\ 0 & \mbox{else} \end{array}
ight.$$

for undirected edges W is symetric

Laplacian matrix of an undirected graph $d_i = \sum_{e_{ij} \in E} w_{ij}$

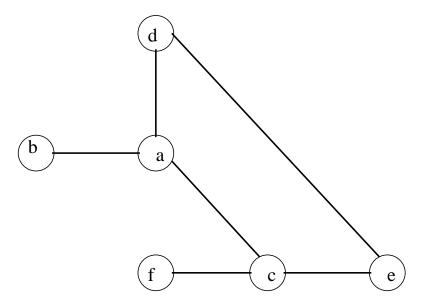
$$L_{ij} = \begin{cases} d_i & \text{if} & i = j \\ -w_{ij} & \text{if} & e_{ij} \in E \\ 0 & \text{else} \end{cases}$$

$$L = D - W$$

with $D_{ii} = d_i$ (D degree matrix)

Representation

Adjacency matrix, adjacency lists



	а	b	С	d	е	f
а	0	1	1	1	0	0
b	1	0	0	0	0	0
С	1	0	0	0	1	1
d	1	0	0	0	1	0
е	0	0	1	1	0	0
f	0	0	1	0	0	0

Representation

Adjacency matrix, adjacency lists

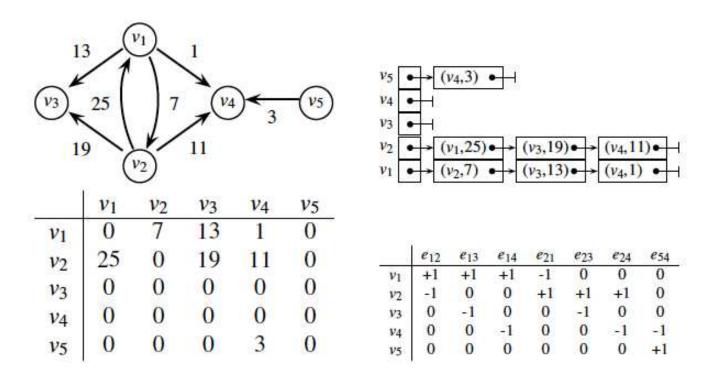


FIGURE 1.4

From top-left to bottom-right: a weighted directed graph, its adjacency list, its adjacency matrix, and its (transposed) incidence matrix representations.

(figure from "Image processing and analysis with graphs", Lézoray - Grady)

Which graphs for images?

Examples of graphs

- Attributed graph : $G = (X, E, \mu, \nu)$
 - $\mu: X \to L_X$ nodes interpreter (L_X = attributes of nodes)
 - $\nu: E \to L_E$ edges interpreter (L_E = attributes of edges)

Exemples:

- graph of pixels
- region adjacency graph (RAG)
- Voronoï regions / Delaunay triangulation
- graph of primitives with complex relationships
- Random graph : edges and nodes = random variables
- Fuzzy graph : $G = (X, E = X \times X, \mu_f, \nu_f)$
 - $\mu_f: X \to [0,1]$
 - $\nu_f : E \to [0, 1]$
 - avec $\forall (u,v) \in X \times X$ $\nu_f(u,v) \leq \mu_f(u)\mu_f(v)$ or $\nu_f(u,v) \leq \min[\mu_f(u)\mu_f(v)]$

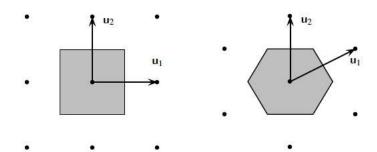


FIGURE 1.11

The rectangular (left) and hexagonal (right) lattices and their associated Voronoi cells.

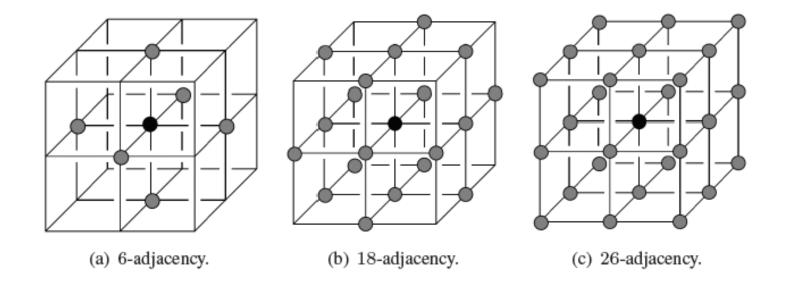
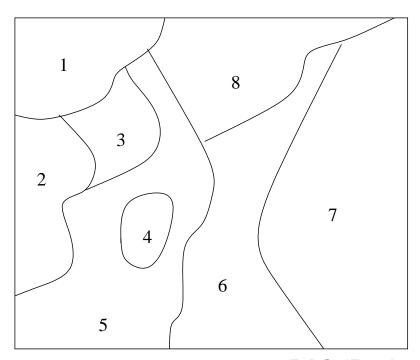
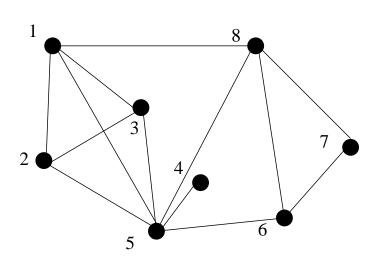


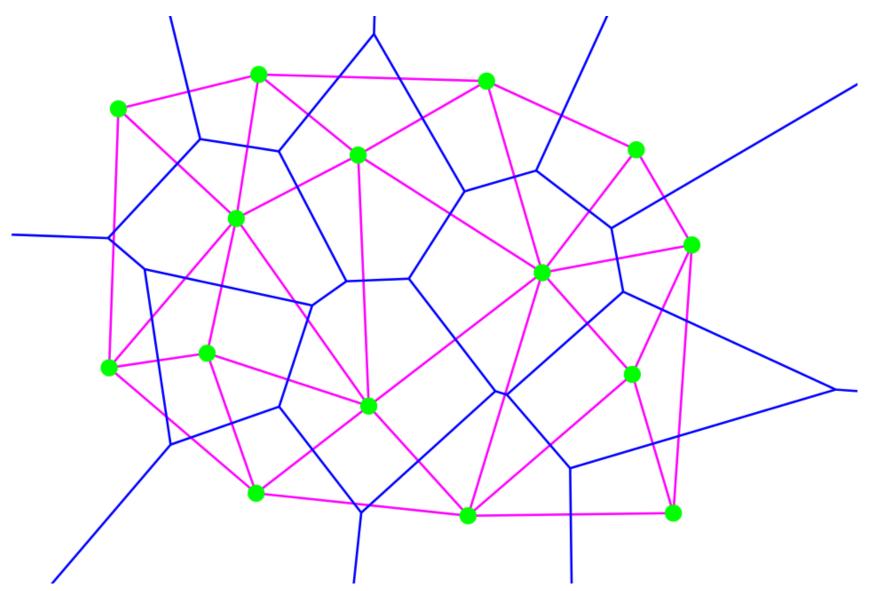
FIGURE 1.12

Different adjacency structures in a 3D lattice.





RAG (Region Adjacency Graph)



Voronoï diagram (in blue) and Delaunay triangulation (pink)

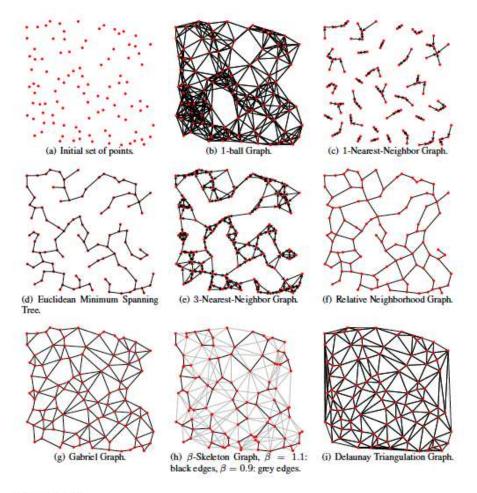


FIGURE 1.14 Examples of proximity graphs from a set of 100 points in \mathbb{Z}^2 .

(figure from "Image processing and analysis with graphs", Lézoray - Grady)

Examples of graphs

- Graph of fuzzy attributes: attributed graph with fuzzy value for each attribute
- Hierarchical graph:
 multi-level graph and and bi-partite graph between 2 levels
 (multi-level approaches, object grouping, ...)

Exemples:

- quadtrees, octrees
- hierarchical representation of the brain
- Graph for reasoning decision tree, matching graph

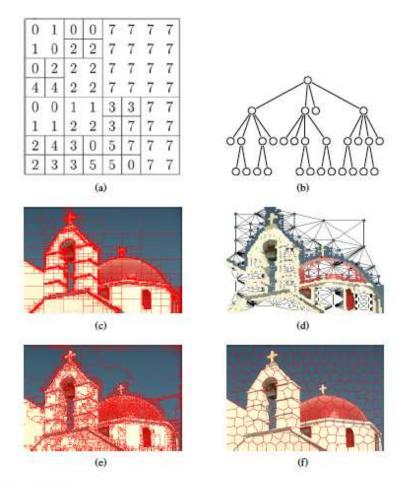


FIGURE 1.13

(a) An image with the quadtree tessellation, (b) the associated partition tree, (c) a real image with the quadtree tessellation, (d) the region adjacency graph associated to the quadtree partition, (e) and (f) two different irregular tessellations of an image using image-dependent superpixel segmentation methods: Watershed [23] and SLIC superpixels [24].

(figure from "Image processing and analysis with graphs", Lézoray - Grady)

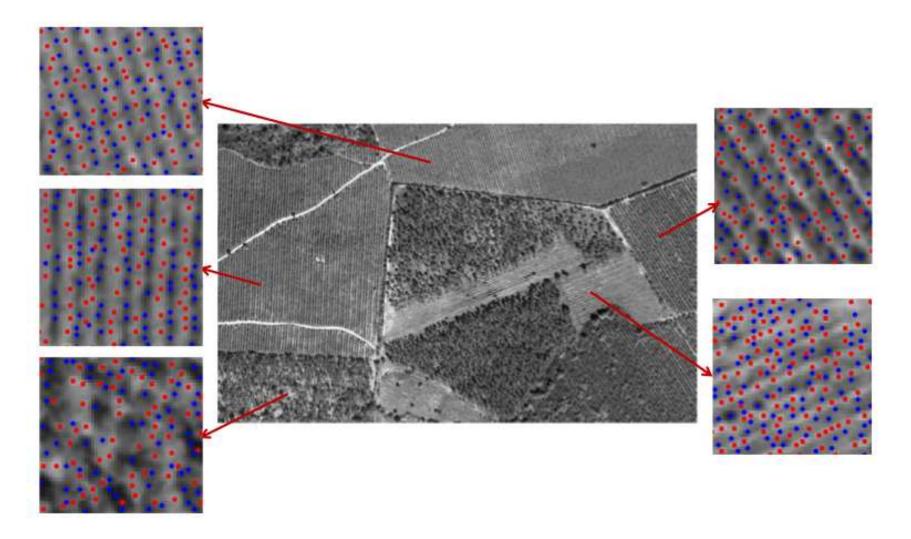
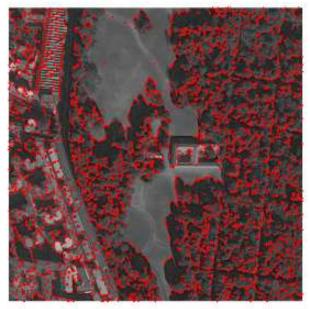


Figure 2 – Représentation de variété des points clés de $\mathcal{S}_{\omega}^{\max}(I)$ (en rouge) et $\mathcal{S}_{\omega}^{\min}(I)$ (en bleu) sur u image Pléiades ayant des textures locales différentes.

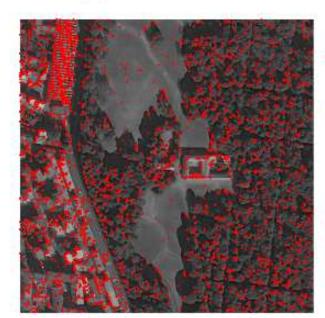
(figure from M.T. Pham PhD)

(a) Image initiale 512×512

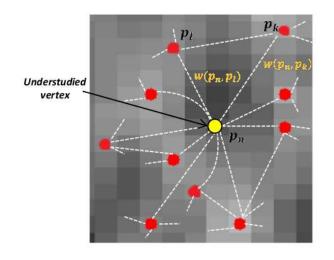


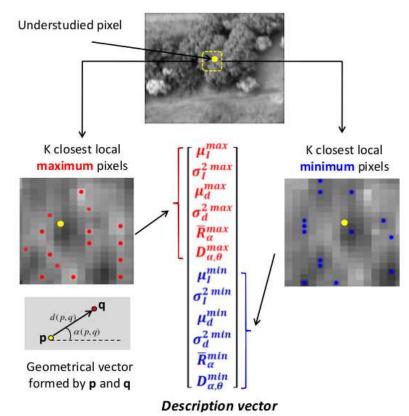
(c) Détecteur de Harris

(b) Extrema locaux



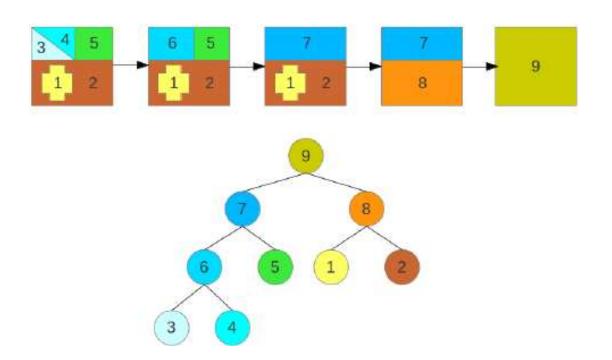
(d) Détecteur SIFT





F. Tupin - Graphes - p.19/97

Graph examples - BPT Binary Partition Tree



Which algorithms from graph theory?

Some classical algorithms

Search of the minimum spanning tree

- Kruskal algorithm $O(n^2 + mlog_2(m))$
- Prim algorithm $O(n^2)$

Shortest path problems

- positive weights: Dijkstra algorithm $O(n^2)$
- arbitrary weights but without cycle: Bellman algorithm $O(n^2)$

Max flow and Min cut

- G = (X, E)
- partitioning in two sets A et B ($A \cup B = X$, $A \cap B = \emptyset$)
- $cut(A,B) = \sum_{x \in A, y \in B} w(x,y)$
- Ford and Fulkerson algorithm

Search of maximal clique in a graph

- decision tree
- cut of already explored branches

Overview

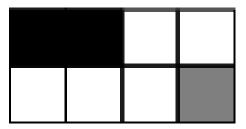
1. Definitions and representation models

- 2. Single graph methods
 - Segmentation or labeling and graph-cuts
 - Graphs for pattern recognition

- 3. Graph matching
 - Graph or subgraph isomorphisms
 - Error tolerant graph-matching
 - Approximate algorithms (inexact matching)

Segmentation by minimum spanning tree

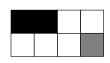
How can we segment this image using a minimum spanning tree?

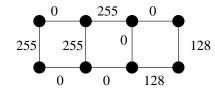


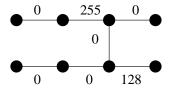
Segmentation by minimum spanning tree

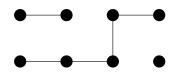
Constantinidès (1986)

- graph of pixels weighted by the gray levels (or colors) (weights = distances)
- search of the minimum spanning tree
- ullet spanning tree \Rightarrow partitioning by suppressing the most costly edges









image

graphe des pixels attribué

arbre couvrant de poids minimal

suppression des arêtes les plus coûteuses

Computation of the minimum spanning tree

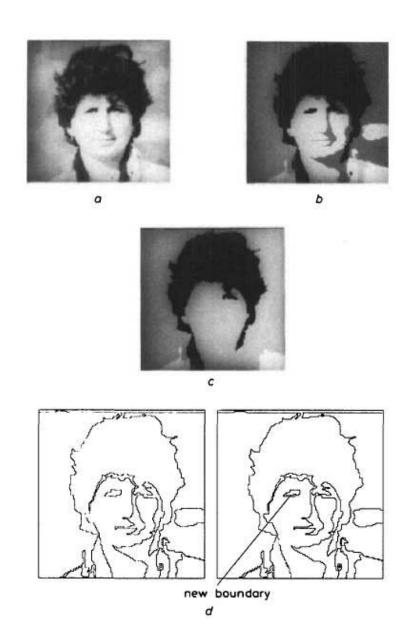
Kruskal algorithm

- Starting from a partial graph without any edge, iterate (n-1) times : choose the edge of minimum weight creating no cycle in the graph with the previsouly chosen edges
- In practice:
 - 1. sorting of edges by increasing weights
 - 2. while the number of edges is less than (n-1) do:
 - select the first edge not already examined
 - if cycle, reject
 - else, add the edge in the graph
- Complexity: $O(n^2 + mlog_2(m))$

Prim algorithm

- Extension from near to near of the current tree
- Complexity: $O(n^2)$

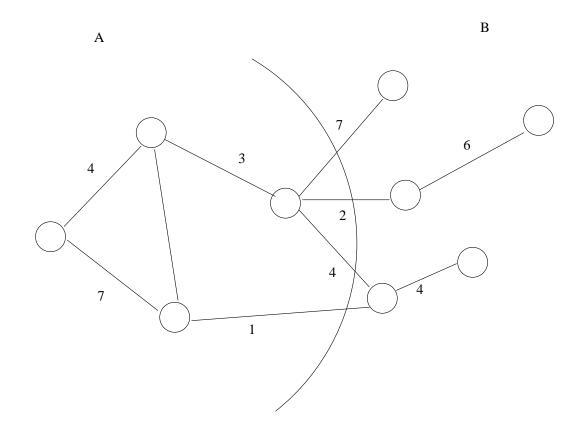
Constantinidès (1986)



Segmentation by graph-cut

Graph-cut definition:

- graph G = (X, E)
- partitioning in 2 parts A et B ($A \cup B = X$, $A \cap B = \emptyset$)
- $cut(A,B) = \sum_{i \in A, j \in B} w_{ij}$



Segmentation by graph clustering

Clustering: partitioning of the graph in groups of nodes based on their similarities Each cluster (group): a closely connected component

The clustering corresponds to:

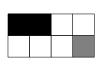
- edges between different groups have low weights (weak similarities)
- edges inside a group have high weights (high similarities)

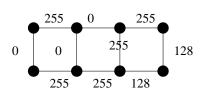
Possible cost functions for the cut:

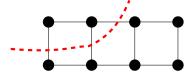
- minimum cut $Cut(A_1,...,A_k) = \sum_{i=1}^{i=k} Cut(A_i,\overline{A_i})$
- minimum cut normalized by the size of each part (RatioCut) $RatioCut(A_1,...,A_k) = \sum_{i=1}^{i=k} \frac{1}{|A_i|} Cut(A_i,\overline{A_i})$ ($|A_i|$ number of vertices in A_i)
- minimum cut normalized by the connectivity of each part (NCut) $NCut(A_1,...,A_k) = \sum_{i=1}^{i=k} \frac{1}{vol(A_i)} Cut(A_i,\overline{A_i})$ $(vol(A_i) = \sum_{k \in A_i} d_k \text{ sum of the weight of all edges of vertices in } A_i)$

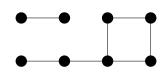
Toy example

Wu and Leavy (93): search for the MinCut









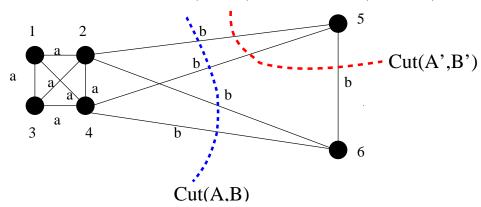
image

graphe des pixels attribué

coupe de capacité minimale

partition

Influence of the number of edges: $Cut(A,B)=4b,\,Cut(A',B')=3b$



⇒ normalized cut (NCut)

Normalized cut

- Principle: graph clustering
- + suppression of the influence of the number of edges: normalized cut

$$Ncut(A, B) = \frac{cut(A, B)}{assoc(A, X)} + \frac{cut(A, B)}{assoc(B, X)}$$

$$assoc(A, X) = \sum_{a \in A, x \in X} w(a, x) = vol(A)$$

Measuring the connectivity of a cluster:

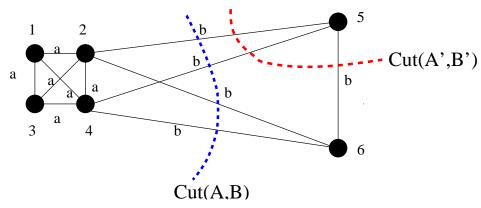
$$Nassoc(A, B) = \frac{assoc(A, A)}{assoc(A, X)} + \frac{assoc(B, B)}{assoc(B, X)}$$

$$Ncut(A, B) = 2 - Nassoc(A, B)$$

minimizing the cut ⇔ maximizing group connectivity

Toy example

Influence of the number of edges: Cut(A,B)=4b, Cut(A',B')=3b



 \Rightarrow normalized cut (NCut)

$$vol(A) =$$

 $vol(B) =$
 $NCut(A, B) =$

$$vol(A') =$$
 $vol(B') =$
 $NCut(A', B') =$

Graph theory and cuts

MinCut by combinatorial optimization

- Stoer-Wagner algorithm
- Principle: iterative reducing of the graph by fusion of the nodes linked by the maximal weights

Min K-cut by combinatorial optimization

- Partitioning the (un-oriented graph) graph in many components
- Gomory-Hu algorithm

minCut in oriented graph by combinatorial optimization

- Ford-Fulkerson algorithm (oriented graph with two terminal nodes (sink / tank)
- Principle: MaxFlow search (MinCut equivalence) by search for an augmenting chain to increase the flow

Graph theory and cuts

Laplacian matrices

$$D = diag(d_i)$$
 with $d_i = \sum_j w_{ij}$ $W = (w_{ij})$

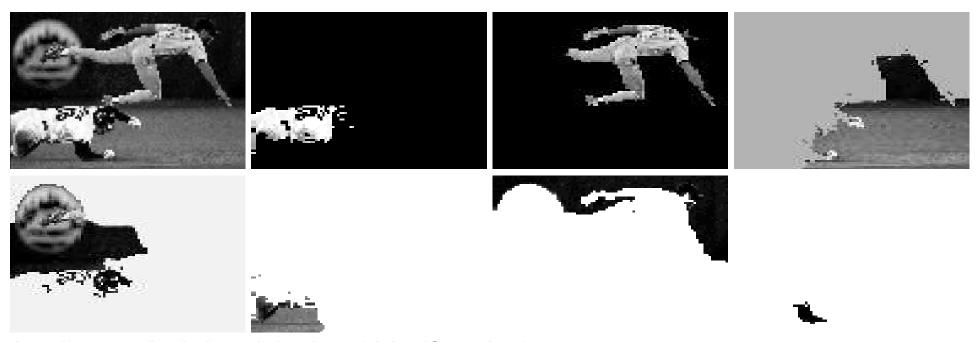
- Graph Laplacian matrix
 - L = D W
- Normalized graph Laplacian matrix

$$L_n = D^{-\frac{1}{2}}LD^{-\frac{1}{2}} = I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$$

Spectral clustering algorithms and cuts

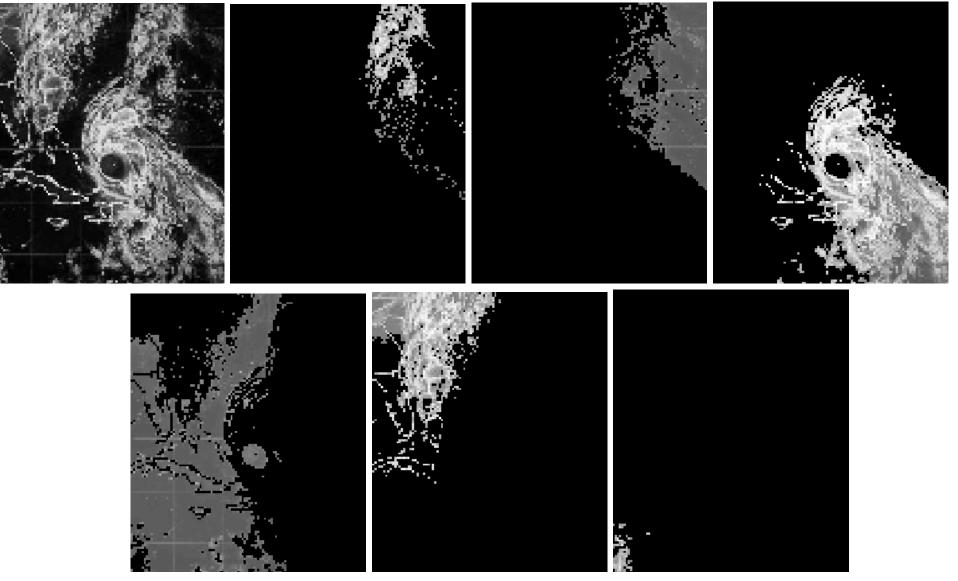
- Computation of the eigen-values and eigen-vectors of some matrix $(L, L_n, or$ generalized eigen problems $Lu = \lambda Du$)
- ullet selection of the k smallest eigen-values and associated k eigen-vectors u_k
- $U = (u_1, ..., u_k) \in R^{n \times k}$
- let $y_i \in R^k$ be the ith row of U (i = 1, ..., n)
- ullet cluster the points $(y_i)_{1 \le i \le n}$ with the k-means algorithm into clusters $C_1,...,C_k$
- clusters $A_1,...,A_k$ with $A_i=\{j|y_j\in C_i\}$

Examples (univ. Berkeley)



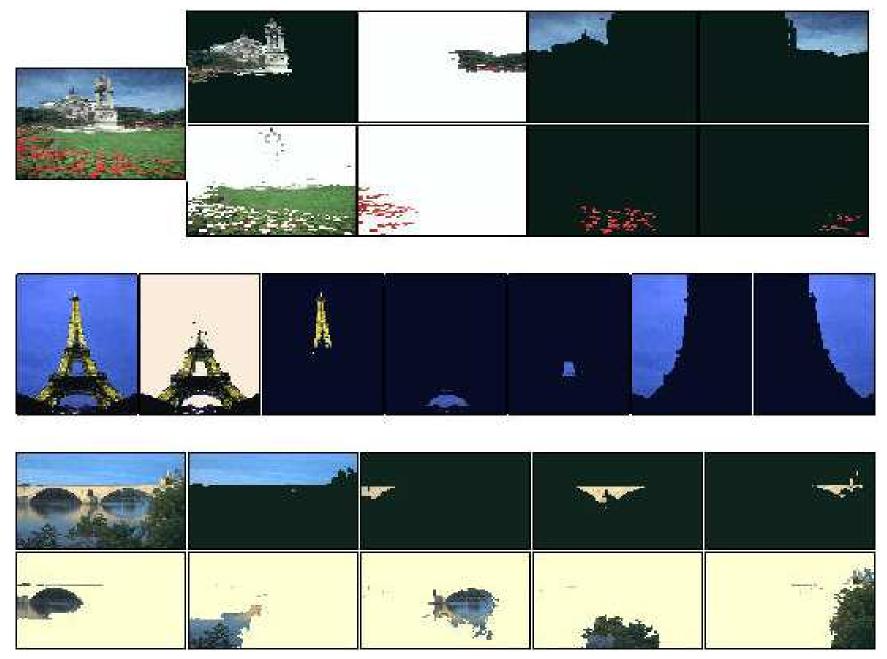
http://www.cs.berkeley.edu/projects/vision/Grouping/

Examples (univ. Berkeley)



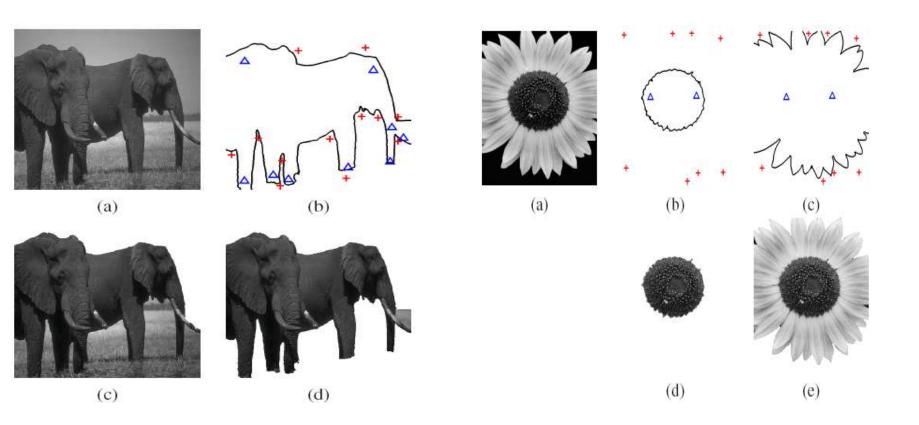
http://www.cs.berkeley.edu/projects/vision/Grouping/

Examples (univ. Berkeley)



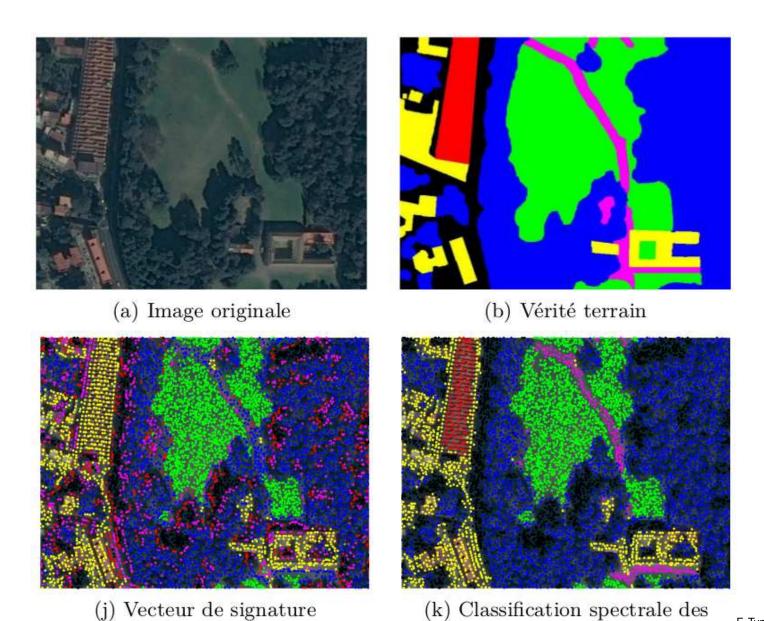
http://www.cs.berkeley.edu/projects/vision/Grouping/

Examples (univ. Alberta) with linear constraints



Examples (Mean Shift et Normalized Cut)

Examples (texture classification with point-wise graph)



F. Tupin - Graphes - p.38/97

vecteurs de signature

Graph-cuts

Bibliography

- An optimal graph theoretic approach to data clustering: theory and its application to image segmentation, Z. Wu et R. Leahy, IEEE PAMI, vol.15, num.11, nov. 93
- Normalized cuts and image segmentation, J. Shi et J. Malik, IEEE PAMI, vol. 22, num. 8, 2000
- Image segmentation with minimum mean cut, Wang, Siskind, 8th ICCV, 2001
- Efficient graph-based image segmentation, Felzenszwalb, Huttenlocher, IJCV, 2004
- A tutorial on spectral clustering, U. von Luxburg, Statistics and Computing, 2007.
- Color Image segmentation Based on Mean-Shift and Normalized Cuts, Tao,
 Zhang, IEEE Trans. on Systems, Man and Cybernetics, 2007
- Pointwise approach for texture analysis and characterization from VHR remote sensing images, M.-T. Pham, PhD, 2016

Overview

1. Definitions and representation models

- 2. Single graph methods
 - Segmentation or labeling and graph-cuts
 - Graphs for pattern recognition

- 3. Graph matching
 - Graph or subgraph isomorphisms
 - Error tolerant graph-matching
 - Approximate algorithms (inexact matching)

Full scene labeling (scene parsing)

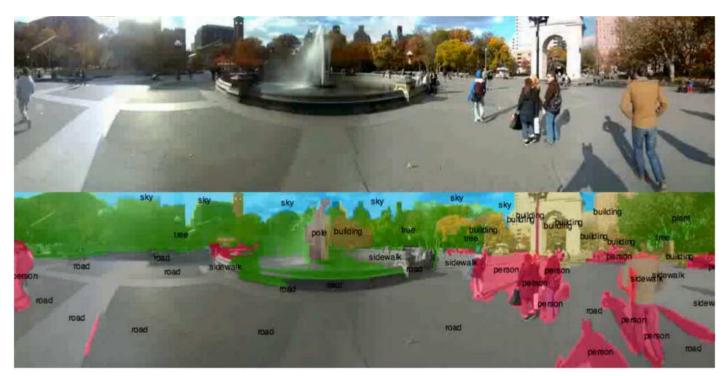


Figure from Farabet et al., PAMI 13 Tenenbaum and Barrow (1977)

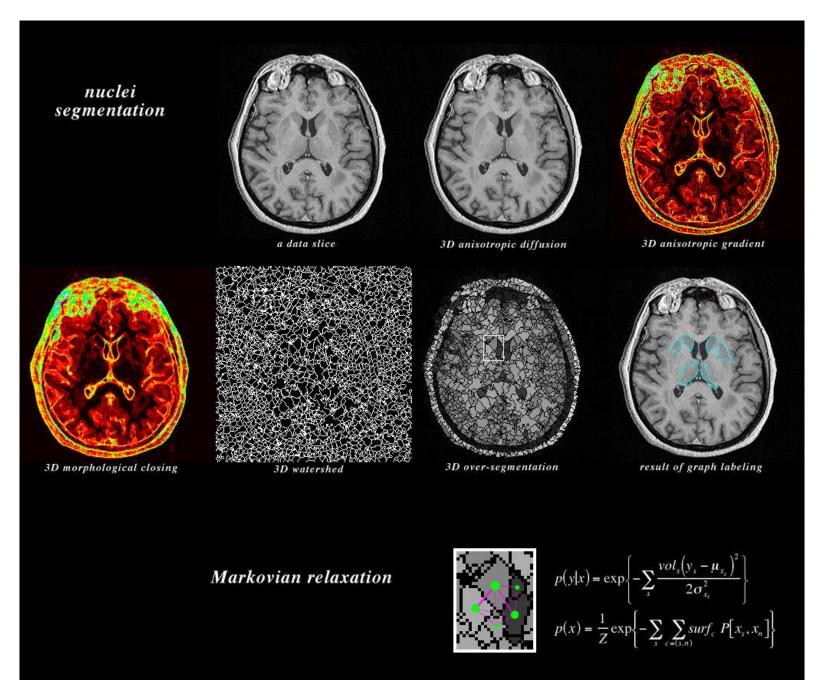
- Segmentation in regions
- Building of the Region Adjacency Graph
- Labeling using a set of rules (expert system) :
 - 1. on objects (size, color, texture,...)
 - 2. on contextual relationships between objects (above, inside, near ...)

Markovian labeling (random graphs)

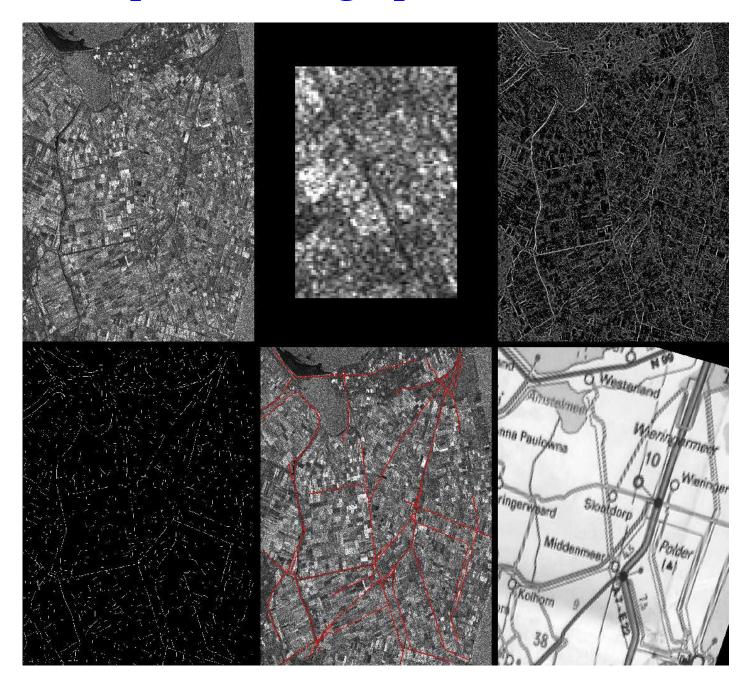
$$E(l) = \sum_{i} \Phi(d_i, l_i) + \beta \sum_{ij} \Psi(l_i, l_j)$$

- Low-level applications:
 - pixel graphs
 - segmentation, classification, restoration
- High-level applications:
 - graph of super-pixels (SLIC, watershed, ...)
 - graph of primitives (edges, key-points, lines,...)
- CRF (Conditional Random Field) / MRF (Markov Random Field):
 - MRF: Ψ does not depend on d ("pure" prior)
 - CRF: Ψ depends on d (usually based on image gradient values)
 - ⇒ pattern recognition, full scene labeling

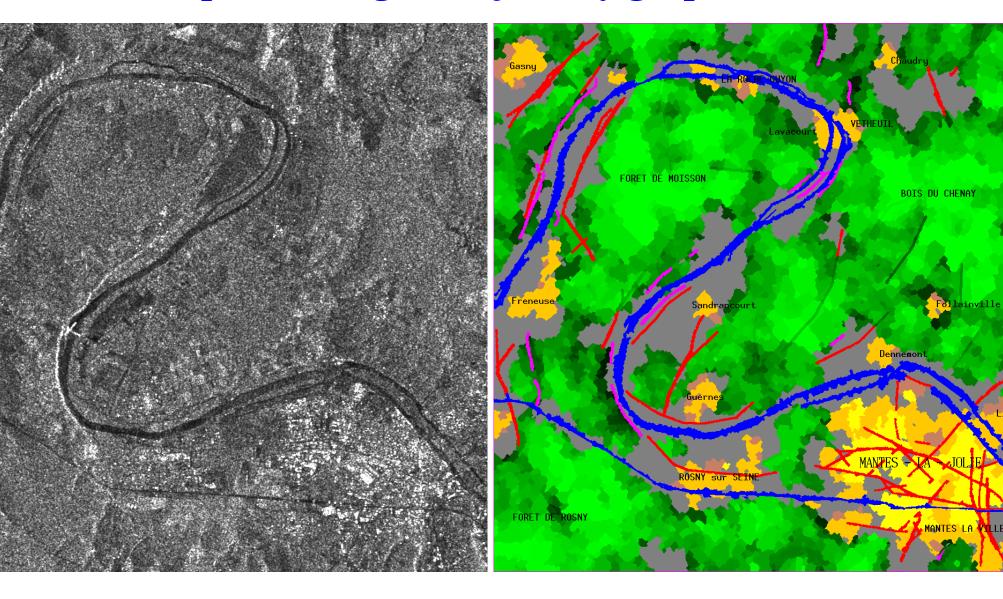
Example on a 3D RAG (T. Géraud)



Example on a line graph



Example on a region adjacency graph



MRF and graph-cut optimization

Binary labeling (Greig et al. 89):

$$\mathcal{E}(l) = \sum_{i} \Phi(d_i|l_i) + \sum_{(i,j)} \beta(l_i - l_j)^2$$

- source S (label 0), sink P (label 1)
- edges connected to terminal nodes with likelihood weights $\Phi(d_i|l_i)$
- edges between neighbor nodes with weights β

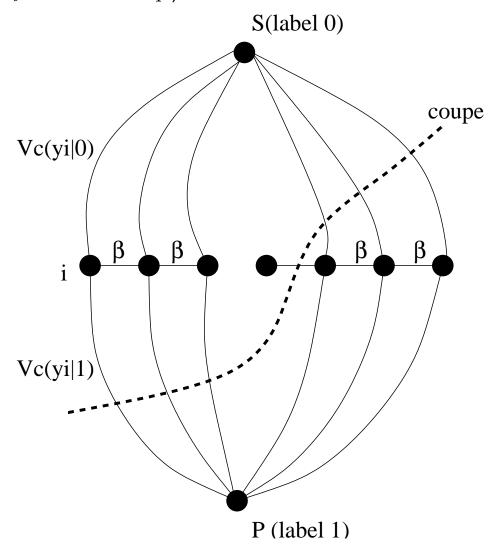
Minimizing $\mathcal{E}(l) \Leftrightarrow \mathsf{Min} \; \mathsf{Cut} \; \mathsf{search}$

$$cut(E_S, E_P) = \sum_{i \in E_S} \Phi(d_i|1) + \sum_{i \in E_P} \Phi(d_i|0) + \sum_{(i \in E_S, j \in E_P)} \beta$$

$$(l_i = 1 \text{ for } i \in E_S, l_i = 0 \text{ for } i \in E_P)$$

MRF and graph-cut optimization

 $(l_i = 1 \text{ for } i \in E_S, l_i = 0 \text{ for } i \in E_P)$



MRF and graph-cut optimization

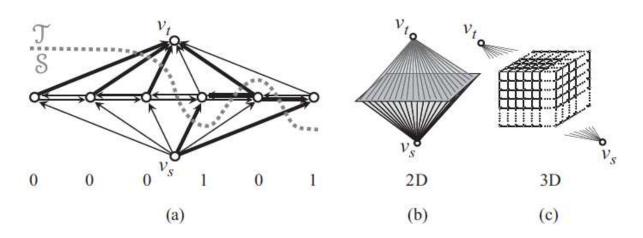


FIGURE 2.5

(a) The graph for binary MRF minimization. The edges in the cut are depicted as thick arrows. Each node other than v_s and v_t corresponds to a site. If a cut (S, \mathcal{T}) places a node in S, the corresponding site is labeled 0; if it is in \mathcal{T} , the site is labeled 1. The 0's and 1's at the bottom indicate the label each site is assigned. Here, the sites are arranged in 1D; but according to the neighborhood structure this can be any dimension as shown in (b) and (c).

(figure from "Image processing and analysis with graphs", Lézoray - Grady)

Graph-cut - example

What is the graph to build for the following toy image - line and the energy:

$$U(x|y) = \sum_{s} (y_s - \mu_{x_s})^2 + \beta \sum_{(s,t)} \Delta(x_s, x_t)$$

 y_s grey-level of pixel s, x_s class 0 or 1, β a penalization constant, $\mu_0 = 5, \mu_1 = 10$.

MRF/CRF and graph-cut optimization

Multi-level labeling (Boykov, Veksler 99):

- ⇒ generalization of the previous binary labeling
 Definition of two space moves (to go back to the binary labeling)
 - ullet lpha -expansion : source S and sink P correspond to label lpha and the current label $\overline{\alpha}$ (Ψ should be a metric)
 - $\alpha \beta$ swap: source S for α and sink P for β (Ψ should be a semi-metric)

Optimization by iterative mincut search:

- graph: nodes for super-pixels
- weights: depending on the current labeling
- good trade off time / efficiency compared to simulated annealing or ICM

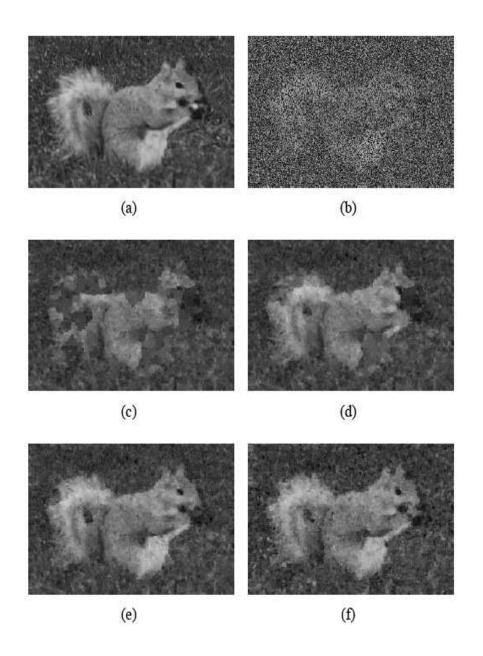
But for multi-labeling no garantee on optimality of the solution

MRF/CRF and graph-cut optimization

Image restoration:

- \Rightarrow exact optimization for quantized levels when Ψ is convex
 - Ishikawa (2003): building of a multi-layer graph (one layer for each label) and mincut search
 - Darbon (2005): decomposition of the solution on level-sets and binary mincut search on each level-set
- ⇒ exact solution for convex functions!
- ⇒ but need of (potentially) huge memory size !....

Examples - multi-labeling optimization



Interactive segmentation: "hard" constraints

Principle Background and object manually defined

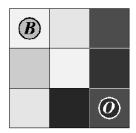
⇒ finding of a binary labeling minimizing an energy including "hard" constraints

Method Mincut search and edges with high weights (should not be cut)

Advantages

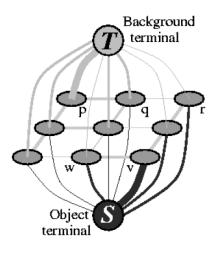
- easy introduction of "hard" constraints
- the manually defined areas permit to do a fast learning
- iterative algorithm

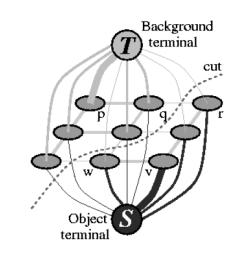
Graph construction



(a) Image with seeds.

(d) Segmentation results.

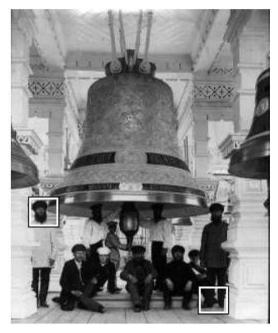




Graph weights

edge	weight (cost)	for
$\{p,q\}$	$B_{\{p,q\}}$	$\{p,q\}\in\mathcal{N}$
	$\lambda \cdot R_p(ext{``bkg"})$	$p \in \mathcal{P}, \ p \notin \mathcal{O} \cup \mathcal{B}$
$\{p,S\}$	K	$p \in \mathcal{O}$
	0	$p \in \mathcal{B}$
	$\lambda \cdot R_p(\text{``obj''})$	$p \in \mathcal{P}, \ p \notin \mathcal{O} \cup \mathcal{B}$
$\{p,T\}$	0	$p \in \mathcal{O}$
	K	$p \in \mathcal{B}$

Illustrations



(a) Original B&W photo

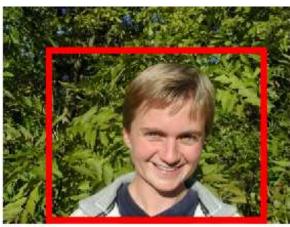
(b) Segmentation results

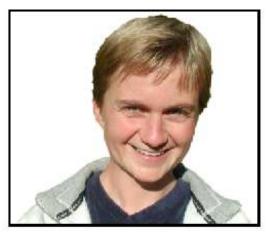
Interactive methods with mincut

Grab-cut

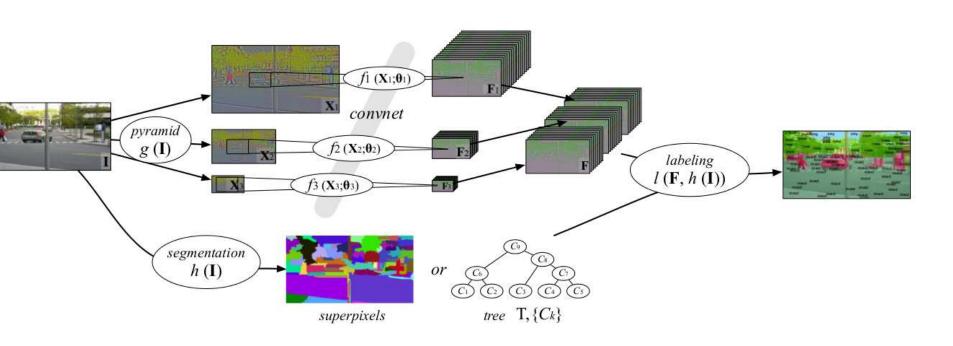
- take into account color
- two labels (background and object but with a Gaussian Mixture Model)
- CRF (conditional random field): regularization term weighted by the image gradient
- iterative semi-supervised learning of the GMM parameters (after manual initialization and after each cut)

Illustrations - Grab Cut-





Deep learning and graph labeling for full scene labeling



Farabet et al., PAMI, 2013

Deep learning and graph labeling for full scene labeling

$$\Psi(l_i,l_j) = \exp(-\beta||\nabla I||_i) 1 (l_i \neq l_j)$$

$$\begin{array}{c} \text{class predictions} \\ \text{unary weights} \\ \text{average} \\ \text{across super} \\ \text{pixels} \\ \text{image gradient} \\ \text{pairwise weights} \\ \text{pairwise weights} \\ \text{across super} \\ \text{pairwise weights} \\ \text{across super} \\ \text{minimization in} \\ \text{the graph via} \\ \text{a-expansion} \\ \text{ac-expansion} \\ \text{a$$

 $\Phi(d_i, l_i) = \exp(-\alpha d_{i,a}) 1(l_i \neq a)$

Farabet et al., PAMI, 2013

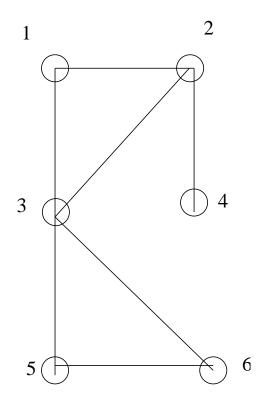
Pattern recognition

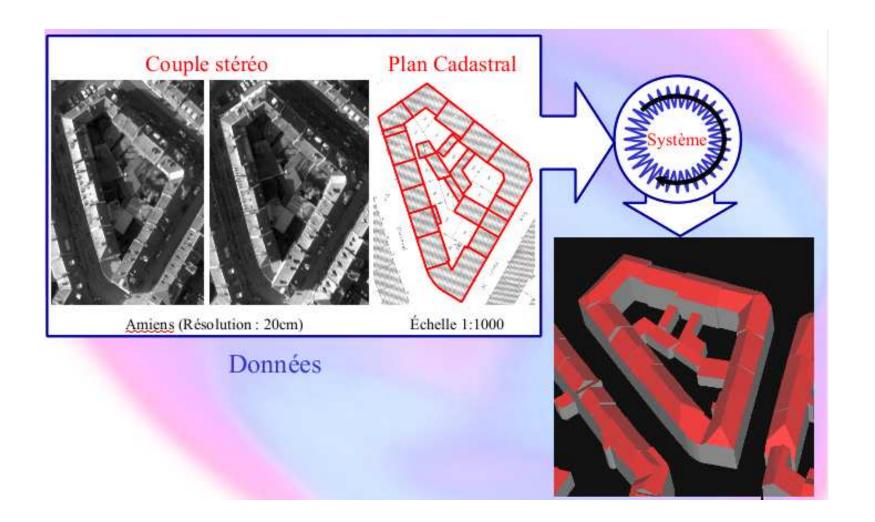
- Object: defined by a set of primitives (nodes of the graph)
- Binary relationship of compatibility between nodes (edges of the graph)
- Clique: sub-set of primitives all compatible between each other
 possible object configuration
- recognition by maximal clique detection

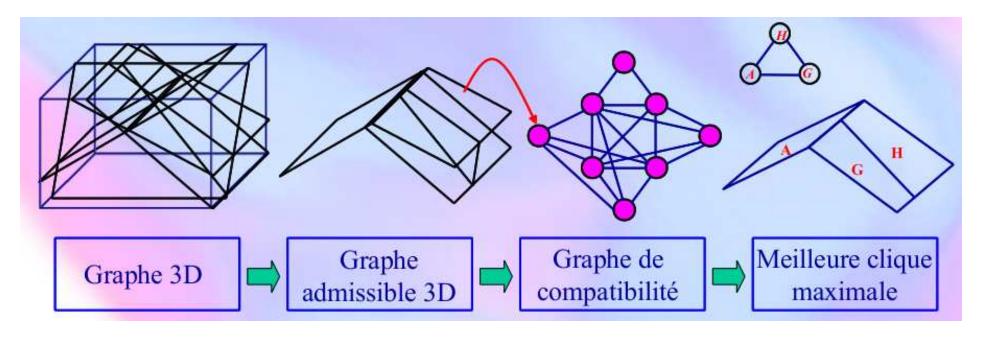
Search of maximal cliques:

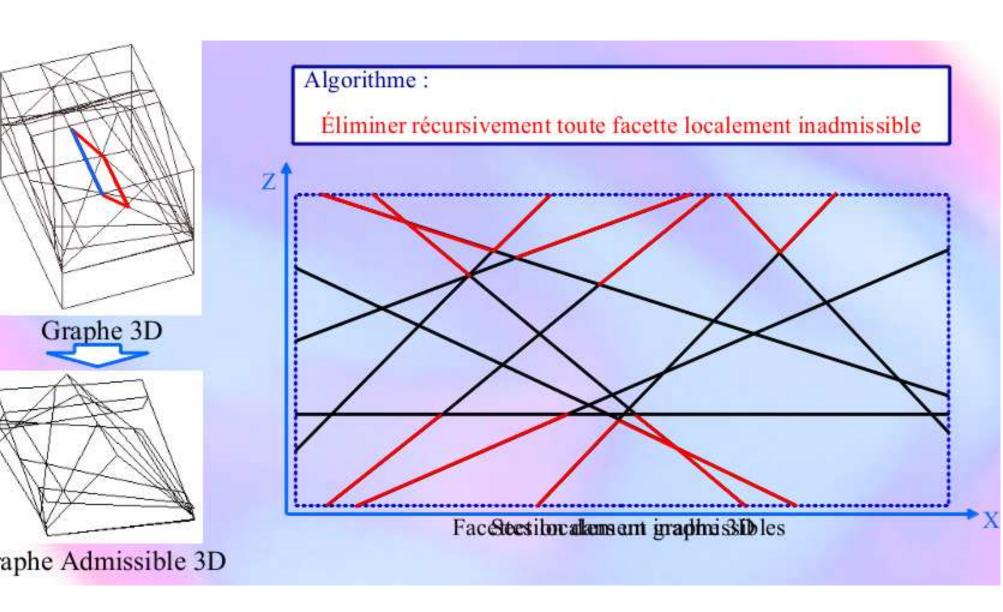
- NP-hard problem
- Building of a decision tree: a node of the tree = 1 clique of the graph
- pruning of the tree to suppress already found cliques
- Theorem: let S be a node of the search tree T, and let x be the first unexplored child of S to be explored. If all the sub-trees of $S \cup \{x\}$ have been generated, only the sons S not adjacent to x have to be explored.

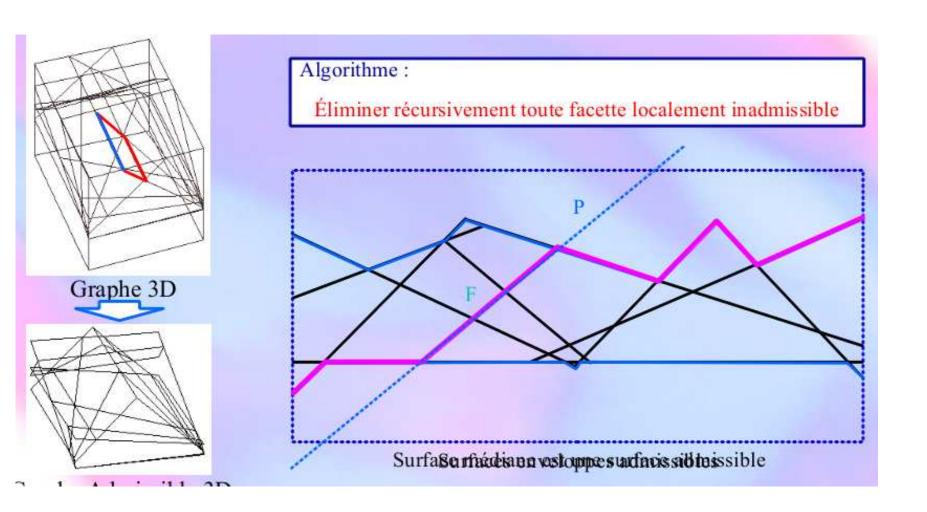
Example:maximal clique search

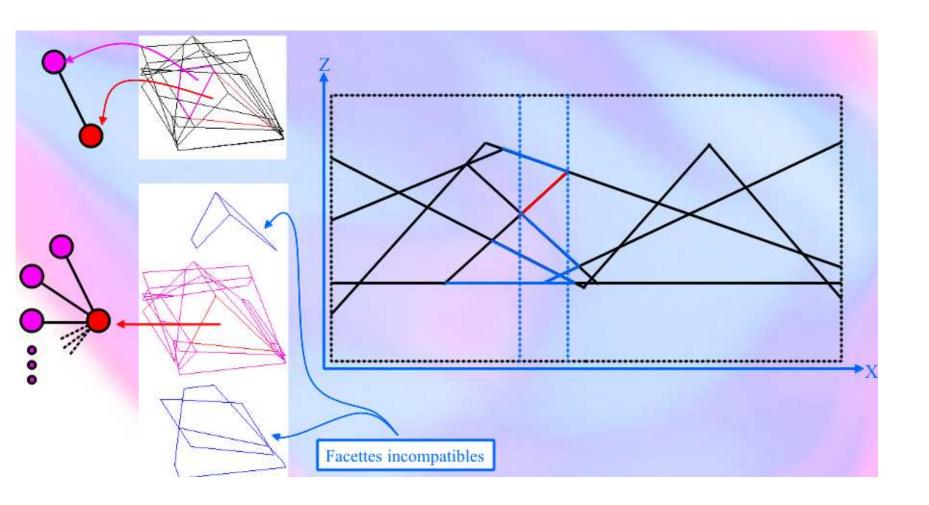


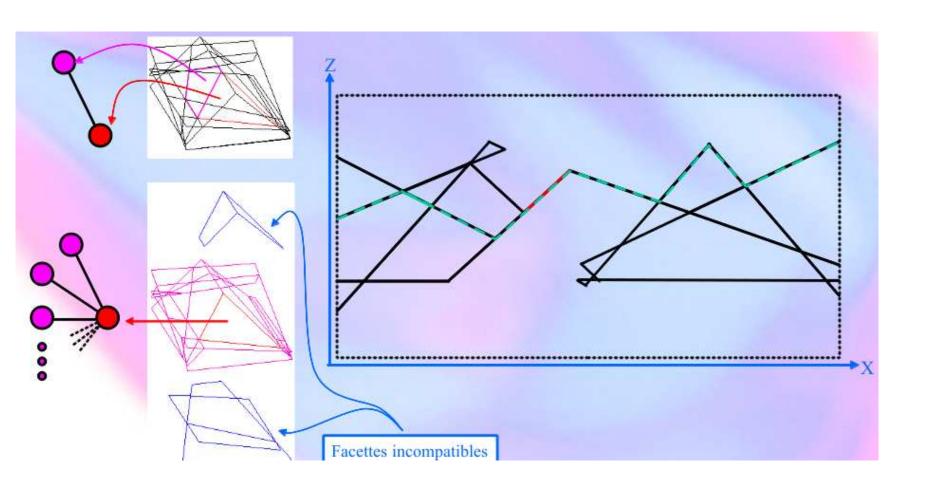


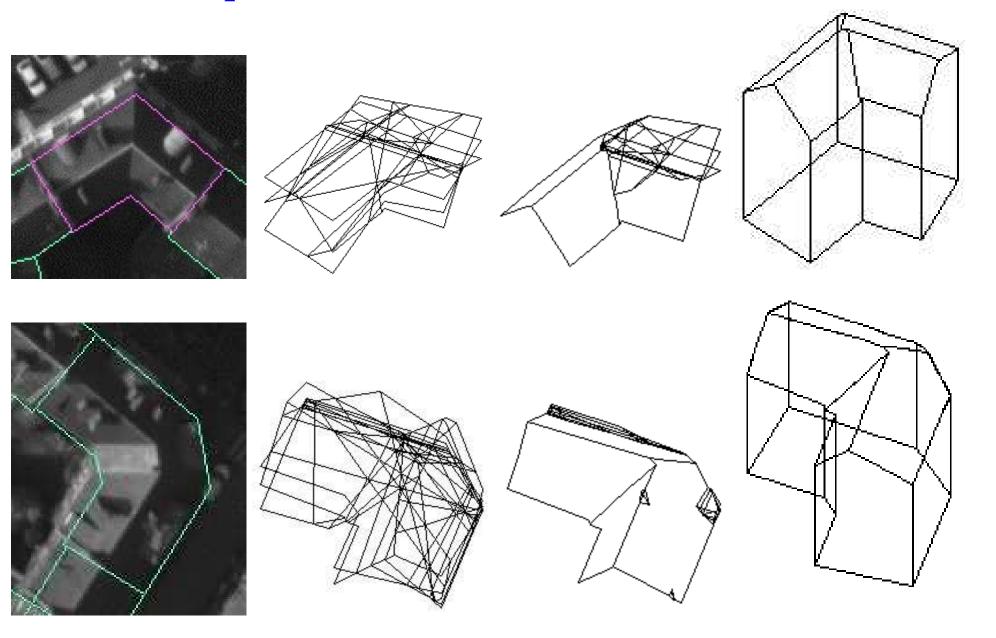












Overview

1. Definitions and representation models

- 2. Single graph methods
 - Segmentation or labeling and graph-cuts
 - Graphs for pattern recognition

- 3. Graph matching
 - Graph or subgraph isomorphisms
 - Error tolerant graph-matching
 - Approximate algorithms (inexact matching)

Graph matching

Correspondance problem:

- Graph(s) of the model (atlas, map, model of object)
- Graph built from the data
- Graph matching:

$$G = (X, E, \mu, \nu) \quad \rightarrow? \quad G' = (X', E', \mu', \nu')$$

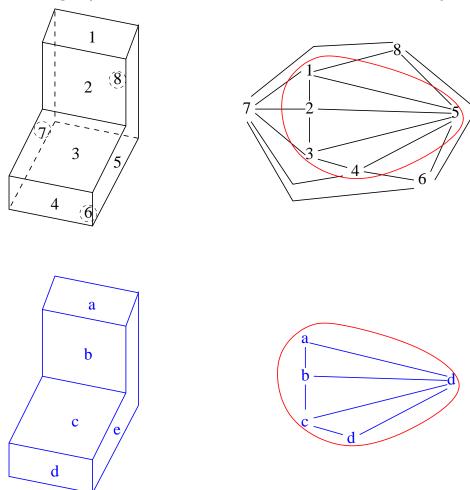
Graph isomorphism: bijective function $f: X \to X'$

- $\mu(x) = \mu'(f(x))$
- $\forall e = (x_1, x_2), \ \exists e' = (f(x_1), f(x_2)) \ / \ \nu(e) = \nu'(e')$ and conversely

Too strict ⇒ isomorphisms of sub-graphs

Sub-graph isomorphisms

• There exists a sub-graph S' of G' such that f is an isomorphism from G to S'

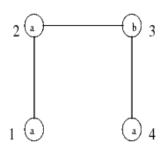


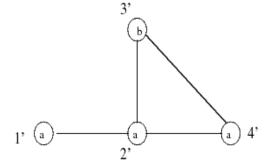
• There exists a sub-graph S of G and a sub-graph S' of G' such that f is an isomorphism from S to S'

Graph isomorphisms: searching the maximal clique

search of the maximal clique of the association graph

- principle: building of the association graph
- maximal clique: sub-graph isomorphism

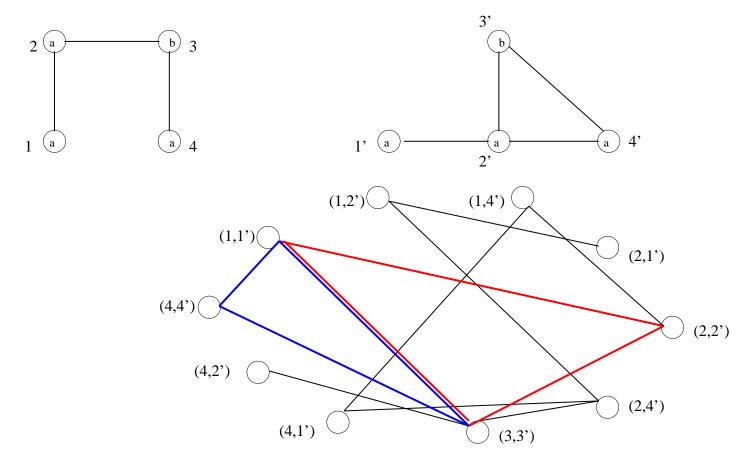




Graph isomorphisms: searching the maximal clique

search of the maximal clique of the association graph

- principle: building of the association graph
- maximal clique: sub-graph isomorphism



Sub-graph isomorphism: Ullman algorithm

- Principle: extension of the association set (v_i, w_{x_i}) until the G graph has been fully explored. In case of failure, go back in the association graph ("backtrack"). Acceleration: "forward checking" before adding an association.
- Algorithm:
 - matrix of node associations
 - matrix of future possible associations for a given set of associations matrice
 - list of updated associations by "Backtrack" et "ForwardChecking"
- Complexity: worst case $O(m^n n^2)$ (n ordre de X, m de X', n < m)

Overview

1. Definitions and representation models

- 2. Single graph methods
 - Segmentation or labeling and graph-cuts
 - Graphs for pattern recognition

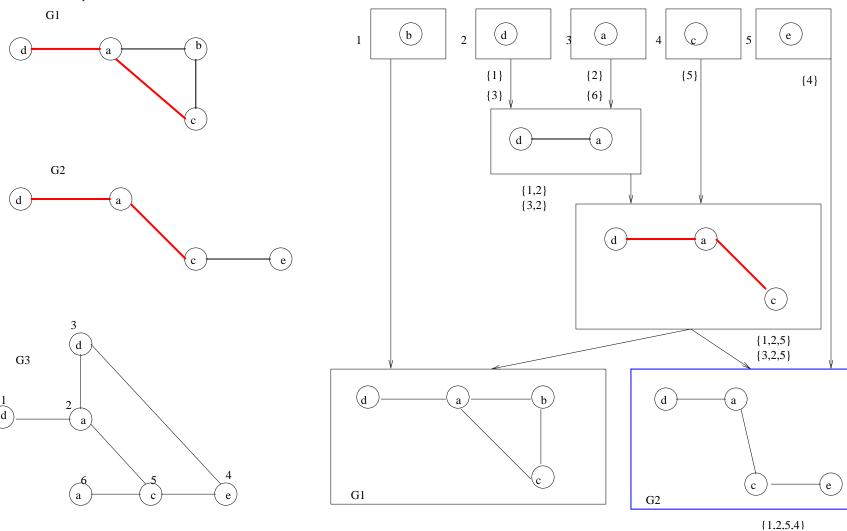
- 3. Graph matching
 - Graph or subgraph isomorphisms
 - Error tolerant graph-matching
 - Approximate algorithms (inexact matching)

Error tolerant graph-matching

- Real world: noisy graphs, incomplete graphs, distorsions
- Distance between graphs (editing, cost function,...)
- Sub-graph isomorphism with error tolerance: search of the sub-graph G' with the minimum distance to G
- Optimal algorithms: A*
- Approximate matching: genetic algorithms, simulated annealing, neural networks, probablistic relaxation,...
 - iterative minimistion of an objective function
 - better adapted for big graphs
 - problem of convergence and local minima

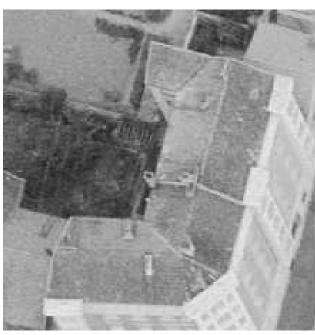
Decomposition in common sub-graphs

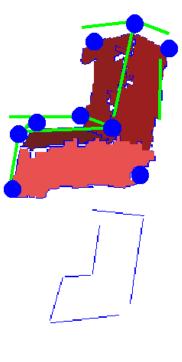
Messmer, Bunke

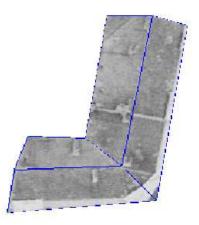


Example

3D reconstruction by graph matching between a graph (data) and a library of model graphs (IGN)

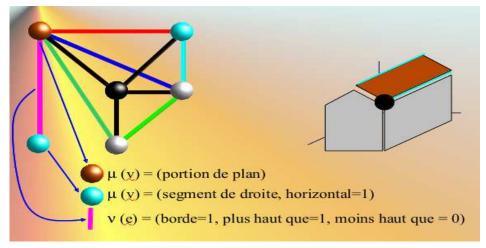


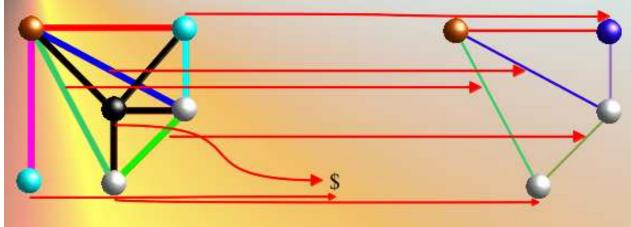




Example - building reconstruction

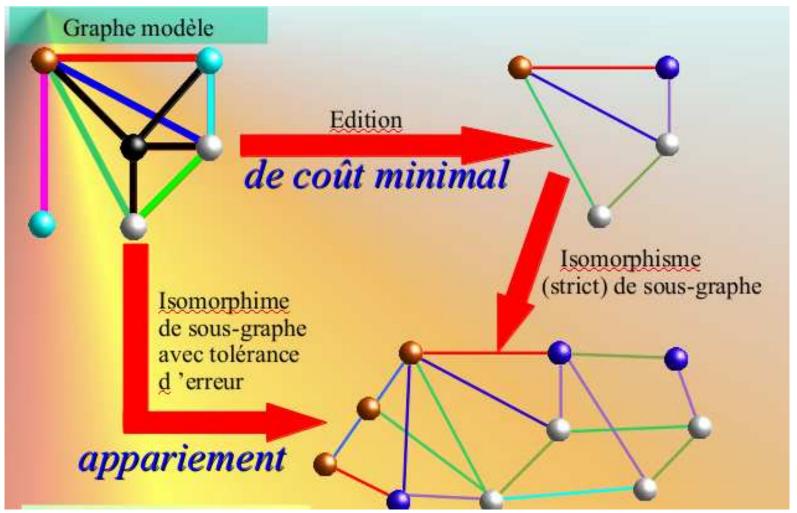
Model graph





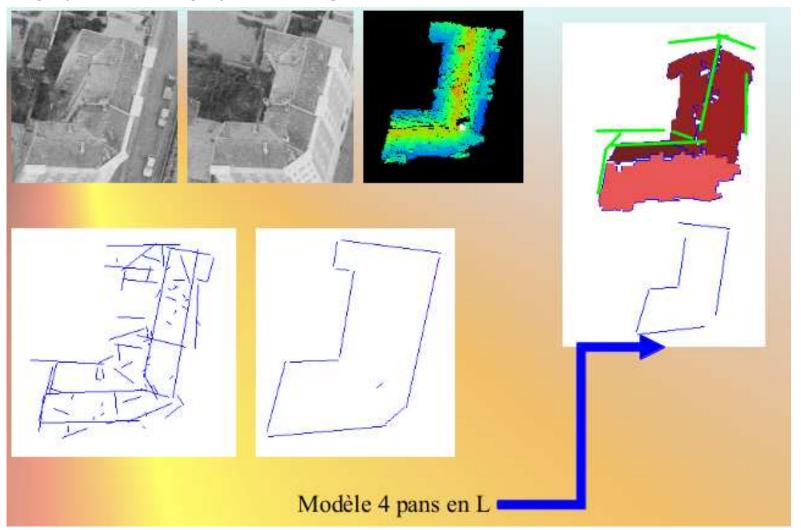
Example - building reconstruction

Model graph and data graph matching



Example - building reconstruction

Model graph and data graph matching



Overview

1. Definitions and representation models

- 2. Single graph methods
 - Segmentation or labeling and graph-cuts
 - Graphs for pattern recognition

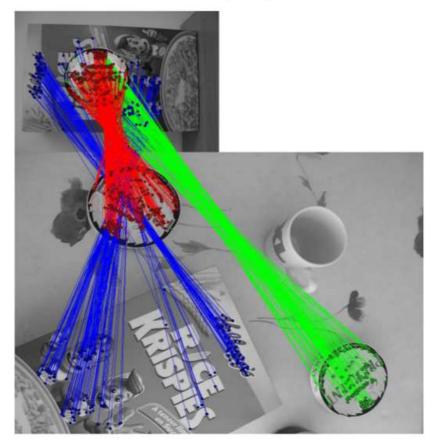
- 3. Graph matching
 - Graph or subgraph isomorphisms
 - Error tolerant graph-matching
 - Approximate algorithms (inexact matching)

Matching with geometric transformation

- Graph = representation of the spatial information
- Matching = computation of the geometric transformation
 - polynomial deformation
 - elastic transformation (morphing)
- Matching approaches:
 - translation: maximum of correlation
 - Hough transform (in the parameter space)
 - RANSAC method: select randomly a set of matching points, compute the transformation, compute the score (depends on the number of matched pairs for the transformation)
 - AC-RANSAC: RANSAC + a contrario framework reducing the number of parameters (NFA to be set)

Example - MAC-RANSAC (PhD Julien Rabin)

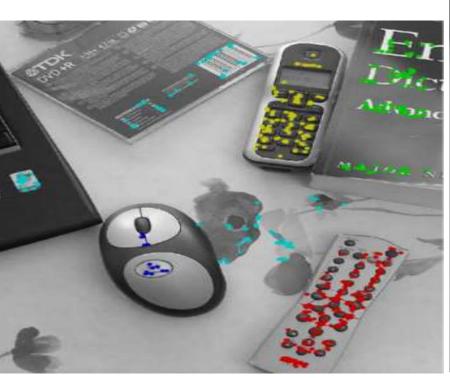
(a) Paire d'images analysée.



(b) Reconnaissance de chacun des objets superposés.

Example - MAC-RANSAC (PhD Julien Rabin)

(a) Paire d'images utilisée



Inexact matching

Optimization of a cost function

Dissimilarity cost beween nodes

$$c_N(a_D, a_M) = \sum \alpha_i d(a_i^N(a_D), a_i^N(a_M)) \quad \sum \alpha_i = 1$$

Dissimilarity cost between edges

$$C_E((a_D^1, a_D^2), (a_M^1, a_M^2)) = \sum \beta_j d(a_j^A(a_D^1, a_D^2), a_j^A(a_M^1, a_M^2)) \quad \sum \beta_j = 1$$

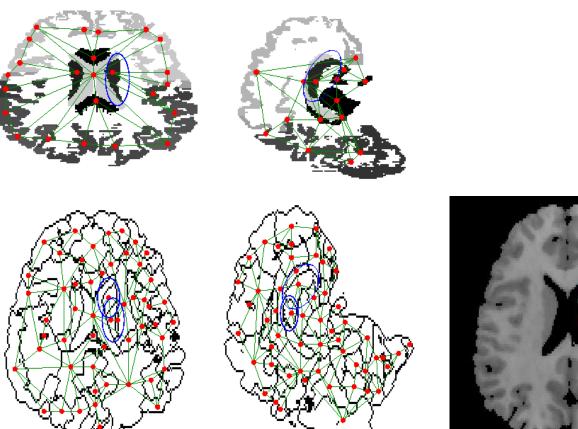
Matching cost function h:

$$f(h) = \frac{\alpha}{|N_D|} \sum_{a_D \in N_D} c_N(a_D, h(a_D)) + \frac{1 - \alpha}{|E_D|} \sum_{(a_D^1, a_D^2) \in E_D} c_E((a_D^1, a_D^2), (h(a_D^1), h(a_D^2)))$$

Optimization methods:

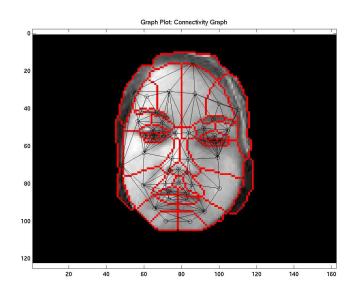
- Tree search
- Expectation Maximization
- Genetic algorithms
- ...

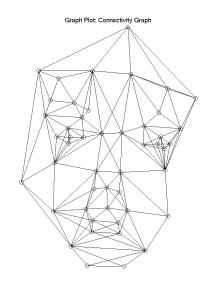
Example: brain structures (A. Perchant)

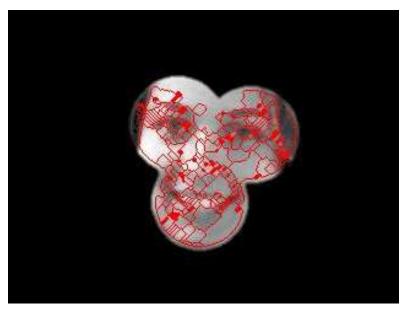




Example: face structures (R. Cesar et al.)







Spectral method for graph matching (1)

Optimization of a cost function

- weighted adjacency matrix M
- nodes = potential assignments a = (i, i') (can be selected by descriptor matching)
- edges = M(a,b) agreement between the pairwise matchings a and b (geometric constraints)
- correspondance problem = finding a cluster C of assigments maximizing the inter-cluster score $S=\sum_{a,b\in C}M(a,b)$ with additional constraints
- cluster C = vector x (with x(a) = 1 if $a \in C$ and 0 else)

$$S = \sum_{a,b \in C} M(a,b) = x^T M x$$

$$x^* = argmax(x^T M x)$$

+ constraints (one to one mapping)

Spectral method for graph matching (2)

Search of the optimal cluster

- number of assigments
- inter-connection between the assignments
- weights of the assignment

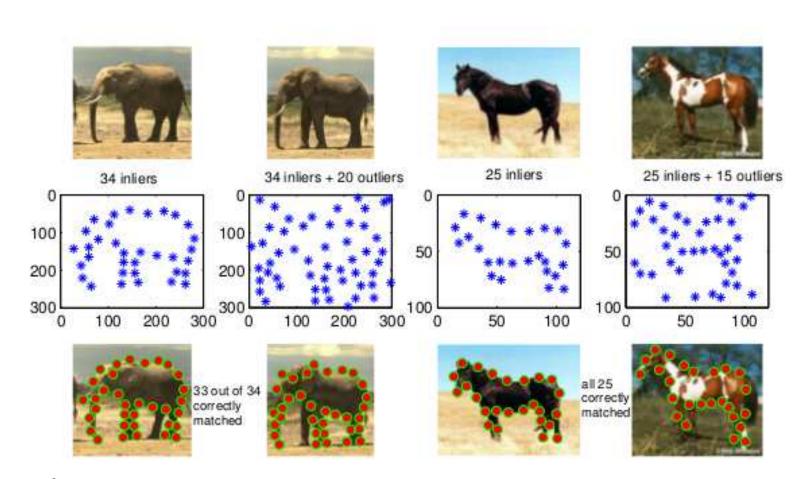
Spectral method: relaxation of the constraints on x

$$x^* = principal \ eigenvector(x^T M x)$$

+ introduction of the one-to-one correspondance constraints (iterative selection of $a^* = argmax_{a \in L}(x^*(a))$

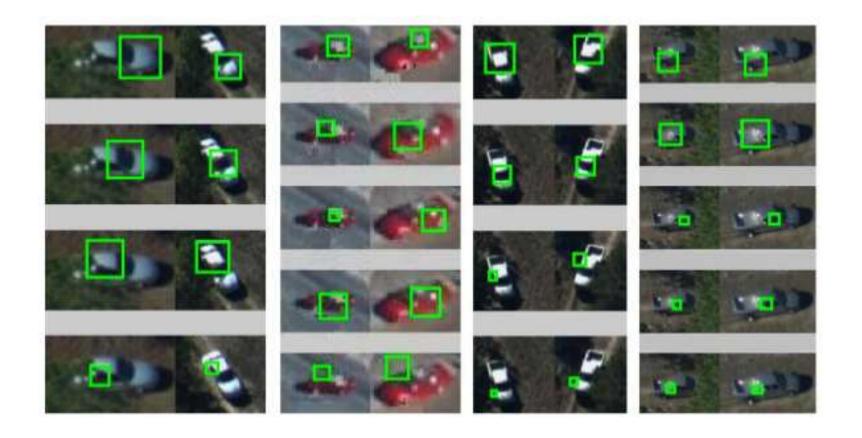
and suppression in x^* of the incompatible assignments)

Example: point matching (Leordeanu, Hebert)

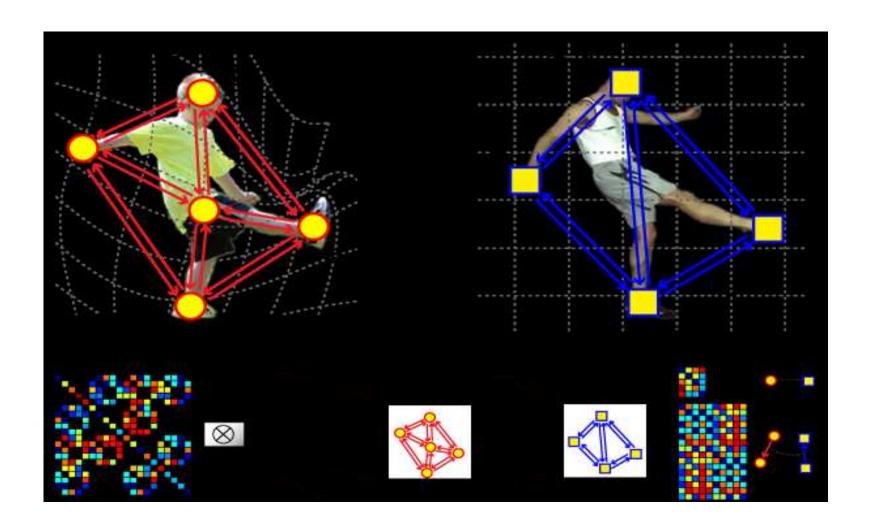


$$d_{ab}=rac{d_{ij}+q}{d_{i'j'}+q}$$
 $lpha_{ab}=angle$ between the matchings (with centring and normalization) $M(a,b)=(1-\gamma)c_{lpha}+\gamma c_{d}$

Example: feature matching (Leordeanu, Hebert)

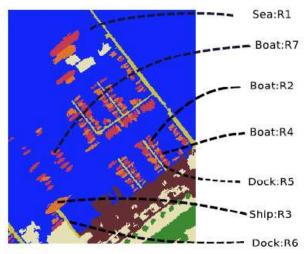


Example:factorized graph matching (Zhou, de la Torre)

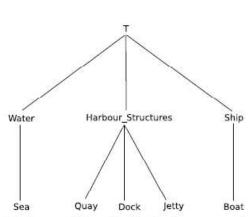


Spatial reasoning in images

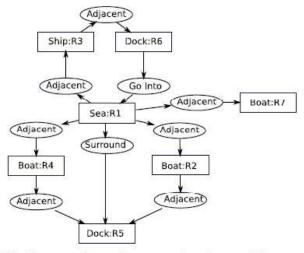
(a) Example image.



(b) Labeled image: The blue regions represent the sea, the red and orange represent ships or boats and the yellow regions represent the docks.

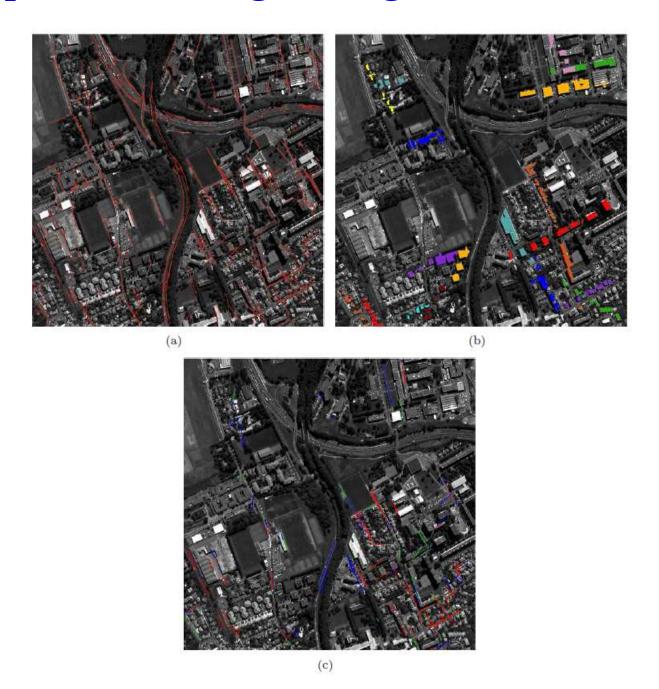


(c) Concept hierarchy T_C in the context of harbors.



(d) Conceptual graph representing the spatial organization of some elements of Figure 5.8(b).

Spatial reasoning in images



References

Bibliography

- Factorized graph matching, Zhou and de La Torre, IEEE PAMI, vol.15, num.11, 2015
- A spectral technique for correspondence problems using pairwise constraints, Leordeanu and Hebert, ICCV, 2005
- Learning hierarchical features for scene labeling, Farabet, Couprie, Najman, LeCun, IEEE PAMI, 2015
- Alignement and parallelism for the description of high resolution remote sensing images, Vanegas, Bloch, Inglada, IEEE TGRS, 2013
- A statistical approach to the matching of local features, Rabin, Gousseau, Delon,
 SIAM Imaging science, 2009