
PHD THESIS PROJECT

New approaches for non-linear blind source separation, with application to remote sensing data

1. Context
Blind source separation (BSS) [2] is a powerful machine learning paradigm with a wide range of

applications such as remote sensing [14] and biomedical imaging [15]. Generally speaking, BSS aims
at decomposing a given data set into unknown elementary signals to be recovered, generally referred
to as the sources.
Because it is simple and easily interpretable, many works [2] have focused on the linear mixing model
(LMM), which assumes that the ith data set sample x̄i ∈ Rm (i ∈ [[n]] = {1, 2, . . . , n}) has been
physically generated by a linear process

x̄i =
r∑

k=1

hkiwk + ni,

where wk ∈ Rm is the kth source (k ∈ [[r]]) and hki is the associated mixing coefficient in the ith
(mixed) observation. The vector ni accounts for any additive noise. The goal of BSS is to recover,
from the sole knowledge of the x̄i (i ∈ [[n]]), both the sources wk (k ∈ [[r]]) and the hki coefficients
(k ∈ [[r]], i ∈ [[n]]) that generated the data.
As an infinity of spurious solutions exists, BSS is an ill-posed problem [2], calling for additional
constraints on wk and hki to reduce the number of spurious solutions. The focus will be here on
nonnegativity constraints, akin to nonnegative matrix factorization (NMF) [9]. More specifically, this
PhD will focus on the subclass of near-separable NMF [1], for which the problem can be solved in
a polynomial time with weak indeterminacies. This subclass corresponds to data sets in which each
source appears purely in at least one data sample. Identifying the sources then boils down to finding
among the x̄i (i ∈ [[n]]) which ones are approximately equal to some sources wk (k ∈ [[r]]). Building on
this, several provably robust algorithms have been proposed, that is algorithms which are proved to
recover the sources having generated the data set [9].

Application : hyperspectral unmixing A typical application of BSS to remote sensing is the hy-
perspectral (HS) unmixing problem. HS images can be seen as a generalization of RGB images, since
they measure the energy in a high number m of wavelength bands (m = 3 for RGB images). Therefore,
a whole spectrum xi is acquired for each of the n pixels. Nevertheless, the spatial resolution of HS
images is usually low (n small). Thus, when HS imaging systems are embedded in a plane or a satellite
in order to perform earth monitoring, each pixel usually corresponds to several square meters on the
floor, making that several materials (e.g. water, earth, stone...) of the scene are usually present in the
pixels [10]. Consequently, the spectrum xi measured in each pixel does not correspond to the spectra
wk of the single materials, but rather to a mixture of them, calling for BSS techniques to unmix
them ; see Fig. 1 for a concrete example. Note that in the HS context, the near-separable assumption
amounts to assume that for each material, there is at least a pixel in which this material appears purely.



Figure 1. Illustration of BSS for HS unmxing. The data set, acquired over a coastal scene, is
constituted of two materials : water and soil. The spectrum measured at each pixel of the cube is
here assumed to be a linear mixture of the soil and water spectra. BSS aims at finding, in a blind
fashion, the spectrum of each material wk and the concentration h1i of each material in each pixel
i ∈ [[n]].

2. General objective of this PhD
In various applications such as HS unmixing, the LMM is unfortunately only a first-order

approximation of non-linear mixing processes [4]. Therefore, linear-quadratic (LQ) models sometimes
better account for the physical mixing processes by including termwise products of the sources [4],
which writes as

x̄i =

r∑
k=1

hkiwk +

r∑
p=1

r∑
l=p

βipl(wp �wl) + ni. (1)

In (1), the linear contribution associated to LMM is complemented by a set of second-order interactions
wp �wl between the sources, where � denotes the Hadamard product and βipl is the amount of the
interaction wp � wl within the ith observation. Of particular applicative interest is the Nascimento
[4] model, consisting of (1) with the two additional constraints :

r∑
k=1

hki +

r∑
p=1

r∑
l=p

βipl = 1 for i ∈ [[m]], (sum-to-one constraint)

wk ≥ 0, hki ≥ 0, βipl ≥ 0 for k, p, l ∈ [[r]], i ∈ [[n]] (nonnegativity constraints).

(2)

Unfortunately, contrary to linear BSS, much less work has been devoted to the development of provably
robust LQ near-separable algorithms. In fact, we are only aware of our recent work [12], where we
unfortunately also showed that the conditions ensuring the proposed SNPALQ algorithm robustness
were quite restrictive in practice. The goal of this PhD is therefore to investigate several
promising research paths for LQ near-separable provably-robust BSS.

3. Detailed content of the PhD
To tackle the LQ near-separable BSS problem, some research directions are presented into the

three following sections : section 3.1 proposes to focus on the Nascimento mixing model, both by
extending the provably robust method we proposed in [13] and introducing new ones. Section 3.2
rather delves on studying different mixing models than the Nascimento one. Lastly, Section 3.3 aims
at applying the developed methods to important real-life applications, such as hyperspectral unmixing.



As a side remark, the proposed research directions are mostly independent, making that any difficulty
to accomplish one of them should not have high repercussions on the other ones.

3.1. New developments for tackling the Nascimento model
When dealing with the LMM, three main families of provably-robust near-separable NMF

algorithms exist [9] : (i) greedy algorithms, (ii) brute-force algorithms, and (iii) optimization-based
approaches (self-dictionary). So far, only greedy (i) and brute-force (ii) algorithms have been extended
to near-separable LQ Nascimento mixtures, and these extensions have limitations. The objective of
the first part of this PhD is to bypass these issues through two complementary approaches :

— Improving existing greedy LQ-NMF methods (i) using robust-to-outliers approaches : a first
possibility is to improve SNPALQ, the LQ greedy algorithm we proposed in [13]. Specifically,
when the recovery conditions of SNPALQ algorithm are not met, some observations can
erroneously be extracted and be spuriously considered as sources by the algorithm. To reduce
the number of such spurious sources, an option could be to break the fully sequential (or
greedy) scheme of SNPALQ by enabling the algorithm to discard some erroneously-extracted
observations, in a similar way to what is done in [8] in the context of the LMM. On the
other hand, the work of [8] rises open questions (such as how to fully take into account the
nonnegativity constraints), which might first be tackled before extending the algorithm to LQ
mixtures.

— Tackling near-separable LQ BSS through optimization based approaches (iii) : another option
is to extend the algorithms of family (iii) to LQ mixtures. The advantage is twofold : first,
compared to family (i), the conditions guarantees could be made milder than with the current
SNPALQ. Second, LMM algorithms of family (iii) jointly consider the observations in the data
set, in contrast to brute-force algorithms (ii). Therefore, they usually lead to better practical
results. Consequently, it can be conjectured that extending family (iii) to LQ mixtures would
outperform the only current LQ brute-force algorithm (iii) [12].

3.2. Proposing new provably robust LQ algorithms for other LQ models
The above part dealt with the Nacimento model, consisting in mixtures of the form (1) with

constraints (2). In contrast, this part aims at tackling different LQ models, which, depending on the
application at hand, might be more relevant than the Nascimento one [3]. Although this PhD will not
be restricted to it, we here take as an example the Fan model [7], which has been well used in the
context of hyperspectral unmixing [4]. The mixing coefficients are then supposed to have the specific
form βipl = hpihpl, leading to the following mixing model :

x̄i =
r∑

k=1

hkiwk +
r∑

p=1

r∑
l=p

hpihpl(wp �wl) + ni, for i ∈ [[1, n]],

with wk ≥ 0, hki ≥ 0 for k ∈ [[r]], i ∈ [[n]] and

r∑
k=1

hki = 1 for i ∈ [[n]].

(3)

The rationale is that if a source is absent in a given observation, it cannot (quadratically) interact with
the other ones. To the best of our knowledge, no provably robust LQ near separable BSS algorithm
exists for the Fan model. The second part of the PhD objectives is thus to fill this gap. For instance,
a first step could be to adapt SNPALQ to the constraint βipl = hpihpl. Nevertheless, attention must
be paid to the fact that the geometric interpretations of the Naciemento and Fan models are different
(see Figure 2), which might jeopardize SNPALQ separation quality and call for the development of
another algorithm.



Figure 2. Scatter plot of two LQ near-separable mixtures following (left) the Nascimento and (right)
the Fan models. Here, m = 2, r = 3, n = 50000. Each observation xi, (i ∈ [[n]]]] is represented as a blue
point. The red circles correspond to the sources, and the green ones to their second-order products. As
can be seen, the geometric interpretations of the two mixing models are quite different. In particular,
with the Nascimento model, the sources correspond to the vertices of a polytope comprehending all
the observations. This geometric interpretation, which is at the basis of SNPALQ, is not anymore true
for complicated Fan mixings, calling for a new algorithm.

3.3. Application to hyperspectral remote sensing imaging
The developed algorithms should in particular improve HS data unmixing. As such, they will be

applied on real data sets ; for instance, on the ones acquired by the AVIRIS, APEX or HyMap sensors 1.
Specifically, it has been well established [14] that LQ mixing models (1) generally outperform linear
models on data sets captured on 3-dimensional scenes, in which non-linearities are introduced by
light multiple scatterings. In this PhD, the two following main HS unmixing applications could be
investigated, among others :

— Urban environment monitoring [14, 11], in which multiple scattering stems from the presence
of high buildings. The interest is here to better control the increasingly fast urban environment
development. Better city planning enables in turn the improvement of human being life quality,
as well as sustainable development, through for instance the control of the evolution of vegetated
areas in urban environments [16].

— Vegetation monitoring [7, 3], in which multiple light scattering can be induced, among others, by
the tree layered structure. Vegetation monitoring has a broad interest : non-linear HS was used
in [17] to determine, from the WorldView-2 satellite data, the evolution of vegetation health in
the Antartic region, which is related to the impact of global warming. As another example, HS
unmixing is used in [6] for change detection in forests induced by fires.

Beyond applying the developed methods on the above applications, LQ models can also be used for
defense (see [5] in which coastal monitoring is performed) and also appear in different contexts than
3-dimensional scenes (see for instance intimate mixtures [4] in rocks constituted of closely distributed
different minerals). Therefore, new fields of application of the proposed methods could be explored.
Lastly, working on real data sets might also rise interesting methodological questions, as the LQ mixing
model could be perturbed by further non-linearities, such as spectral variabilities.

4. Working context
This work is intended to be done in collaboration between several members of different institutions

and countries :
— From Télécom Paris (France) : The project will be conducted under the supervision of

Christophe Kervazo (christophe.kervazo@telecom-paris.fr) and Florence Tupin, within the

1. https ://aviris.jpl.nasa.gov/index.html ; https ://earth.esa.int/web/eoportal/airborne-sensors/apex ; https ://air-
bornescience.nasa.gov/instrument/HyMap



IMAGES group, at the Telecom Paris engineering school. The IMAGES group has proposed
several major contributions in the context of remote sensing and currently aims at developing
a research axis around the topic of hyperspectral imaging.

— From University of Mons (Belgium) : The work is expected to be performed in collaboration
with Nicolas Gillis, who is a reknown expert in the field of near-separable NMF.

5. Candidate
The candidate should have a Master 2 degree (or equivalent) and an excellent academic curriculum.

He/she should have a good knowledge in signal/image processing and mathematics (especially, linear
algebra). Knowledge in convex optimization is a plus. Ideally, Matlab programming language should
be mastered.
The candidate will acquire an expertise in signal processing (in particular, of multi-valued data), which
is valuable in many fields : remote sensing, astrophysics, text-mining...
Contact must be taken with Christophe Kervazo (christophe.kervazo@telecom-paris.fr) before April
20th, 2021.

6. Supervisors
— Christophe Kervazo received the Supélec (France) engineering degree in 2015, and the master

of science in Electrical and Computer Engineering from Georgia Institute of Technology (USA)
in 2016. From 2016 to 2019, he was PhD student in the CosmoStat group at CEA Saclay
(France), where he worked on the optimization framework for sparse blind source separation,
as well as non-linear component separation. In Mons (Belgium), he then worked as a post-
doctoral researcher, under the supervision of N. Gillis, on the extension of Nonnegative Matrix
Factorization to Linear-Quadratic mixture unmixing. He is currently an Assistant Professor
(mâıtre de conférences) at Télécom Paris (France), in the IMAGES group. More details can be
found at https://sites.google.com/view/christophekervazo/.

— Florence Tupin research work is dedicated to the development of remote sensing methods for
image analysis, processing and interpretation. She has in particular worked on SAR images. She
published more than fifty articles in the IEEE Transactions on Geoscience and Remote Sensing
(TGRS) and IEEE Transactions on Image Processing journals, and more than fifty conference
articles. She co-received the best article prize of IEEE TGRS in 2016, the best student article
at ICIP in 2010. The PhD candidates she supervised have obtained several PhD prizes. More
details can be found at https://perso.telecom-paristech.fr/tupin/.
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