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Abstract— The resolution achieved by current synthetic
aperture radar (SAR) sensors provides a detailed visualization
of urban areas. Spaceborne sensors such as TerraSAR-X can
be used to analyze large areas at a very high resolution.
In addition, repeated passes of the satellite give access to temporal
and interferometric information on the scene. Because of the
complex 3-D structure of urban surfaces, scatterers located at
different heights (ground, building facade, and roof) produce
radar echoes that often get mixed within the same radar cells.
These echoes must be numerically unmixed in order to get a
fine understanding of the radar images. This unmixing is at
the core of SAR tomography. SAR tomography reconstruction
is generally performed in two steps: 1) reconstruction of the
so-called tomogram by vertical focusing, at each radar resolution
cell, to extract the complex amplitudes (a 1-D processing) and
2) transformation from radar geometry to ground geometry
and extraction of significant scatterers. We propose to per-
form the tomographic inversion directly in ground geometry in
order to enforce spatial regularity in 3-D space. This inversion
requires solving a large-scale nonconvex optimization problem.
We describe an iterative method based on variable splitting
and the augmented Lagrangian technique. Spatial regularizations
can easily be included in this generic scheme. We illustrate,
on simulated data and a TerraSAR-X tomographic data set,
the potential of this approach to produce 3-D reconstructions
of urban surfaces.

Index Terms— 3-D reconstruction, compressed sensing (CS),
dense urban areas, inverse problems, TerraSAR-X, tomographic
synthetic aperture radar (SAR) inversion.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) imagery is a powerful
modality for the observation and the interpretation of

natural and man-made areas. The existing diversity of SAR
spaceborne sensors, with their different spatial and temporal
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resolutions, has given rise to numerous applications. They
provide useful information for the monitoring of large areas
for man-made changes, natural disasters, or displacement of
the ground. Moreover, depending on the operating bandwidth,
the radar wave can penetrate some environments (vegetation
and ice) and provide information about their structure or the
presence of underneath objects [1]. Over urban areas, stacks
of coregistered high-resolution SAR images can be jointly
processed to unmix SAR echoes from scatterers at different
3-D locations and thus reconstruct the 3-D reflectivity of the
scene. The 3-D representation of cities has many applications
such as crisis management, movement monitoring, or change
detection.

The spatial resolution of modern sensors such as
TerraSAR-X or COSMO-SkyMed can be better than one
meter, which is much finer than the average height of observed
buildings in city areas. At these resolutions, urban surfaces
(facades and roofs) can be recovered. However, as the dense
urban scenes contain a high number of backscattering objects,
scatterers from different structures are projected within the
same radar resolution cell. The actual tridimensional location
of these scatterers can be reconstructed by combining images
from repeated passes with slightly different angles of obser-
vation, by SAR tomography. SAR tomography can be seen
as an extension of the SAR focusing on three dimensions,
and the separation of scatterers projected within a given radar
cell being performed, thanks to a synthetic aperture formed by
different trajectories of the SAR antenna in the tomographic
stack [2], [3].

In the ideal case of equispaced trajectories, focusing on
the direction orthogonal to the line of sight can be simply
performed by the application of the inverse discrete Fourier
transform. The resolution of this focusing is inversely pro-
portional to the maximal orthogonal baseline. Increasing the
number of tracks within this maximal orthogonal baseline
improves the sampling, and hence reduces height ambiguities.
However, the vertical resolution is generally much worse
compared to the resolution in azimuth and range directions.
Moreover, the baselines are generally irregularly distributed,
which produces sidelobes higher than expected and degrades
the interpretation of the reconstructed volume. Several spectral
superresolution techniques have been introduced to overcome
these phenomena [4], [5], leading to satisfying results on
homogeneous areas dominated by volumic scattering such as
forests or landscape areas [1], [6]. These estimators rely on the
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analysis of the covariance matrix. The estimation of this matrix
is not a trivial task because it involves some form of spatial
averaging [7] and becomes very challenging in dense urban
areas due to the high spatial heterogeneity [8], [9]. Rather
than exploiting the covariance matrix, some works on very
high-resolution data use directly the time-domain backpro-
jection of the signal [10]. When backscattering elements are
discrete rather than continuous, the well-known compressed
sensing (CS) approach can produce superresolved tomographic
reconstruction by performing the backprojection of the data
under sparsity constraints [11], [12]. Since this approach does
not require the estimation of a covariance matrix, it involves no
spatial filtering and is more effective at reconstructing multiple
closeby point scatterers.

CS appears to be well suited to the inversion of stacks of
tomographic SAR images obtained over dense urban areas.
It can, however, be criticized for its lack of spatial regu-
larity: pixels are processed independently while many urban
structures are organized in lines or planes. Including a spatial
regularization can be expected to improve the robustness to
noise, reduce the ambiguities, and better preserve the signal
coming from the buildings. Moreover, the sparse estimation
step of the signal is generally hard to tune. Due to the
high dynamic of SAR images, it often appears that either
weak parts of the signal are suppressed during the estimation
or outliers are detected. To refine the results, the volume
reconstructed with CS is generally postprocessed by estimating
the number of scatterers in order to select only the most
significant points (see [13], [14]). The result is then a set of
discrete points defined by their 3-D localization and complex
reflectivity. As the distribution of the reflectivity in dense
urban configurations is hard to model, this approach often
fails to select points with low reflectivities. Close to CS,
the recent FAST-support estimation general likelihood ratio
test detector [15] avoids postprocessing selection by applying
a suboptimal statistical test taking into account the distribution
of the data based on an approximated �0-norm minimization.
Even if it does not take into account the geometry of the scene,
the structure of the data can be more accurately represented
than with conventional CS.

A recent strategy to enhance the discrete reconstructions
obtained with CS consists of postprocessing the SAR tomo-
graphic (postprocessed) points clouds. It is mainly based
on shape detection and surface fitting using priors on the
urban geometry. It has been shown to recover some of
the information lost during point selection and even to fill
missing parts of the scene [16], [17]. Those approaches give
satisfying geometrical 3-D modeling of urban environments
but lack a direct connection to the data. In this paper,
we consider an alternative approach that enforces spatial
regularity during the tomographic inversion step. Since the
output of our method is a sparse volume, a discrete set of
points can be extracted and any pipeline already designed to
process tomographic point clouds can possibly be applied as a
postprocessing.

In this paper, we present a new algorithm that performs
the tomographic 3-D inversion of a stack of SAR images
combining sparse priors as in CS and geometrical ones using

a ground coordinate back-projection operator as in [10]. To
derive our algorithm, we account for two inherent character-
istics of SAR imaging: the geometrical distortions induced
by the geometry of acquisition and the use of single-look
complex (SLC) data. First, we present, in detail, the concept
of SAR tomography and the used notations (Section II). Then,
we address the problem of using priors corresponding to the
natural properties of the urban environment. Section III is
dedicated to solving the tomographic inverse problem, which
is a nonconvex and high-dimensional optimization problem.
In Section IV, we illustrate that our algorithm performs well
both on synthetic data with controlled sensor parameters, scene
composition, and geometry and on real data. The quality of
our results is evaluated using the accuracy and completeness
defined in [18] and [19]. We use a stack of 40 TerraSAR-X
images of the city of Paris to test our algorithm on real
data. The results are evaluated on some buildings using a
3-D modeling of the scene given by the French Geographic
Institute (IGN) as ground truth.

II. SAR TOMOGRAPHY

A. Forward Model for SAR Tomography in Radar Geometry

A SAR tomographic stack consists of N SAR SLC images
acquired in the interferometric configuration. Each SAR image
of the stack corresponds to a different trajectory of the
sensor over the scene. We consider all images to have been
coregistered with respect to a master image in a preprocessing
step. To simplify the notations, in the following, this master
image will correspond to the first image of the stack. The
geometry of a simple 3-D scene and of the sensor trajectories
is illustrated in Fig. 1.

The complex value vn(x, r) obtained at pixel coordinates
(x, r) after SAR synthesis of the nth image corresponds the
convolution of the complex 3-D reflectivity with the point
spread function (PSF) of the sensor [2], [20]

vn(x, r) =
∫∫∫

f (x − x �, r − ρn;y,z)u(x, y, z)

×exp

(
−4 jπ

λ
ρn;y,z + jϕatmo

)
dx �dydz + �. (1)

To better identify real-valued and complex-valued variables in
the description of our algorithm (Section III), we underline
all complex-valued variables throughout this paper. Also,
the x- and azimuth axes coincide to avoid complicated nota-
tions without loss of generality. Here, x and r stand for the
discrete coordinates of the focused data, and ρn;y,z is the
distance between the nth sensor and a scatterer at a position
(y, z) for a given x . ϕatmo is the phase shift corresponding
to the atmospheric phase screen (APS). f corresponds to the
PSF and depends on the sensors and the processing of the
data. � is a white additive Gaussian noise.

In this paper, we will use two classical approximations in
SAR tomography. First, the PSF is substituted with a boxcar
function that may have a near-zero width depending on the
knowledge of the data. Then, to be in the same framework
as most of the other state-of-the-art tomographic approaches,
we use the interferometric images with respect to the master
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image as the input tomographic stack. The phase difference
is then approximated as a linear function of the elevation of
the scatterers [20]. To remove the APS contribution, we use
the method detailed by Ferretti et al. [21]. Without assuming
the movement of the scatterers, (1) becomes the sum of the
complex amplitudes scattered by all objects that project within
the resolution cell [11], [12], [20]

vn(x, r) =
∫

(y,z)∈�r

u(x, y, z)exp(− jξnh(y, z))dydz + �.

(2)

The r th radar resolution cell is defined by �r = {(y, z) |
r − δr/2 ≤ ρ1;y,z ≤ r + δr/2 and z ≤ zmax(y)} with δr

the step in range and zmax(y) is the maximum height for a
point at (x, y) location to be illuminated by the radar. The
chosen approximations allow us to use classical algorithms to
compensate the APS and to reduce the size of the operators
we will then define to perform the inversion. Here, as we are
also interested in a comparison with other SAR tomographic
estimators, we chose to keep this classical interferometric
framework. Moreover, using directly (1) can also be done but
the phase calibration may be harder.

We denote by x , y, and z the coordinates of a reflector in
3-D space and by x , r , and h its coordinates in radar space.
In (2), �r is the extension of the radar resolution cell along
the elevation direction h, u(x, y, z) is the complex reflectivity
of the scatterer located at position (x, y, z), and h(y, z) is
its elevation. The parameter ξn = (4πbn/λr) is the spatial
frequency associated with the sampling of the scene for each
baseline. bn is the baseline n and λ is the radar wavelength.
Random variable � models the complex additive white noise
due to thermal noise.

Consider a given radar resolution cell. We will drop, in the
following, the indices identifying the spatial location of that
cell. We form the vector u = �

u1 · · · u D

�T that collects
the complex reflectivities of all scatterers seen within the
same radar resolution cell and h = �

h1 · · · h D
�T is their

elevation. After discretization of (2), we can express v ∈ CN ,
the collection of SLC values in the tomographic stack at the
pixel of interest, as a linear combination of the complex signal
backscattered by each of the D scatterers

v = A(h)u + n (3)

where A(h) ∈ CN×D is the steering matrix. The dth column
[A(h)]d of A(h) corresponds to the steering vector a(hd)
associated with the elevation of the dth scatterer

[A(h)]d=a(hd )=(exp(− jξ1hd ) · · · exp(− jξN hd))T . (4)

B. Spectral Analysis in SAR Tomography

Many strategies exist to invert (3) in order to estimate the
heights h and reflectivities u. Most of them come from the
direction-of-arrival (DOA) literature and have been success-
fully used for SAR tomography on homogenous scenes such
as forest or ice. Nonparametric methods such as beamforming
or Capon filters are fast to implement and offer a good global
representation of the reconstructed scene [4], [5], [22], [23].

Parametric methods achieve superresolution by exploiting pri-
ors on the estimated data. In many cases, a limited number
of pointlike scatterers are assumed. When considering a given
number of such scatterers, the maximum likelihood (ML) esti-
mator can be applied to estimate the location and reflectivity
of each scatterer. Exact computation of the ML estimator
requires a prohibitive computation time when more than two
or three scatterers are considered because of the combinatorial
nature of the optimization problem. Suboptimal methods are,
therefore, generally used especially when dealing with big
images. MUSIC [24] is one of the most popular parametric
estimators used to estimate the position of a finite number
of sources. The localization of the D sources is obtained by
finding the steering vectors with the minimal norm in the
eigensubspace of R associated with the (N − D) smaller
eigenvalues. Since this approach is adapted, by construction,
to separate discrete scatterers, it is not well suited to the
reconstruction of continuous reflectivity profiles. In urban
areas, it offers fair performances when the reflectivity profiles
can be accurately represented by sparse distributions. The
pseudospectrum given by the inverse of the projection is
also sometimes used to analyze even continuous tomographic
profiles [25], [26]. Very similar to MUSIC, but derived as an
approximation of ML, weighting subspace fitting (WSF) [27]
methods are designed to achieve an even better resolution than
MUSIC. By using both the signal and the noise subspace, it has
been proven that WSF can be used to separate the distribution
of the leaves in a forest and an artificial target underneath [1].
All those methods require estimating the covariance matrix at
each pixel, which can be a very hard task in heterogeneous
regions such as dense urban areas. Since it takes at least N2

pixels to get a full-rank sample covariance matrix, the more
images in the tomographic stack, the stronger the spatial
filtering necessary to estimate the covariance matrices (hence,
the strongest the range and azimuth resolution loss).

C. Compressed Sensing in SAR Tomography

The use of CS for SAR tomography is recent. It is well
suited to the urban environment [28] as it does not require
to estimate R. The estimation of the reflectivities profile u
along the height direction, for a given SAR resolution cell,
is obtained by solving the following optimization problem:

min
u
�u�0 s.t. v = A(h0) u. (5)

As the vector of heights h is one of the unknowns, the eleva-
tion axis is sampled into D0 bins forming the array h0. The
solution to the combinatorial problem (5) can be approximated
using the classical convex relaxation of the �0-pseudonorm
into an �1-norm

û = arg min
u

1

2
�A(h0)u − v�22 + μ1�u�1 (6)

where μ1 is a Lagrange multiplier. Despite its very good per-
formances in urban areas, this approach has some drawbacks.
Indeed, the matrix A(h0) does not, in general, guarantee to
satisfy either the restrictive isometry property (RIP) or an
incoherence condition [13] required to obtain reconstruction
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Fig. 1. Configuration of the tomographic acquisition of a 3-D scene. The
scene is naturally described by the coordinate system (x, y, z), whereas the
data are described in the sensor coordinate system (x, r, h).

guarantees when using the relaxed problem (6). When choos-
ing a large number of samples D0 in the height direction in
order to achieve a superresolution, these conditions are largely
violated. RIP essentially indicates that any random submatrix
of A(h0) composed from D random columns of A(h0) is
nearly orthogonal, which preserves the energy of any D-sparse
vector u. The incoherence insures that a highly localized
signal gets spread over all the columns of A(h0), which
makes the reconstruction robust to random undersampling.
The consequences of the violation of RIP and incoherency
are the creation of outliers and/or multiple detections of the
same scatterer in adjacent positions.

In order to refine the results obtained via a sparse recon-
struction, one can include spatial priors that describe the urban
geometry. As illustrated in Fig. 1, when performing a tomo-
graphic inversion in the radar geometry, natural geometrical
properties (e.g., the predominance of vertical and horizontal
structures and of straight angles) are not straightforward to
express. Rather than using the radar frame (r, h), we suggest,
in this paper, to perform the tomographic inversion in the
ground frame (x, y, z) in order to include structural informa-
tion in the form of priors (i.e., regularization terms).

III. PROPOSED APPROACH: TOMOGRAPHIC INVERSION

WITH SPATIAL REGULARIZATIONS

A. Forward Model for SAR Tomography in Ground Geometry

In order to enforce some spatial smoothness, the tomo-
graphic inversion has to be performed globally in ground

coordinates. Rather than considering the collection of mea-
surements at a given radar pixel, from now on, the notations
u ∈ CNx .Ny .Nz and v ∈ CNx .Nr .N will, respectively, refer to
column vectors obtained by stacking all the values in the
3-D volume and all the values in the tomographic stack of
SAR images. Nx , Ny , and Nz are the number of voxels in
each direction in ground geometry, while Nr is the size of
SAR images in the range direction, and N is the number
of images in the tomographic stack. The linear operator
� ∈ C(Nx .Nr .N)×(Nx .Ny .Nz ) maps the volume of complex
reflectivities in 3-D space to the complex amplitudes in the
tomographic stack of SAR images (see Fig. 2). Since we chose
to align the x-axis and the azimuth, an element of � is defined
as

�i, j =

⎧⎪⎪⎨
⎪⎪⎩

exp(− jϕ) if xi = x j and

ri − δr

2
< ρ1;y j ,z j < ri + δr

2
0 otherwise.

(7)

where ϕ = ξi h(y j , z j ) is the phase shift due to the path
between voxel j with coordinates (x j , y j , z j ) and antenna i .
As in the previous equations, ρ1;y j ,z j corresponds to the
distance between antenna 1 (of the master image) and the
point with ground coordinates (y j , z j ). The size of a radar
pixel in the range direction is noted δr .

The construction of the matrix � is illustrated in Fig. 3.
Matrix � is sparse: only a few entries are different from zero
so that products of the form �u can be computed efficiently.

The observed SAR tomographic stack v can be modeled by
the following (complex-valued) linear model:

v = � u + � (8)

where � stands for the noise. This corresponds to a generaliza-
tion of the tomographic direct model (3) where we additionally
consider the geometric transformation from ground geometry
to SAR geometry and model at once the measurements for
all the pixels. In order to invert this tomographic model, it is
necessary to introduce some regularization terms.

B. Spatial Regularizations for Tomographic Inversion

It is often desired to reconstruct volumes with a discretiza-
tion in heights that are finer than the resolution given by the
synthetic aperture in the height direction (i.e., superresolution).
The inversion of (8) is, therefore, ill-posed (more unknowns
than measurements) and requires some regularization. In the
following, we denote R as the regularization function. Since
the intrinsic phase of a scatterer is typically modeled as
uniformly distributed and independent of one scatterer to
another, no specific regularization can be enforced on the
phase of our unknown complex reflectivities u. We define
the regularization R as a function of the modulus of u only.
The reconstruction of the volume of complex reflectivities û
is thus obtained by solving an optimization problem of the
general form

û = arg min
u

1

2
�� u − v�22 +R(|u|). (9)
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Fig. 2. Operator � performs a projection of voxels from the 3-D scene in ground geometry on the SAR tomographic stack.

To design the regularization function R, we need to select a
function that favors volumes of reflectivities |u| that are often
present in urban environments. Many different such functions
could be considered; we selected a function based on the two
following remarks.

1) The 3-D scene can be represented as a sparse volume.
Indeed a good reconstruction should retrieve only the
illuminated part of the buildings and of the ground. The
estimated volume is then mostly filled with zero intensity
voxels.

2) The illuminated structures are spatially smooth (contin-
uous surfaces: frontages, rooftops, and ground).

These remarks suggest the following regularization
function:
∀w ∈ R

Nx .Ny .Nz , R(w) = μx

2
�Dxw�22 +

μy

2
�Dyw�22

+μz

2
�Dzw�22 + μ�1�w�1 (10)

where the matrices Dx , Dy , and Dz stand for the finite
differences operators in the x-, y-, and z-directions, and
parameters μx , μy , μz , and μ�1 are the weights of each term.
The �1-norm favors vectors w with many zeros while the
terms with the finite difference operators enforce a spatial
smoothness. As μ�1 controls this behavior, it plays a crucial
role in the reconstruction.

In the urban environment, dihedral and trihedral structures
produce very strong echoes. When only an �1-norm is mini-
mized, it is hard to reconstruct at the same time very strong
scatterers and weaker scatterers on the ground or rooftops. The
role of the first three terms is thus to favor spatial smoothness
and hence preserve these scatterers whenever they are close
to other scatterers. In urban areas, most of the buildings are
supposed to show straight walls and then a natural direction
of elongation along the z-axis. Of course, the true orientation
of the objects is a priori unknown and it is most likely that
they may not always follow the x- and y-directions. However,
the conjoint minimization of the �1-norm of the reflectivity and
the square �2-norm of its gradient tends to favor sparse and

Fig. 3. Construction of the matrix �. The radar cell associated to each
position of the 3-D scene is computed as well as the phase term corresponding
to the distance between a point in 3-D space and an antenna.

continuous reflectivity profile. The obtained reconstructions
present then less outliers to the benefit of structural elements.

When reconstructing images of urban areas, we found that
it was impossible to find a value of the sparsity parameter
μ�1 that would both preserve the weakest scatterers and
successfully suppress sidelobes in areas with strong scatterers.
To improve the reconstructions, we introduced a spatially
variant regularization based on the square root of the estimated
intensity of the master image, which can be obtained using a
denoising algorithm such as nonlocal-SAR [7] or simply using
the average intensity depending on the configuration of the
acquisitions. We define the diagonal matrix as D�1 whose j th
diagonal entry is equal to the square root of the estimated
intensity at the corresponding azimuth and range coordinates
(i.e., such that the range r verifies r − (δr/2) < ρ1;y j ,z j <
r + (δr/2)). Equation (10) is then modified into

∀w ∈ R
Nx .Ny .Nz , R(w) = μx

2
�Dxw�22 +

μy

2
�Dyw�22

+ μz

2
�Dzw�22 + μ�11T D�1w (11)

where 1 is the vector of size Nx .Ny .Nz with each entry equal
to 1.
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Fig. 4. Illustration of the nonconvexity of spatial regularizations expressed
on the modulus of the complex reflectivities.

C. Optimization Algorithm for the 3-D Reconstruction

The minimization problem (9) is not easy. It is indeed
large scale (millions up to several billions unknowns) and
nonconvex. The nonconvexity is illustrated in a simple case
where the vector u has only two elements in Fig. 4: the spatial
smoothness favors vectors such that the modulus of each entry
is closed. Since the regularization is independent on the phase,
the minimum (for a fixed value of u1) corresponds to a set of
complex values with the equal modulus (the white circle drawn
in Fig. 4).

To solve the minimization problem (9), we use a variable
splitting approach in order to break down the problem into a
sequence of simpler problems. We introduce two new vectors:
f (complex-valued: f ∈ C(Nx .Ny .Nz )) and w (real-valued:
w ∈ R

+(Nx .Ny .Nz )). Problem (9) is formally equivalent to the
following constrained problem:

û = arg min
u

1

2
�� u − v�22 +R(w)

s.t.

⎧⎨
⎩

u = f

| f | = w.
(12)

To solve this constrained optimization problem, we apply the
method of multipliers [29], i.e., we look for a saddle point of
the augmented Lagrangian L defined by

L(u, f ,w, d1, d2) = 1

2
��u − v�22 +

β1

2
� f − u + d1�22

+β2

2
�w − | f | + d2�22 +R(w) (13)

where d1 ∈ C(Nx .Ny .Nz ) and d2 ∈ R(Nx .Ny .Nz ) are the scaled
dual variables and β1 and β2 are the penalty parameters
(relevant only to the optimization method, i.e., impacting the
convergence). We follow the hierarchical approach described

in [30] and minimize jointly on the variables u and w, while
f is substituted with its optimal value f ∗(u,w)

f ∗ = arg min
f

β1

2
� f − u + d1�22 +

β2

2
�w − | f | + d2�22

(14)

=
�

β1 · |u − d1| + β2 · (w + d2)

β1 + β2

	+
exp[j · arg(u − d1)]

(15)

where .+ is the identity on [0,+∞[ and is the constant null
function on ] −∞, 0[.

Proof: The second term in (14) only depends on the
modulus of f . The phase of f ∗ is then driven by the first
term and must be chosen equal to that of u − d1 so as
to minimize the cost function. There remains to estimate
the modulus of f ∗, which is a solution of a 1-D quadratic
problem

arg min
ρ≥0

β1

2
||ρ − |u+ d1|||22 +

β2

2
�w − ρ + d2�22 (16)

where ρ is either given by the unconstrained solution

ρ∗ = (β1 · |u − d1| + β2 · (w + d2))/(β1 + β2)

or ρ = 0. The optimal value of ρ and of the phase together
lead to (15). �

This leads to the following algorithm1 that alternates
between the joint minimization with respect to variables u
and w and the update of dual variables.

Algorithm Tomographic SAR 3-D Inversion
Input: v (stack of SLC SAR images)
Output: û (3-D cube of complex reflectivities)

Initialization :
1: d̂1← 0
2: d̂2 ← 0
3: while not converged do
4: {û, ŵ} ← approximate_min(v, d̂1, d̂2, û, ŵ)

5: d̂2 ← d̂2 + ŵ − | f ∗(û, ŵ)|
6: d̂1 ← d̂1 + f ∗(û, ŵ)− û
7: end while
8: return û

1Compared to the well-known alternating directions method of multipliers
(ADMM) [31], this hierarchical approach has been shown in [30] to converge
faster and to be less sensitive to the tuning of the optimization parameters
β1 and β2; moreover, we improve the convergence by constraining w to be
positive, such a constraint would be costly to enforce with ADMM.
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Fig. 5. (a) Accuracy and (b) completeness criteria. The accuracy computes the mean of the error for each estimated point. The completeness gives an
indication on the proportion of holes in the rendering.

Procedure Approximate_Min
Input: v (stack of SLC SAR images)
Input: d̂1 (vector of dual variables)
Input: d̂2 (vector of dual variables)
Input: û (current vector of primal variables)
Input: ŵ (current vector of primal variables)
Output: {û, ŵ} (approximate solution)

begineqnarray*3ex]
1: C (v, d̂1, d̂2, û, ŵ) = (1/2)||�u − v||22 + R(w)

+(β1/2)� f ∗(u,w)− u+ d̂1�22+ (β2/2)�w−| f ∗(u,w)|+
d̂2�22,
begineqnarray*2ex]

2: ∇uC = �H (�u − v)+ β1(u − f ∗(u,w)− d̂1)
begineqnarray*2ex]

3: ∇wC = (μx DT
x Dx + μy DT

y Dy + μz DT
z Dz)w + μ�11

begineqnarray*2ex] +β2(w − f ∗(u,w)+ d̂2) .

4: ∇C (v, d̂1, d̂2, û, ŵ) =

∇uC
∇wC

�
,

begineqnarray*2ex] Call quasi-Newton minimization algo-
rithm :

5: {û, ŵ} ← quasi_Newton[C (v, d̂1, d̂2, û, ŵ),

∇C (v, d̂1, d̂2, û, ŵ),
constraint: ŵ ≥ 0]

After replacing f by its optimal value f ∗(u,w) and
constraining w to be positive, the objective function is dif-
ferentiable (since w ≥ 0, �w�1 = 1T w, which is dif-
ferentiable; moreover, after substituting f by the optimal
value f ∗ in the quadratic terms, the cost function becomes
smooth, see [30]). The cost function can thus be minimized
using a limited memory quasi-Newton algorithm that han-
dles positivity constraints, such as limited-memory Broyden–
Fletcher–Goldfarb–Shanno, bounded [32] or the slightly more
efficient algorithm variable metric limited memory, bounded
[33] that we used, with Eric Thiébaut’s freely available

implementation.2 The minimization step described in Proce-
dure approximate_min does not need to be performed
up to a high precision. A few (e.g., ten) iterations of the
quasi-Newton algorithm are sufficient since the algorithm
is warm-restarted. In the definition of the gradient of the
cost function (lines 2–4 of Procedure approximate_min),
we used the fact that (∂C /∂[ f ∗]i )(∂[ f ∗]i/∂[u] j ) =

2https://github.com/emmt/OptimPackLegacy

(∂C /∂[ f ∗]i )(∂[ f ∗]i/∂[w]k) = 0 for all i , j , and k, even
though f ∗ depends on variables u and w when applying the
chain rule since (∂C /∂[ f ∗]i ) = 0 for all i . The necessary con-
dition for f ∗ being a minimizer of the augmented Lagrangian
is then respected. As the function we want to minimize is
nonconvex, the convergence is assumed when we met a local
minimum. In practice, the algorithm can then be stopped after
a fixed number of iterations (around 60) or when the distance
between two iterations is below a given threshold.

The priors proposed in this section are designed to be simple
and to lead to a function R that is easy to optimize. In the
following experiments, the relevance of this method is shown
by comparing to other state-of-the-art estimators on simulated
and real data. The proposed framework is very general and
can easily be adapted to include other spatial regularizations
expressed in ground coordinates.

IV. EXPERIMENTS

A. Evaluation Protocol
In this section, we compare 3-D scenes reconstructed by

five different approaches: classical beamforming [4], Capon
beamforming [22], MUSIC [24], CS [11], [12], and our algo-
rithm. The evaluation of different SAR tomographic estimators
can be hard as they originate from various fields and are
thus not suited to the same applications. Moreover, they
do not always estimate the same quantities: classical and
Capon beamforming give the estimated power of the scatterers,
CS and our 3-D inversion estimate the scatterers reflectivity,
and MUSIC only provides us with their position. Here, we will
only evaluate the quality of the localization, as all methods
can be used to estimate the 3-D location of scatterers and
this represents a rich information in urban areas. It can be
compared to a ground truth (digital elevation model).

We use the accuracy and completeness criteria introduced
in [19] to evaluate the tomographic SAR reconstructions.
Those two metrics are defined for the evaluation of point
clouds reconstructions. Tomographic inversions must thus be
converted into a discrete representation in order to compute
these performance criteria.

1) Accuracy: For a given discrete reconstruction P̂,
the accuracy represents the mean distance from each point
in P̂ to the ground truth P

A(P̂,P) = 1

Np̂

Np̂∑
j=1

min
k
� p̂ j − pk�2 (17)
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where p̂ j ∈ P̂ is the j th point of the estimated point cloud
P̂ and pk ∈ P is the kth point of the ground truth. Np̂ is the
number of points in the estimated reconstruction. Accuracy
indicates whether reconstructed points are correctly located.

2) Completeness: The completeness corresponds to the
mean distance from each point of the ground truth to the points
in P̂

C(P̂,P) = 1

Np

Np∑
k=1

min
j
� p̂ j − pk�2 (18)

where Np is the number of points in the ground truth.
Completeness indicates whether the ground truth is well
represented by the set of points in the reconstruction.

These two metrics are illustrated in Fig. 5 where green dots
represent estimated points p̂ j and blue squares represent the
ground truth points pk . Accuracy and completeness provide
complementary information: accuracy improves when recon-
structed points are close to actual points from the ground
truth but does not indicate when points are missing (holes
in the reconstruction). For instance, if we could retrieve a
single point of the scene (the strongest permanent scatterer,
for example) with a location very close to the ground truth,
the accuracy would be excellent (A(P̂,P) near zero), while the
completeness C(P̂,P) would be large, indicating that much of
the scene is missing in the reconstruction. Conversely, if we
loosely select points (many points for each resolution cell),
we would obtain a dense volume, thus a good completeness
(low completeness value C(P̂,P)), but erroneously selected
points lying far from the true surfaces would lead to a poor
accuracy score (large accuracy value A(P̂,P)).

The accuracy and completeness can be jointly used to eval-
uate the quality of a discrete reconstruction. Beforehand, 3-D
points must be extracted from the volume of voxels obtained
by the tomographic reconstruction algorithms. We performed
this extraction by finding the local maxima in each radar
resolution cell. This produces a first point-based represen-
tation of the data. Then, to reduce the sensitivity to noise
and sidelobes, we applied a threshold on the obtained point
cloud. Starting from a reconstructed volume û, we obtain the
collection of 3-D points P̂û,t

P̂û,t = {p j = (x j , y j , z j ) ∈ R
3, such that

|ûx j ,y j ,z j
| ≥ |ûx j ,νy,νz

| and |ûx j ,y j ,z j
| > t} (19)

where νy and νz are the coordinates of the direct neighboring
voxels restricted to the same radar resolution cell and t is
a threshold. In the following experiments, when we visu-
ally compare reconstructions obtained by different algorithms,
we always select the threshold t as the value t∗ that achieves
the best tradeoff between accuracy and completeness

t∗ = arg min
t

A(P̂û,t ,P)2 + C(P̂û,t ,P)2. (20)

When evaluating different tomographic estimators, we are
generally interested in different regimes (accurate reconstruc-
tion of the strongest scatterers and dense reconstruction of
most scatterers). To capture these different cases, rather than
considering a single reconstruction obtained with threshold t∗,

we also represent the accuracy score A(P̂û,t ,P) as a function

of the completeness C(P̂û,t ,P). Applications that focus on
the reconstruction of permanent scatterers will favor algo-
rithms that achieve the highest accuracy values (even if the
completeness is poor). Many works have considered linear
dependencies of the phase of permanent scatterers on various
parameters such as their height but also their speed or the
temperature [28], [34]. If the reconstruction of surfaces is the
aim, the completeness should be favored even if this degrades
the accuracy.

B. Simulated Data

In this section, we compare our 3-D tomographic recon-
struction algorithm to state-of-the-art methods using simulated
data. We simulate two stacks of images corresponding to
two different configurations of trajectories: a regular sampling
along the elevation axis h (referred to in the following as Reg)
and actual TerraSARX trajectories (referred to in the following
as TSX). In [12], the decorrelation effect is introduced by
adding a Gaussian white noise and the phase noise is modeled
by adding a uniformly distributed random phase between
−π and π . Fig. 6 shows the theoretical distribution of the
scatterers. Both scenes are composed of a ground at a constant
altitude, a wall, and a roof, resulting in a large layover area
in the SAR images. The simulated building is higher than
the estimated elevation resolution (as given by the Fourier
inversion) in the TSX case. The reflectivity of the scatterers
is set constant on all the scenes. The additive noise level is
of −0.6 dB and is the same for both experiments. In the
Reg case, the scatterers are well separated in the azimuth
and range directions. In the TSX experiment, the density
of scatterers is bigger for each cell, resulting in clusters of
neighboring scatterers being projected in the same radar cell.
The signal is thus corrupted with a speckle effect induced
by the coherent addition of the backscatterered signals. Due
to the relatively strong additive noise and the geometrical
decorrelation, the average coherence is 0.63 for the Reg
images and 0.68 for the TSX ones. Finally, as the resolution
is not the same in the two experiments, the TSX structure is
taller, and the resulting images have a bigger size in range.

C. Influence of the Regularization Parameters

To show the influence of each regularization parameter,
we performed different reconstructions of the Reg scene
for various sets of regularization values (in particular, with
one parameter chosen so as to illustrate the effect of either
under-regularization or over-regularization). In these experi-
ments, the phase noise is not present to show clearly the
structural influence of the spatial smoothing. The results are
presented in Figs. 7–10. On this well-sampled scene with a
good resolution, the parameter with the largest influence is
μ�1 , associated with the sparsity constraint. Fig. 7 illustrates
that when μ�1 is too large, there are some holes in the recon-
struction, while a value of μ�1 that is too small leaves sidelobes
and outliers. The effect of oversmoothing (values of μx , μy ,
or μz too large) is the extension of structures in the direction
of the spatial smoothing. This is visible, in particular, with
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Fig. 6. Two simulations of a simple 3-D scene: first row: considering a regular sampling of trajectories along the h axis and second row: using the trajectories
of TerraSAR-X satellites. (a), (b), (d), and (e) Two views of the scenes. (c) and (f) Average of the simulated SAR images. (a)–(c) Reg case. (d)–(f) TSX
case. The Reg case consists of 20 images acquired with uniformly distributed sensors along the elevation axis. In the TSX case, the geometry of the scene
is given by the true TerraSAR-X satellites position for each of the 40 acquisitions. In both cases, the SNR is 1.7 dB. In the TSX experiment, more scatterers
are projected in the same resolution cell that produces an important speckle effect.

Fig. 7. Influence of the parsimony μ�1 parameter. (a) Parameter is way
above its optimal value resulting in a lot of holes in the structure. (b) We use
a small value of μ�1 resulting in a high number of outliers.

structures whose orientation differs from that of the smoothing
(see, in Fig. 9, the widening of the wall due to excessive
smoothing in the horizontal direction). The same effect appears

Fig. 8. Influence of the μx parameter. (a) Parameter is way above its optimal
value. (b) Value of the parameter is set to zero.

on the rooftop, as shown in Fig. 10. Insufficient smoothing
translates into residual fluctuations (i.e., large variance) that
are reduced by increasing spatial smoothing, see, in particular,
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Fig. 9. Influence of the μy parameter. (a) Parameter is way above its optimal
value. (b) Value of the parameter is set to zero.

Fig. 10. Influence of the μz parameter. (a) Parameter is way above its optimal
value. (b) Value of the parameter is set to zero.

the corner between the roof and the wall or the ground and
the wall in Figs. 9 and 10. Outliers located far from the actual
surfaces can also be observed when the spatial regularization
is too weak.

By combining sparsity and spatial smoothness constraints,
our algorithm is very flexible and well-suited both to the
reconstruction of urban areas where scatterers are sparsely
distributed over 2-D surfaces and to vegetated areas where
scatterers are spread in volumes in a smooth 3-D distribution.
The downside of this flexibility is the necessity to tune
four regularization parameters. In numerical simulations, the

ground truth can be used to select the set of regularization
parameters {μx , μy, μz, μ�1} that offer the best performance,
as measured by the minimum accuracy/completeness tradeoff
(MACT) min A(P̂û,t∗,P)2+C(P̂û,t∗,P)2. The regularization
parameters can then be tuned in order to reach the best
possible tradeoff. We advise to perform the 1-D optimization,
by importance: μ�1 , then μz , and then μx and μy . While
tuning the sparsity parameter, the other smoothing parameters
should be set as 0.

Other derivative-free methods can be used to fix all the
parameters at once. We compared the described alternating
minimization strategy with Nelder–Mead’s simplex method by
initializing with different sets of parameters and found similar
values for the lowest error. The differences for μ�1 are of 21%
and below 14% for the smoothing parameters. As being more
precise, this approach is highly computational and needs to be
reinitializing several times due to the nonconvexity of the error
with respect to the parameters. In the absence of ground truth,
a simple numerical simulation using the same geometrical
configuration and sensor noise power can be generated in
order to automatically tune the parameters. If a simulated
scene is not an option, the alternating minimization strategy
can still be applied in an interactive fashion: the user tunes
each parameter, by order of importance, in order to reach a
satisfying reconstruction.

To further illustrate the behavior of our algorithm with
respect to its regularization parameters, we plotted accuracy
as a function of completeness for different sets of parameters.
These curves are drawn for our two simulation cases Reg and
TSX, respectively, in Figs. 11 and 12. We observe that the best
accuracy/completeness tradeoff (point of the curve closest to
the origin of the axes) is reached for a unique set of parameters
that can thus be found, for example, by binary search.

The optimization parameters β1 and β2 have an impact on
the convergence speed. We found that, when starting from
a volume initialized at zero, using large penalty parameters
β1 and β2 produces very quickly a sparse reconstruction
while lower contrasted structures are correctly reconstructed
after many more iterations. Smaller values of the parameters
help to reconstruct those structures, at the cost of a slower
convergence (i.e., sidelobes suppression) in the brightest areas.
Penalty parameters β1 and β2 can be set according to methods
described in [31] and [35]. Here, we fixed those parameters to
10 after having tested different values.

D. Comparison of Different Tomographic Estimators

Figs. 13 and 14 show the 3-D reconstructions obtained using
several state-of-the-art tomographic reconstruction methods
and our spatially regularized approach: (a) classical beamform-
ing, (b) Capon beamforming, (c) the parametric estimators
MUSIC, (d) CS, and (e) our algorithm. The corresponding
curves of accuracy as a function of completeness are presented
in Fig. 15 for the two scenes.

In the easy case where the antennas are uniformly dis-
tributed, classical beamforming presents good performances
with respect to the accuracy–completeness metrics, achieving
a smaller error than Capon beamforming or MUSIC. In the
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Fig. 11. Study of the influence of each parameter on the metrics for the
Reg scene [cf. Fig. 6 (a)]. (a)–(d) Plots of different values of μ�1 , μx , μy ,
and μz , respectively, with the three other parameters being fixed.

Fig. 12. Study of the influence of each parameter on the metrics for the
TSX scene [cf. Fig. 6 (a)]. (a)–(d) Plots of different values of μ�1 , μx , μy ,
and μz , respectively, with the three other parameters being fixed.

TSX case where the theoretical resolution is worst, few of the
wall is retrieved leading to a poor completeness score. A closer
inspection of the TSX reconstructions indicates the presence
of sidelobes (i.e., many outliers).

Both Capon beamforming and MUSIC, which rely on the
covariance matrix to achieve superresolution, manage to sup-
press most of the outliers. However, the averaging introduced
for the covariance matrix estimation produces an extension
of the ground and walls. For the Reg case, this explains the
bounded accuracy scores even when the completeness is poor.
Capon beamforming manages to reduce the sidelobes in the
Reg case but not in the TSX simulation where the irregular
sampling produces dramatic biasing effects on the estimation
of the position of the scatterers.

In the TSX scene, the best accuracy/completeness tradeoff
from the MUSIC pseudospectra produces a sparse scene with
no outliers. However, the bias present in the estimation of the

Fig. 13. Best representation on the Reg scene using (a) classical beamform-
ing, (b) Capon beamforming, (c) MUSIC, (d) CS, and (e) our tomographic
3-D inversion.

covariance matrix strongly deforms the wall and introduces
some fake discontinuities.

All the spectral estimators presented (classical beamform-
ing, Capon beamforming, and MUSIC) suffer from the
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Fig. 14. Best representation on the TSX scene using (a) classical beamform-
ing, (b) Capon beamforming, (c) MUSIC, (d) CS, and (e) our tomographic
3-D inversion.

averaging step needed to estimate the covariance matrix, which
produces visibly distorted walls and/or rooftop in the TSX
reconstruction. An elongation of the rooftop and a reduction in
the ground are also visible in the Reg case. However, the naive

Fig. 15. Accuracy versus completeness for classical beamforming, Capon
beamforming, MUSIC, CS, and our 3-D inversion algorithm. In (a), the
evaluation is done on the Reg scene 6, and in (b), on the TSX scene 6.

covariance estimation step makes those estimators efficient for
uniform areas, which is illustrated by the generally accurate
ground reconstruction.

As expected, CS is one of the top estimators in accuracy
and often manages to achieve the most accurate representa-
tions. However, the precision comes with the cost of a loss
of information, which explains the relatively bad scores in
completeness.

The proposed 3-D inversion algorithm shows improved
performances compared to the CS approach. Some outliers
that were present even when imposing an �1 penalty are
suppressed, thanks to the spatial smoothness prior. As the
method uses a sparse prior, some information may be lost
but thanks to the geometrical constraints, most of the rooftop
and ground are filled. Moreover, in the TSX case, the wall and
rooftop are better located around their true position, and the
reconstruction is more robust to deformation introduced by the
proximity of the scatterers.

The tuning of the parameter in the simulated experiences
has been done by exploiting the knowledge of the scene.
Of course, when dealing with real data, this information is
not available. Then, to test if the proposed method is able to
exhibit better performances when the tuning of the parameter
is not ideal, the model parameters are modified with increasing
perturbation values. The results are given in Table I. Up to
an isotropic perturbation of 50, the proposed method still
shows a better MACT than the other tested methods. Another
concern is whether the parameters need to be adapted to
the scatterers power. Real-data experiments conducted over
a very heterogeneous scene indicate that the reconstruction



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RAMBOUR et al.: INTRODUCING SPATIAL REGULARIZATION IN SAR TOMOGRAPHY RECONSTRUCTION 13

Fig. 16. (a) Image of the temporal mean of all the images in the stack and
(b) corresponding optic image obtained from Geoportail (IGN).The building
backscattering a strong signal in the center of the image is the Mirabeau
Tower. In the bottom left of the image, the structure presenting a strong
periodic backscattering signal is the Ministry of Foreign Affair.

does not present artifacts due to excessive smoothing in some
areas. To confirm this observation with a controlled experi-
ment, reconstruction scores of the TSX scene with random
scatterers amplitude are also tested. The amplitudes were
chosen randomly for each azimuth in a given range. The
different experiments correspond to increasing ranges. The
results of the experiments are given in Table II. The proposed
method still performs better, even when the amplitudes of the
scatterers vary by 3 orders of magnitude, and the regularization
parameters are kept constant.

E. Real Data

We test our algorithm and compare it to the other SAR
tomographic estimators on a stack of 40 TerraSAR-X spotlight

Fig. 17. Orthogonal spatial baseline versus temporal baseline for all the
40 acquisitions.

TABLE I

EVOLUTION OF THE MACT WHEN THE PARAMETERS ARE GETTING FAR

FROM THEIR OPTIMAL VALUE μ∗ = {μ∗�1
, μ∗x , μ∗y, μ∗z }. THE SMALLER

THE MACT SCORE IS, THE BETTER CAN BE THE RECONSTRUCTION

images acquired over the front de Seine in the south-west of
Paris, France. The slant-range resolution is 0.45 m and the
azimuth resolution is 0.87 m. The observed scene is shown
in Fig. 16.3 The spatial and temporal baselines are shown
in Fig. 17. The total spatial baseline �b span is more than
775 m, and the total temporal baseline is more than 5 years
with a large gap of almost 2 years. The theoretical resolutions
in h and z are given by

δz = δh sin(θ) = λr sin(θ)

2�b
= 6.99 m (21)

with an incidence angle θ = 0.6 rad and wavelength λ =
0.0311 m. Sparse reconstructions in urban SAR tomography
have been shown to significantly improve this resolution [36].

To evaluate different tomographic estimators, we use a
rough ground truth of the scene. The ground truth surface is
shown in Fig. 18.4 The big structures such as the skyscrapers
or the tall buildings are well represented by smooth polygons.
However, the vegetation and the small structures on the
docks, bridges, or streets are not represented. We, therefore,
performed the evaluation only on some areas where we found
the ground truth to be accurate enough. The results of the
evaluation are shown in Fig. 18.

It is noteworthy that MUSIC performs particularly well on
areas containing a lot of ground surface. In the first test,
the subscene is composed of a mixture of tall buildings,
small structures near the ground level, and smooth flat areas
(streets and docks). As the diffuse signal backscattered by

3These data have been provided by the Deutsches Zentrum für Luft- und
Raumfahrt in the framework of the project LAN1746.

4Ground truth on Paris complimentary provided by the IGN, France.
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Fig. 18. Scores accuracy versus completeness based on the ground truth in (a) for the tomographic estimators classical beamforming, Capon beamforming,
MUSIC, CS, and the proposed 3-D inversion. In (c), the evaluation is done over the area corresponding to the red rectangle in (b). In (d), the test area is
inside the green rectangle.

Fig. 19. Visualization of the module of the reconstructed cube [37] from a
stack of 40 TerraSAR-X images of Paris (cf. Fig. 16) using the conventional
CS algorithm.

flat surfaces is much weaker than the one reflected by the
dihedral or trihedral structures, it is generally not taken into
account by sparse representations of the scene. CS is then
unable to correctly represent ground areas. Taking more points
into account results only in more outliers generally due to
the sidelobes of the brightest points. The averaging step used
to estimate the covariance matrix allows MUSIC to retrieve
part of the ground points or to extend the signal coming from

Fig. 20. Visualization of the thresholded module of the reconstructed
cube [37] using the conventional CS algorithm with the ground truth.

one punctual target close to the ground to neighboring pix-
els. Unlike the nonparametric beamforming methods, MUSIC
is designed to retrieve a sparse scene, which removes
most of the side lobes and outliers. MUSIC is then able
to outperform CS according to our evaluation method that
includes scatterers on the ground. On the second tested area
corresponding to the red rectangle in Fig. 18, the performances
of MUSIC and CS in terms of accuracy are very similar.
MUSIC seems to perform a little bit better than CS. However,
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Fig. 21. Visualization of the module of the reconstructed cube [37] from a
stack of 40 TerraSAR-X images of Paris (cf. Fig. 16) using the 3-D inversion
algorithm.

TABLE II

EVOLUTION OF THE MACT VALUE WHEN THE SCATTERER AMPLITUDE

IS FIXED UNIFORMLY FOR EACH AZIMUTH. THE EXPERIENCE IS
REPEATED FOR INCREASING AMPLITUDE INTERVAL SIZE

this may again be due to its ability to retrieve more points
on the ground, and the small gap between the two methods
needs to be taken with caution as the used ground truth is
coarse.

In both experiments, the presented algorithm achieves the
best scores in term of accuracy and completeness. More-
over, the analysis of the metrics on real data shows that,
in all possible ways of selecting the reconstructed voxels,
our tomographic 3-D inversion algorithm performs a better
reconstruction than the compared estimators. For this scene,
the parameters are μ�1 = 12, μz = 300, μy = 100, and
μx = 100 and were computed from the TSX simulations.

The results obtained on the same scene with conventional
CS are shown in Figs. 19 and 20. The 3-D plain representation
of the scene obtained by our approach is shown in Fig. 21.
The heat color is chosen to be proportional to the intensity
of the voxels normalized by the averaged intensity of the
corresponding radar cell. This normalization is used only to

Fig. 22. Visualization of the thresholded module of the reconstructed
cube [37] using the 3-D inversion algorithm with the ground truth.

help the visualization as the dynamic range of SAR images is
very high. In Fig. 22, the same image is shown except that the
near-zero intensity voxels are made fully transparent and the
ground truth is superimposed. The colormap is the same for
both representations and is chosen to have the dark blue color
associated with intensities below 10-4 times the maximum
voxel amplitude. This visually set to zero dark voxels that
still have a nonzero intensity as the algorithm may not have
fully converged. Another way to have a sparser representation
of the modulus of the signal is to display the image w

at convergence of the algorithm. In the 3-D representation,
most of the isolated outliers are suppressed, thanks to the
spatial smoothing, and the buildings where most of the high
reflectivity voxels are massed are retrieved. The smoothing
denoising, however, comes with the cost of slightly blurred
scatterers. We can see that most of the very bright buildings
present in the SAR images in Fig. 16 are well reconstructed.
The two towers that were mostly missing in the 2-D intensity
image have a pointlike representation but are fairly visible in
this 3-D rendering.

By using the georeferencing of the voxels, we can project
the corresponding point cloud into Google Earth. The results
are shown in Fig. 23. This step allows us to have more details
in the visualization of the scene. We can now see that some
points above the Mirabeau tower are relevant: they correspond
to the structure of its rooftop. Our reconstruction method also
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Fig. 23. Visualization of the point cloud obtained from the reconstructed cube with projected in Google Earth.

correctly identified parts of the structures on the dock and a
large amount of buildings hidden behind the Mirabeau tower.

V. CONCLUSION

In this paper, a new tomographic 3-D inversion method
has been proposed. This method is shown to be effective

to inverse a SAR tomographic stack in a dense urban area.
The chosen spatial regularization strategy takes advantage of
both the natural sparsity of targets in urban environments and
the spatial smoothness (i.e., spatial proximity of scatterers).
Our approach generalizes CS techniques and includes, in an
adaptive way, a spatial smoothing.
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To be able to compare our method with other estimators
used in SAR tomography, we extended the protocol of eval-
uation based on accuracy and completeness proposed in [19].
The tests done on numerical simulations and on a stack of
TerraSAR-X images in a urban area showed that our method
leads to better results than existing approaches in terms of
accuracy/completeness compromise.

This 3-D inversion algorithm opens a door to more sophisti-
cated approaches taking into account different priors describ-
ing the data. Indeed, the main structure of the tomographic
3-D inversion would remain unchanged if other regular-
ization terms were considered within a variable splitting
approach. The research of appropriate priors to scenes with
a volumetric density of reflectivity such as ice or forest will
be the subject of further works.
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