SAR Image Regularization with Graph-Cuts Based Fast Approximate Discrete Minimization.

Loïc Denis¹ Florence Tupin² Jérôme Darbon³ Marc Sigelle²

¹École Supérieure de Chimie Physique Électronique de Lyon and Laboratoire Hubert Curien, CNRS UMR 5516, St-Étienne France
² TELECOM ParisTech, CNRS UMR 5141, Paris France
³ Department of Mathematics of UCLA, Los Angeles, USA

loic.denis@cpe.fr, jerome@math.ucla.edu, {florence.tupin, marc.sigelle}@telecom-paristech.fr

Approximation and Optimization in Image Restoration and Reconstruction
Porquerolles - June 8-12, 2009
Salient features

- **SAR images**: coherent imagery in the radio wavelength range
 → speckle

- **High resolution interferometry**: amplitude and phase images
 small baseline → no phase unwrapping problem

- **Urban areas**: strong, coupled amplitude and phase discontinuities
 → joint amplitude-phase, TV-like (regularization) prior

- **Fast and memory costless graph cut algorithm**
 → efficient approximate optimization
SAR and InSAR image formation: MRF formulation

○ distribution of the amplitude: Rayleigh - Nakagami (M-look)

$$p(a_s \mid \hat{a}_s) = \frac{2M^M}{\Gamma(M)} \hat{a}_s^{2M-1} a_s^{2M-1} \exp \left(-\frac{Ma^2_s}{\hat{a}_s^2} \right) \quad U(a_s \mid \hat{a}_s) = M \cdot \left[\frac{a^2_s}{\hat{a}_s^2} + 2 \log \hat{a}_s \right]$$

heavy-tailed speckle distribution \rightarrow non-convex (quasi-convex) energy

○ distribution of the interferometric phase: Gaussian/uniform

$$p(\phi_s \mid \hat{\phi}_s) \quad U(\phi_s \mid \hat{\phi}_s)$$

$s \notin$ Shadows:

$$\frac{1}{\sqrt{2\pi}\hat{\sigma}_\phi} \exp -\frac{(\phi_s - \hat{\phi}_s)^2}{\hat{\sigma}_\phi^2} \quad \frac{(\phi_s - \hat{\phi}_s)^2}{\hat{\sigma}_\phi^2}$$

$s \in$ Shadows:

$$\frac{1}{2\pi} \quad 0$$
Independent and coupled TV regularization priors

- **Independent phase-amplitude TV**

 \[
 E(\hat{a}, \hat{\phi})_{(s,t)} = \beta_a |\hat{a}_s - \hat{a}_t| + \beta_\phi |\hat{\phi}_s - \hat{\phi}_t|
 \]

- **Coupled phase-amplitude TV: first**

 \[
 E(\hat{a}, \hat{\phi})_{(s,t)} = \max(|\hat{a}_s - \hat{a}_t|, \gamma|\hat{\phi}_s - \hat{\phi}_t|)
 \]

- **Coupled phase-amplitude TV: second**

 \[
 E(\hat{a}, \hat{\phi})_{(s,t)}
 \begin{align*}
 s \notin \text{Shadows} \text{ and } t \notin \text{Shadows} & \quad \max(|\hat{a}_s - \hat{a}_t|, \gamma|\hat{\phi}_s - \hat{\phi}_t|) \\
 s \in \text{Shadows} \text{ and } t \notin \text{Shadows} \text{ and } \hat{\phi}_s \leq \hat{\phi}_t & \quad |\hat{a}_s - \hat{a}_t| + \gamma|\hat{\phi}_s - \hat{\phi}_t| \\
 s \in \text{Shadows} \text{ and } t \notin \text{Shadows} \text{ and } \hat{\phi}_s > \hat{\phi}_t & \quad |\hat{a}_s - \hat{a}_t| + 2 \gamma|\hat{\phi}_s - \hat{\phi}_t| \\
 s \in \text{Shadows} \text{ and } t \in \text{Shadows} & \quad |\hat{a}_s - \hat{a}_t| + \gamma \left(\hat{\phi}_s - \hat{\phi}_t\right)^2
 \end{align*}
 \]

 \[\Rightarrow \text{always convex!}\]
Global energy - convexity and submodularity

- **total energy (to be minimized)**

\[
E = \sum_{s} U(u_s | \hat{u}_s) + \beta \sum_{(s,t)} \psi(\hat{u}_s, \hat{u}_t) \quad u_s = (a_s, \phi_s) \quad \hat{u}_s = (\hat{a}_s, \hat{\phi}_s)
\]

- **submodular function of (two) binary variables**

\[
\chi(0,1) + \chi(1,0) \geq \chi(0,0) + \chi(1,1)
\]

- **applying to** \(\psi(\hat{u}_s + k_s \ d, \hat{u}_t + k_t \ d) \leftarrow \text{local displacement}\)

\[
\psi(\hat{u}_s, \hat{u}_t + d) + \psi(\hat{u}_s + d, \hat{u}_t) \geq \psi(\hat{u}_s, \hat{u}_t) + \psi(\hat{u}_s + d, \hat{u}_t + d)
\]

- **\(\psi\) depending on the difference \(\hat{u}_s - \hat{u}_t\)**

\[
\psi(\hat{u}_s - \hat{u}_t - d) + \psi(\hat{u}_s - \hat{u}_t + d) \geq 2\psi(\hat{u}_s - \hat{u}_t) \quad \forall d
\]

\(\rightarrow\) \(\psi\) convex
Proposed algorithm: local minimization

\[\hat{u}^{(n+1)} = \arg \min_{\{k_s\}_{s \in S}} \sum_s U(u_s | \hat{u}_s^{(n)} + k_s \mathbf{d}) + \beta \sum_{(s,t)} \psi(\hat{u}_s^{(n)} + k_s \mathbf{d}, \hat{u}_t^{(n)} + k_t \mathbf{d}) \]
Graph cut energy minimization of binary images
Proposed algorithm: approximate global minimization

- **define** $d_i \in \mathcal{I}(d_i) \overset{\text{def}}{=} \{0, -d_i, +d_i\}^N / \{0, \ldots, 0\}$

1: for all $s \in S$ do
2: \[\hat{u}_s^{(0)} \leftarrow \{L/2, \ldots, L/2\} \]
3: end for
4: $n \leftarrow 0$
5: for $i = 1$ to precision do
6: \[d_i \leftarrow L/2^i \]
7: for all $d_i \in \mathcal{I}(d_i)$ do
8: \[\hat{u}^{(n+1)} \leftarrow \arg\min_{\hat{u}^{(n+1)} \in \mathcal{I}(\hat{u}^{(n)})} E(\hat{u}^{(n+1)} \mid u) \]
9: \[n \leftarrow n + 1 \]
10: end for
11: end for

- \rightarrow exact for the convex case
Numerical simulations

- Noisy image
- Ground truth (4 regions a, b, c, and d with increasing constant level)
- Regularized image (ICM at convergence)
- Regularized image (alpha-expansion at convergence)
- Regularized image (proposed algorithm at convergence)

Energy vs. elapsed time (s)
Comparison with other algorithms

\(N = \#\text{pixels} \quad L = \#\text{grey levels} \quad 8\text{-connectivity} \)

<table>
<thead>
<tr>
<th></th>
<th>(\alpha)-expansion</th>
<th>exact minimization</th>
<th>our</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimum</td>
<td>local</td>
<td>global</td>
<td>local</td>
</tr>
<tr>
<td>graph size</td>
<td>(N) nodes</td>
<td>(N \times L) nodes</td>
<td>(N) nodes</td>
</tr>
<tr>
<td></td>
<td>(4 \times N) arcs</td>
<td>(5 \times N \times L) arcs</td>
<td>(4 \times N) arcs</td>
</tr>
<tr>
<td>#cuts</td>
<td>(\propto L)</td>
<td>1</td>
<td>(\log_2(L/2))</td>
</tr>
<tr>
<td>(D) channels</td>
<td>(\propto L^D) cuts</td>
<td>hardly possible</td>
<td>((3^D - 1) \log_2(L/2)) cuts</td>
</tr>
<tr>
<td>(D = 1)</td>
<td>256</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>(D = 2)</td>
<td>65536</td>
<td></td>
<td>256</td>
</tr>
<tr>
<td>CPU time</td>
<td>22s (2 steps)</td>
<td>30s (ICM)</td>
<td>(\leq 3)s</td>
</tr>
</tbody>
</table>
Urban area InSAR image (2-look, 1200×1200)

amplitude

interferometric phase
Urban area InSAR image (followed)

filtered amplitude

filtered phase
True interferometric complex coherence

\[\rho_s = \rho_s \exp i \phi_s = \frac{\sum_{i=1}^{W} z_{1i} z_{2i}^*}{\left(\sum_{i=1}^{W} |z_{1i}|^2 \cdot \sum_{i=1}^{W} |z_{2i}|^2 \right)^{1/2}} = \frac{\frac{1}{M} \sum_{i=1}^{M} z_{1i} z_{2i}^*}{\left(\frac{1}{M} \sum_{i=1}^{M} |z_{1i}|^2 \cdot \frac{1}{M} \sum_{i=1}^{M} |z_{2i}|^2 \right)^{1/2}} \]

\[U(I_s^{(1)}, I_s^{(12)}, I_s^{(2)}, \varphi_s | a_s, \phi_s, \rho_s) = 4 \log a_s + \frac{I_s^{(1)} + I_s^{(2)} - 2 \cdot I_s^{(12)} \cdot \rho_s \cdot \cos(\phi_s - \varphi_s)}{a_s^2(1 - \rho_s^2)} \]

\[U(a, \varphi) = \sum_{(s,t)} \max(\beta_a |a_s - a_t|, \beta_\phi |\phi_s - \phi_t|) \quad (no \ Shadows) \]
True complex coherence: Toulouse (1000 × 1000)
Conclusion

- **MRF model → joint phase-amplitude SAR image denoising**
 total variation minimization performs well in urban areas
 heavy-tailed amplitude distribution → non-convex minimization problem

- **optimization through graph-cut techniques**
 exact solution for small images
 approximate solution (”large moves”) for large images
 → efficient denoising algorithm in D dimensions ($D = 1, 2$)

- **applications**
 - automatic classification
 - edge detection
 - joint regularization of optical and SAR images
Baseline interferometry

\[\delta(\Delta \phi) \approx \frac{1}{4\pi} \frac{B}{h} \frac{\delta h}{\lambda} \]

Ex: \(h = 3 \text{ km} \) \(B = 1 \text{ m} \) \(\lambda = 3 \text{ cm} \) (9.5 GHz) \(\delta h = 10 \text{ m} \)