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A Contrario Comparison of Local Descriptors
for Change Detection in Very High Spatial
Resolution Satellite Images of Urban Areas

Gang Liu , Yann Gousseau, and Florence Tupin , Senior Member, IEEE

Abstract— Change detection is a key problem for many remote
sensing applications. In this paper, we present a novel unsuper-
vised method for change detection between two high-resolution
remote sensing images possibly acquired by two different sensors.
This method is based on keypoints matching, evaluation, and
grouping, and does not require any image co-registration. It
consists of two main steps. First, global and local mapping func-
tions are estimated through keypoints extraction and matching.
Second, based on these mappings, keypoint matchings are used
to detect changes and then grouped to extract regions of changes.
Both steps are defined through an a contrario framework,
simplifying the parameter setting and providing a robust pipeline.
The proposed approach is evaluated on synthetic and real data
from different optic sensors with different resolutions, incidence
angles, and illumination conditions.

Index Terms— A contrario, change detection, remote sensing.

I. INTRODUCTION

CHANGE detection, aiming at detecting changes between
remote sensing images, has been widely studied

in [1]–[20]. Many applications have been investigated based
on change detection, such as disaster evaluation [4], [21]–[24]
or land use monitoring [9], [25]–[28]. The unsupervised detec-
tion of changes, which requires less human intervention, has
attracted more and more attention [3], [7], [18], [29]–[38].

In the past few years, two main trends have led to drastic
evolutions in the change detection approaches. First, numerous
sensors have been launched both by national and interna-
tional space agencies and by private actors. This wealth of
sensors [either optic or synthetic aperture radar (SAR)] and
acquisition conditions (sensor agility and acquisition mode
diversity) makes it necessary to develop robust approaches
overcoming changes of resolutions, of lighting conditions, and
incidence angles. The challenges are specially difficult when
dealing with urban areas where object elevation impairs the
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fine registration, particularly in the absence of a digital surface
model (DSM). Second, the spatial resolution improvement
leads to scenes with higher complexity [39], the abundance
of small and potentially moving objects giving rise to many
irrelevant changes.

Traditional change detection approaches usually rely on the
first step of co-registration [40]–[43], followed by a pixel-
based comparison. For this second step, many methods have
been proposed to efficiently discriminate between changed and
unchanged pixels, relying on SVM [30], MRFs [19], [44],
a contrario methods [28], [45], [46], morphological attribute
profiles [23], graph model [47], physically-based quanti-
ties [20], or neural network (NN) models [48].

One difficulty with pixel-based methods is that image
data captured from different sensors, at different times or in
different weather conditions follow different distributions,
which gives rise to an inaccurate comparison between pixels.
To solve these problems, Pacifici et al. [20] demonstrate that
the physically- based quantities and angular information are
robust to the changes of illumination, viewing geometries,
and atmospheric conditions, and that they are both useful
to analyze high-resolution remote sensing images, especially
for change detection. Furthermore, Solano-Correa et al. [38]
indicate that high-level physical features, such as radiometric
index, are robust enough to process images from multisensors.
In our approach, thanks to the use of invariant descriptors,
there is no need to compute these physical features.

Recently, and following the general trend in computer
vision, significant improvements have been obtained for
change detection tasks by using convolutional NNs, either for
optical or SAR images [49]. Different architectures have been
explored, either to extract discriminative features [50], or to
directly perform end-to-end learning of the change map [51].
Fully convolutional architecture has also been explored [52],
in order to get accurate pixel-level predictions. In [53], recur-
rent networks are used to detect changes and encode temporal
dependence in multitemporal images. Similar to pixel-based
methods, these approaches necessitate an accurate registration
step before both the learning and the detection steps. As of
today, such approaches are not able to deal with parallax
effects encountered in high-resolution urban area.

In order to overcome the need to finely register data, com-
mon to all aforementioned methods, more sophisticated meth-
ods using 3-D information have been developed. They usually
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rely on an explicit modeling of buildings [54]–[57] and provide
robust results. However, they necessitate the knowledge of
DSM and/or the use of sophisticated acquisition procedures
such as LIDAR, which may be impracticable in cases such as
disaster evaluations. An alternative is to build DSM with stereo
images and detect changes by the joint use of height changes
and image comparisons, as in [58], where the use of a Kullback
Leibler divergence similarity measure is proposed. However,
such approaches are of course very sensitive to matching errors
between stereo views.

Without such DSM information and to overcome
the drawbacks of pixel-based approaches, feature-based
approaches or object-based approaches have been developed
(see [59] for a review). Local descriptors such as scale-
invariant feature transform (SIFT) [60] have the great
advantage of incorporating radiometric and geometric
invariances. Therefore, they are well adapted to deal with
challenging situations such as multisensors change detection
where strong geometric and radiometric distortions may
occur. Although widely used in computer vision, these
descriptors have been mostly used for the preregistration step
of remote sensing images [61], and hardly for the change
detection step itself, with the exception of [10].

In this paper, which is an extended version of the conference
paper [62], we go further into some ideas of [10] to propose
a complete processing pipeline for change detection between
optic images acquired by heterogeneous sensors. Our method
does not require a preregistration step, except for some simple
spatial sampling to balance the resolution, and is able to
cope with radiometric and geometric distortions. The proposed
approach relies on local descriptors and is robust to parallax
effects thanks to the modeling of local deformations. The
difficult setting of parameters discriminating change and “no
change” situations relies on the a contrario framework [63]
giving an intuitive understanding of their behavior.

The method is divided into two main steps. First, using
SIFT-like descriptors extraction and matching, we compute a
global mapping and several local mappings between the two
images. Indeed, the a contrario framework permits the reliable
search of multiple local mappings. This step allows taking into
account local geometric deformations due to ground or build-
ing elevation. The output of this first step is a new set of
optimally matched local descriptors. The second step of the
method consists in detecting changes between descriptors. The
a contrario model yields thresholds to detect changes, defined
through an expected number of false detections. These changes
are then grouped to detect changed areas by evaluating the
number of changed keypoint under a no change hypothesis,
again in an a contrario framework. The proposed method is
then evaluated on synthetic and real images through quantita-
tive and qualitative experiments.

Recently, two works relying on keypoints for change detec-
tion have been proposed [47], [64]. In [64], SIFT descriptors
are used to select candidate regions, on which traditional pixel-
based methods are applied. In [47], local maximal points
are extracted to construct graphs in pair of images and
change maps are detected by comparing the graphs using local
patches around each keypoint. This paper, in contrast, directly

Fig. 1. Flowchart of the proposed approach. The keypoint matching and
mapping computations are presented in Sections II-A and II-B. The keypoints
evaluation for change detection is described in Section III-A, and the grouping
is described in Section III-B.

compares the keypoints for matching and change detection
between two unregistered images.

This paper is organized as follows (see the flowchart
in Fig. 1). The first step computing the global and local
mappings through keypoints and descriptors matching is pre-
sented in Section II. The second step of change detection
and grouping in an a contrario framework is described
in Section III. Then, Section IV presents and discusses
experiments of the proposed approach on synthetic and
real data.

II. FINE SPARSE REGISTRATION

The first step of the algorithm is, starting from two unreg-
istered images, to establish accurate and reliable correspon-
dences between spatial positions. First, keypoints matching
permits the estimation of one global transform and then
the same matching permits the estimation of locally refined
transforms. Then, for each keypoint in the first image, its best
corresponding spatial position is found in the other image,
using the various refined transforms to generate candidate
positions. The same is performed between the second and first
images. In short, we perform an accurate registration of the
positions given by local keypoints.

A. Keypoints Matching

We choose to rely on a SIFT-like procedure to extract
and characterize local keypoints since SIFT keypoints and
descriptors are robust to scale and illumination changes, and to
a certain extent to spatial affine transforms. Precisely, we use
a robust variant of the SIFT [60] method, as described in [65].
Note that, this choice, using SIFT for encoding the local
geometry, is not unique and that other descriptors can be used,
in particular in order to take advantage of different invariance
properties.

The first step of the procedure is to identify interesting
spatial positions. This is classically performed by detecting
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scale-space extreme of the Laplacian operator. Similarly, as in
the original SIFT, we use 13 scales with a scale ratio of 1.2.
Then, the detected maxima are filtered by applying a multi-
scale Harris test. For a point x detected in an image Iσ at
scale σ , this test is classically defined [66] as

Det(Mσ ) − kTr(Cσ )2 > t

where Cσ is a smoothed structure tensor computed on the
image Iσ , and k, t are two parameters. The outcome of this
step is a set of keypoints, each of which is associated with a
detection scale.

The next step is to compute SIFT-like descriptors at each
keypoint. Again, we follow a robust statistical procedure as
explained in [65]. Dominant directions are first associated with
each keypoint, using the robust statistical procedure from [67]
(a maximum of two directions is retained). Then, for each
point having scale σ and each dominant direction, a circular
region with radius 12σ is associated with it, divided into S sub-
regions [65] (in all experiments in this paper, we use S = 9).
For each subregion, a histogram of the orientation of the
gradient with respect to the dominant direction is built over
12 bins. As in the original SIFT, orientations are weighted by
the magnitude of the gradient. The final descriptor is made of
the concatenation of the histograms. Observe that the building
of these descriptors is given for completeness and is in no
case a contribution of this paper. Again the approach to be
described next is generic and could be applied with different
local descriptors. In what follows, we write {pa

i , da
i }i=1,2,...,Na

for the Na keypoints and descriptors extracted from the first
image Ia , and similarly for those extracted from the second
image Ib.

The last step of this classical preliminary matching of
keypoints is the matching step. We compare descriptors using
the circular earth mover distance (CEMD) (noted as DCEMD
in what follows), obtained by summing circular transportation
distances between orientation histograms (see [68]). For set-
ting matching thresholds, we use the automatic a contrario
procedure from [65]. An alternative would be to use the
criterion on the ratio of distances proposed in [60]. The
outcome of this step is a set of matched keypoints pairs
between images Ia and Ib.

The previous procedure is able to deal with unregistered
pairs of images having arbitrary displacement between them.
However, the procedure is straightforwardly speeded up by
assuming a maximum displacement amplitude between the
two images (e.g., by using a rough preregistration). In our
experiments, we restrict the search for similar keypoints to
a window of size W , a parameter to be specified in the
experimental section.

B. Keypoints Mapping

The next step of our procedure is to refine the spatial
correspondences found in Section II-A by keypoint matching.
There are two reasons for this. First, the detection of keypoints
may be unstable from one image to the other, in particular
when images are acquired with different sensors. Second,
many keypoints in one image are not matched with any

keypoint in the other image, or are wrongly matched. In order
to associate to each keypoint a reliable corresponding position
in the other image, we rely on the robust estimation of local
transforms.

1) Global and Local Mappings Extraction: From the
matched pairs of keypoints, we seek a set of transforms that
will be complete enough so that for each keypoint, one of the
transform will map the keypoint to its corresponding position
in the other image. These transforms mostly account for two
sources of disparity between images: one global rigid disparity
and several local disparities due to parallax effects between
images acquired with different incidence angles. These effects
are particularly strong in high-resolution urban images, where
tall buildings can shift over a large number of pixels.

The global transform will first be estimated thanks to all
keypoints correspondences, and then parallax effects will be
accounted for by the estimations of local transforms over
sliding windows. In all the paper, we consider affine transforms
(six parameters), both for the global mapping and the local
ones, a reasonable choice in urban scenes for which structures
are locally flat.

Both global and local transforms are classically obtained
using a random sample consensus (RANSAC) procedure.
Once the global transform has been estimated, the diffi-
culty is to obtain locally the remaining local transforms
needed to explain the disparity. For this, we rely on a mul-
tiple RANSAC procedure, the so-called multiple a contrario
RANSAC (MAC-RANSAC) introduced in [69].

The global mapping that we denote f0 is computed from
all pairs of matched keypoints. It is obtained by a clas-
sical RANSAC procedure (or equivalently by retaining the
most meaningful transform returned by the MAC-RANSAC
algorithm). Then, we consider sliding windows in the first
image, with size 2L ×2L and 50% overlap. For each window,
the corresponding set of pairs of matched keypoints is used to
feed the MAC-RANSAC algorithm, resulting in a set of local
transforms. It is worth emphasizing that estimating several
transforms using a RANSAC procedure is a tricky task, here
permitted by the use of MAC-RANSAC. In particular, this
algorithm automatically set the number of transforms that
should be retained for each window.

Next, we map each point in the first image to its corre-
sponding position in the second one, a position that we call the
mapping of the point. For each keypoint pa

i in Ia , we consider
the global transform f0 and the n local transforms f1, . . . , fn

corresponding to the local windows the point belongs to.
The mapping of pa

i is defined as the position fk(pa
i ) in Ib

most similar to pa
i . To assess the similarity and characterize

the mapping, each position fk(pa
i ) is associated a new local

descriptor, the scale and orientation of which are those of
da

i , the descriptor associated with the keypoint pa
i . For the

experiments considered in this paper, images roughly have
the same scales and orientations. If this is not the case,
the scales and orientations of the new descriptors have to
be computed (in case the two images differ by a known
rigid transform) or estimated as in the original descriptor
definition. We write db

i,k for this “projected” descriptor. The
mapping of pa

i is then defined as fk̂(pa
i ), where the index k̂ is
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Fig. 2. Simple situations where two local transforms correspond to two
groups of buildings with different heights, yielding different transforms by
parallax effect. Buildings in the red window are lower than that in the yellow
window and correspond to much smaller displacements.

defined as

k̂ = arg min
k

(
DCEMD

(
da

i , db
i,k

))
, k = 0, 1, · · · , n (1)

where D being the CEMD between descriptors and the set of
transforms f0, f1, . . . , fn being obtained as described above
from all local windows containing the point pa

i .
Similarly, each keypoint in Ib is mapped to a position in Ia .
Observe that the global transform f0 is added to the set of

candidate transforms in (1). This is useful if no local transform
is found by the MAC-RANSAC procedure.

Following the mapping of keypoints just described (from Ia

to Ib and conversely), we obtain a set of pairs of descriptors
that should correspond to the same physical positions on the
scene. We write {

xa
i , xb

i , da
i , db

i

}
i=1,...,N

for these positions and for the associated descriptors.
2) Experiments on Local Mapping: A simple situation illus-

trating the computation of local mappings is given in Fig. 2,
where the two-colored (red and yellow) windows correspond
to group of buildings with different heights. Thanks to the
MAC-RANSAC algorithm, different local mappings are found
for each window.

To further illustrate the utility of the local mappings, we per-
form two experiments. In the first one, a synthetic image is
obtained by juxtaposing two buildings extracted from a larger
image. A second synthetic image is obtained by placing the
buildings in different relative positions. We can see in Fig. 3(a)
that the matched keypoints are detected as two different
groups (corresponding to two different local transforms) by
the MAC-RANSAC procedure. In Fig. 3(b), we show a more
realistic experiment. We compare two small images containing
buildings with different heights, extracted, respectively, from
Geoeye-1 and Wordview-2. The MAC-RANSAC algorithm
detects a different group (local transforms) for each building.

III. CHANGE DETECTION

The main idea to detect changes is quite simple. First,
we identify descriptors corresponding to the same physical

Fig. 3. (First and second rows) Synthetic images made of the juxtaposition of
two subimages of buildings in different relative positions. Two image patches
cut from (Third row) Geoeye-1 and (Fourth row) Worldview-2.

location [that is, pairs (da
i , db

i )] that have changed signifi-
cantly. Second, we perform spatial grouping of these changed
descriptors. For both steps, we draw on an a contrario method-
ology [70] that yields robust decision criteria.

A. Detection of Changed Keypoints

For each pair of positions (xa
i , xb

i ) (ideally corresponding
to the same physical location if the previous step has suc-
ceeded) we want to check if a change has occurred between
images Ia and Ib. This is achieved by computing a distance
between the descriptors and then setting a threshold thanks
to a statistical procedure. For this, we rely on an a contrario
approach [63], [70], both for robustness and genericity. The
approach is similar to the one introduced in [65] for the
comparison of local descriptors, except that in our case we
want to assert the dissimilarity of local descriptors and not
their resemblance.

The principle of a contrario methods is to set a random
model, called background model or null hypothesis, for which
it is assumed that no event should be detected. This auto-
matically yields detection thresholds [63], [70]. In our case,
“no detection” means “no change.” We will set the detection
threshold so that under the background model, most pairs of
descriptors (the meaning of “most” is specified by ε1, to be
discussed in Section IV-B) will be at a distance smaller than
this threshold.

In order to define the background model, we assume that the
distance D between descriptors can be written as D(da

i , db
i ) =∑S

s=1 d(sa
i,s , sb

i,s ), where S is the number of sectors composing
the local descriptors (see Section II-A), sa

i,s is the sth sector
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of descriptor da
i , and d is some distance between sectors. This

is in particular the case for the distance DCEMD that we use,
initially introduced in [65], for which d is the CEMD between
orientation histograms.

As it is done in most a contrario approaches, the random
model is defined through an independence assumption. In our
case, this results in the following definition for the background
model (or null hypothesis).

Hypothesis 1 (Background Model H0): for any i , the ran-
dom variables {d(da

i,s, db
i,s)}s=1,··· ,S are mutually independent.

We denote z the random variable corresponding to the
distance between two descriptors under H0 hypothesis (back-
ground model for “no change” case). Using the previous
independence assumption, we get that the probability that z
is larger than a threshold is

�(δ) := P(z ≥ δ|H0) =
∫ +∞

δ

S∗
s=1

Gs(z)dz (2)

where the probability density function of the random variable
d(da

i,s, db
i,s ) is denoted by Gs and ∗ is the convolution.

The next step is then to set a threshold δ on distances, so that
false alarms are controlled. One of the key idea of a contrario
methods is that it is much easier to compute the expected
number of false alarms (NFAs) than the probability that a
certain NFAs occurs [63]. Observing that the total number of
comparisons between descriptors is N = Na + Nb , we define
as changed any pair (xa

i , xb
i ), i = 1, 2, · · · , N, satisfying

�
(
DCEMD

(
da

i , db
i

)) := P(z ≥ DCEMD
(
da

i , db
i

)|H0) ≤ ε1

N
(3)

where ε1 sets the bound on the expected number of false
detections. With such a definition of “changed keypoints” we
easily get that if we perform N comparisons between descrip-
tors under H0, the expected number of changed keypoints is
smaller than ε1.

In order to be able to compute the probability given
by (2), we must estimate the density Gs . In this paper, in a
way similar to [65], the densities are empirically estimated
through the histograms of observed distances d(da

i,s , db
i,s), for

i = 1, . . . , N .

B. Changed Keypoints Grouping

In Section III-A, we have set a threshold on the distance
between descriptors. After this step, we retain all pairs of
descriptors at distance larger than the threshold as “changed.”

Although the descriptors and matching method used are
robust, they only use local information (at the scale of the
descriptors) and some isolated changes, such as cars that have
moved, may be detected. In most circumstances, such as the
monitoring of natural disasters or for urban planning, such
changes are not relevant. Therefore, we now introduce an
automatic way to group the descriptors detected as changed,
yielding larger “changed” areas that will be the final output
of our algorithm. Again, this grouping is performed using an
a contrario method. More precisely, we will first define a set of
candidate regions by multiscale circulars centered at each key-
points, and then for each region, we will compare the number

of detected keypoints and the number of changed descriptors.
When these two numbers are suspiciously different (according
to a statistical criterion to be defined), we will detect the region
as “changed.” Eventually, a maximality principle permits to
avoid the detection of multiple regions.

We arbitrarily choose to perform the grouping in image Ia ,
but performing it on Ib would yield very similar results.
Because keypoints are mapped symmetrically, so image Ia and
image Ib have the same distribution of keypoints and changed
keypoints.

In order to estimate when the number of changed descriptors
is high in a given region, we must first compute the proba-
bility that a descriptor is changed between the two images.
We assume that this probability can be estimated globally
over the image, although using a local estimation could also
provide interesting results. If Nc is the total number of changed
descriptors (according to the procedure of Section III-A), then
the probability � that a descriptor is changed is estimated as
� = Nc/N .

Following the a contrario methodology, we detect groups
of changed keypoints that are very unlikely under some
background models. Again, this background model relies on
an independence assumption between the individual elements
to be grouped, in our cases changed descriptors. This hypoth-
esis asserts that each descriptor may be changed with some
probability, independently of the other descriptors. That is,
we define the background model H′

0 as follows.
Hypothesis 2 (H′

0): The number of changed keypoints in
a local region containing n keypoints follows a binomial
distribution B(n, �).

Therefore, the probability that this region contains more
than m changed keypoints is

�(m, n) := P
(
k > m|H′

0

) =
n∑

k=m

B(k, n, �) (4)

where B(k, n, �) = (n
k

) · �k · (1 − �)n−k .
The meaningfulness of a given region is then defined

through an NFA [70]. If the region has m changed descriptors
for a total number of n keypoints, then the NFA is defined
as �(m, n) times the total number of considered regions [63].
In order to be able to detect changed regions with various
scales, we consider, for each keypoint, a set of disks with dif-
ferent radii centered on this point. The set of radii we consider
is obtained by uniformly sampling the interval [rmin, rmax],
with a step of nr . Therefore, the total number of tested regions
is � = nr · N . Therefore, the NFA of a region containing n
keypoints among which m descriptors have changed is

NFA = � · �(m, n). (5)

When working with large images, numerical values of the
NFAs may become intractably small. In such cases, one can
rely on the Hoeffding bound [71] on the tail of the binomial
distribution to get an approximation of the NFA.

Then, a region will be detected if its NFA is smaller than
a detection parameter ε2. As before, this detection parameter
has an intuitive meaning since it is an upper bound of the
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number of (false) groups that should be detected if hypothesis
H′

0 is true.
The last step in order to decide which regions are changed

is a maximality principle. Indeed, the set of all meaningful
changed regions (regions for which the NFA is smaller than ε2)
is highly redundant and in particular contains many nested
regions. Now, a strong asset of the NFA is that it may be com-
pared between entities of different sizes (see [63], [72]). More
precisely, we use a multiscale strategy here, which means that
at each change keypoint, we select several candidate regions
with different sizes. Therefore, among all meaningful regions
(disks) centered on a given keypoint, we only retain the most
meaningful one, that is, the one having the smallest NFAs.

C. Algorithm Pipeline

The complete approach is summarized in Algorithm 1. The
choice of parameters will be discussed in Section IV, where
we gather experimental results.

Algorithm 1 Change Detection Between Two Digital Images

Require: Two images I a and I b , searching scope W , thresh-
old for NFA ε1 and ε2.

Ensure: Change detection result (a binary mask)
1: Extract SIFT-like keypoints and descriptors
2: Match keypoints using an a contrario approach;
3: Mappings. Compute a global transform; compute local

transforms for each local region (overlapping sliding
windows)

4: Best match computation. Using the estimated transforms,
associate to each keypoint a mapping (best correspond-
ing position) in the other image, yielding pairs of
keypoints and descriptors through Eq. (1)

5: Change detection. Calculate the CEMD distance between
each pair of descriptors and evaluate whether the pair
is changed or not, using an a contrario approach with
threshold ε1 through Eq. (2) and Eq. (3).

6: Grouping. Consider multi-scale concentric circular regions
centered at each key point and decide whether a region
is changed (containing a large number of changed key-
points), by using an a contrario approach with threshold
ε2 through Eq. (4) and Eq. (5).

IV. EXPERIMENTS AND ANALYSIS

We now proceed to the experimental validation of the
proposed approach for change detection. We first detail the
data sets we use. We then present the experimental setup,
including a presentation of the parameters of the algorithm.
Next, we provide a numerical evaluation.

In order to quantify the results, we build pairs of syn-
thetic images on which changes are artificially added. Next,
we show the utility of the local transforms involved in our
algorithm. Eventually, we provide results on real and chal-
lenging high-resolution image pairs, originating from different
satellites or even directly acquired from Google Earth.

A. Data Sets

Our experimental data sets are taken from the following
scenes.

1) Scene-1: GeoEYE-1 and WorldView-2 data. The
GeoEye-1 satellite sensor was launched in 2008 and
provides a submetric resolution (between 0.4 and 0.6 m
depending on the viewing angle). WorldView-2 was
launched in 2009 and also provides approximately a
0.5-m resolution.
The images are obtained on the city of Toulouse, France.
The image from GeoEye-1 was taken in 2010, while the
image from Worldview-2 was taken in 2012

2) Scene-2: Google maps data. Both images are taken from
the same place but at different times. More importantly,
they also appear to be taken by satellites with different
incident angles. Thus, the buildings in the images shift
heavily from the first image to the second image. It is
also worth noticing that these images have unknown ori-
gin and, in particular, have undergone unknown process-
ing stages (enhancement and compressions). This is both
a challenging and realistic application case. We have
roughly resized the spatial resolution of the images to
0.48 m. The ground truth is obtained manually.
The images were acquired near Avenue du Général
Leclerc, Paris, France, in 2008 and 2014, respectively,
with sizes 850 × 1000 pixels.

3) Scene-3: GeoEye-1 and QuickBird data. QuickBird II
was launched in October 18, 2001, and provides a
submetric resolution of 0.65 m. Considering that the
GeoEye-1 data have a different resolution, we preprocess
them by ENVI to ensure the same spatial resolution
of 0.65 m and rotation by bicubic interpolation.
The images are obtained on the city of West Ujimqin
Banner, China. The images from QuickBird and
GeoEye-1 were taken in 2007 and 2013, respectively.

B. Experimental Setup

Four parameters need to be set by users in our method. This
section describes them in detail.

1) Searching Scope W: This parameter controls the search-
ing scope used in the matching step. For each keypoint,
only keypoints at a distance smaller than W in the
other image are sought for. This restriction relies on
the hypothesis that images are roughly registered and
is mostly aimed at speeding up the process (although
it may also eliminate some outliers). As such, it is not
critical and can easily be adapted to a given situation.
In our case, the spatial resolution of the considered
image pairs varies from 0.46 to 0.65 m. These images
are roughly registered by their latitude and longitude.
We have set W = 50 (roughly 23–33 m) once and
for all, which appeared as a good compromise between
matching accuracy and speed. The value W = 100
has also been tested, yielding comparable results at the
expense of speed.

2) Local Patch Size w: This parameter controls the size
of the sliding windows on which local transforms are



3910 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 6, JUNE 2019

Fig. 4. (Left) Evaluation of the detection of changed descriptors. (Middle) Evaluation of the detection of changed regions. (Right) Comparison with the
approach from BNP-MRF [73].

computed. It should be big enough to contain the larger
building of the analyzed scene and can be fixed depend-
ing on the image resolution. Again, for the considered
images, the spatial resolution varies from 0.46 to 0.65 m,
so that a local patch with w = 50 covers a region with
size 23–33 m, covering most single buildings. Some
large buildings cannot be covered by a single patch,
but the chosen size appears large enough for a reliable
estimation. Besides, the value of w should not be too
small because in this case, there may not be enough
keypoints to estimate the local mapping functions.

3) Threshold for the Detection of Changed Descriptors ε1:
Descriptors corresponding to the same spatial position in
the two images are evaluated as changed or not by an a
contrario method. This requires to set a bound ε1 on the
number of false detections. Since this parameter has a
statistical meaning, its setting is easier and more robust
than the setting of a threshold on the spatial distance
D(pa

i , pb
i ). More information is given in Section IV-E.

4) Threshold for the Grouping of Changed Keypoints ε2:
The changed key points are grouped into changed
regions using an a contrario multiscale strategy. Again
this requires the setting of a parameter ε2, for which the
same remarks as for ε1 apply. More information is given
in Section IV-E.

We provide the setting of these parameters and discuss their
effects for each forecoming experiment.

C. Numerical Evaluation on Synthetic Realistic Images

We first consider synthetic images, on which the changes are
artificially added, permitting a numerical evaluation. We start
from 20 pairs of images acquired from Scene-1.

For each pair, we create changes by inserting excerpts from
other images from the same satellites. These excerpts locations
then provide the reference data for the detection of changes.
Images are available on this web site.1 The performances
of our algorithm are then compared to methods relying on
pixel-based comparisons. These methods are applied after a
global registration using a homography estimated by SIFT and
RANSAC-based methods. We use the same protocol as the
one recently proposed in [73]. Performances are compared
through ROC curves, displayed in Fig. 4. The first curve,

1http://idiap.ch/∼gliu/eusipco2016/changedet.html

on the left, evaluates the detection of changed descriptors. The
probability of false alarms and the probability of detection are
computed using each detected keypoint. Keypoints outside the
artificially added excerpt are considered as not changed, and
the other ones as changed. We can see on this curve that the
proposed method outperforms pixel-based ones, even though
the correlation method gives good results in this case.

The second curve, in the middle, evaluates the grouping
of keypoints. Contrarily to the previous ROC curve, this
curve is obtained by considering all pixels of the image.
Indeed, the ultimate goal is to correctly classified all pixels as
“changed” or “not changed.” Here, we can see that the pro-
posed approach is clearly better than pixel-based approaches,
which in particular are not able to deal with parallax effects.

The third curve in Fig. 4 includes also a comparison with the
state-of-the-art method [73]. For this comparison, we use the
candidate images from [73]. The used reference data not only
include the removed buildings, but also include the changed
plain ground, which is not taken into account by our method.
As a consequence, the comparison is not balanced but we
presented it for the sake of completeness.

D. Usefulness of the Local Transforms

This section shows the necessity of estimating local trans-
forms for the detection of changes between descriptors.
In order to do so, we compare the results obtained with and
without introducing the local transforms in addition to the
global transform on two real images of the same sensor.

The corresponding results are shown in Fig. 5. The first
column shows the input images I a and I b, and the second
column shows the evaluated changed keypoints when only a
global mapping function is used. The third column shows the
evaluated changed keypoints by using the proposed algorithm
(combination of global and local transforms). Framed in blue
and pink are details of the results. In particular, one sees that
when no local transform is used, points on the circular elevated
structure are mapped to wrong positions, which results in
false detections of changed keypoints (red points in the blue
rectangles for image Ia and Ib). This is corrected by the
estimation of local transforms (pink rectangles).

E. Experimental Results on Heterogeneous Images

In this section, we perform change detection on nonsyn-
thetic images, acquired by different satellites on the city of
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Fig. 5. Utility of estimating local transforms. (First column) Two original images taken by different sensors (Geoeye-1 and Worldview-2). (Second column)
Changed keypoints (in red) using the global approach (a single transform is estimated to map the keypoints) are shown for image Ia on the top and image
Ib on the bottom. (Third column) Changed keypoints obtained when estimating local transforms for both images. (Fourth column) Details on the top without
local transforms and on the bottom with local transforms.

Toulouse. Then, we apply our algorithm on images extracted
from Google Earth, for which no calibration information is
available.

1) Experiment 1: In this first experiment, we apply our algo-
rithm to high-resolution remote sensing images from Scene-1.

We choose three pairs of parts of the images and detect
the changes between them, which have a size of 700 × 700,
850 × 700 and 1000 × 1000 pixels.

In this experiment, W , which used to restrict the searching
scope for each key point, is set to W = 50. The two parameters
ε1 and ε2, which are used to control the NFA, are set to be
ε1 = 1 and ε2 = 10−5, respectively.

The corresponding results are shown in Figs. 6–8, respec-
tively. In this experiment, images (a) and (b) are not registered
and not aligned at the pixel level. In particular, it can be
noticed in the left bottom corner of Fig. 7(a) and (b) that the
pixels corresponding to a tall building shift widely from the
first image to the second one, over roughly 7 pixels. However,
applying the MAC-RANSAC method over each local region
with the matched keypoints, we can obtain multiple mapping
functions. Ideally, the matched keypoints belonging to any
single building can be grouped into a single set and be mapped
to the other image. Thus, in any local region, each keypoint
in the first image can be mapped to several locations in
the second image. By choosing the most similar ones as the
mapped keypoints, we are able to ensure that most keypoints
are mapped to the correct places in the second image.

Figs.6(e)–8(e) illustrate the grouping results. Green key-
points are the points eventually detected as “changed.” Note

that, our results are not so accurate at the border of the changed
region. This is due to the use of sparse SIFT-like keypoints
rather than a dense patching. Nevertheless, the final region
covers most of the (manually estimated) ground truth.

Observe also that due to the use of SIFT descriptors,
the proposed change detection procedure is not sensitive to
very small changes, such as the moving cars in the street. This
may be seen as an advantage, since change detections in high-
resolution remote sensing images are usually more concerned
by changes on buildings than on moving cars. Of course,
this aspect may be finely tuned by selecting the scale of
the considered SIFT descriptors, depending on the targeted
application.

2) Experiment 2: In this experiment, we process one pair of
optical remote sensing images extracted from scene-2 (Google
Earth), as shown in (a) and(b) in Fig. 9. In particular, a large
bus deposit was demolished between these dates and at this
place (bottom right of the image).

In this experiment, W , which used to restrict the searching
scope of each keypoint, is set to W = 50. The parameter ε1
which is used to control the NFA when detecting changed key
points is set to be ε1 = 1. However, as these high-resolution
remote sensing images from Google Earth are acquired in
different situations, the other parameter ε2 used to control the
NFA when grouping of key points is set to ε2 = 10−5.

In Fig. 9(e), our result indicates the exact location of the
(manually evaluated) changed region. However, compared to
the ground truth in (f), our mask does not cover some flat parts
of the region. This is because there are few SIFT keypoints in
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Fig. 6. Change detection on a pair of optical satellite images taken by different sensors (Geoeye-1 and Worldview-2). Both images have a resolution of
0.46 m. (a) and (b) Original images without co-registration. (c) and (d) Changed key points (in green) for each image. (e) Final result of change detection
(green) overlaid on image (a). (f) Manual annotation.

Fig. 7. Change detection on a pair of optical satellite images taken by different sensors (Geoeye-1 and Worldview-2). Both images have a pixel sampling
of approximately 0.5 m. (a) and (b) Original images without co-registration. (c) and (d) Changed key points (in green). (e) Final result of change detection
(green). (f) Manually annotation.

these flat regions. This is one of the limitation of our algorithm,
which should be adapted to dense points comparisons.

3) Experiments 3: In this experiment, regions of size
2000 × 2000 have been extracted from Scene-3, as shown in

Fig. 10(a) and (b), which represents a difficult case. The para-
meters for this experiment are W = 50, ε1 = 1, and ε2 = −1.

In the scene, there are buildings, sport court, and trees and
we annotated many changes in Fig. 10(f). The resolutions of



LIU et al.: COMPARISON OF LOCAL DESCRIPTORS FOR CHANGE DETECTION IN VHR SATELLITE IMAGES OF URBAN AREAS 3913

Fig. 8. Change detection of a pair of optical satellite images taken by different sensors (Geoeye and Worldview). (a) and (b) Original images without
co-registration. (c) and (d) Changed key points (in green) for both images. (e) Final result of change detection (green) overlaid on (a). (f) Manual annotation.

Fig. 9. Change detection on a pair of optical satellite images taken from Google Earth. (a) and (b) Original images without co-registration.
(c) and (d) Changed key points (in green). (e) Final result of change detection (green). (f) Manual annotation.

the images are not similar and we first rescaled and rotated
the data by bicubic Interpolation using the ENVI software.
It would have been possible to either automatically compute
the scaling and rotation using methods in [74] or to rely on the
scale-invariant SIFT to detect the scale difference between the
two images, but these steps are beyond the scope of this paper.

Compared to the annotated groundtruth of Fig. 10(f), our
result indicates most of the changed regions with a few key-
points. However, the key-points do not completely cover the
changed regions. Besides, our result also has a false alarm
indicated by the red rectangle in Fig. 10(f), which is caused
by changing trees.
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Fig. 10. Change detection of a pair of optical satellite images taken by different sensors (GeoEye-1 and QuickBird II). (a) and (b) Original images without
co-registration. (c) and (d) Changed key points (in green) for both images. (e) Final result of change detection (green) overlaid on (a). (f) Manual annotation.

Fig. 11. Number of changed descriptors as a function of the threshold ε1.

F. Discussion on the Choice of Parameters

In contrast with other methods, and in particular, the pixel-
based methods, the proposed method is largely based on an a
contrario strategy, which alleviates the choice of parameters to
some extent. Nevertheless, and as it was illustrated on Google
images, this parameter choice still has its importance.

Fig. 12. Illustration of the − log(NFA) for each keypoint. For better
visualization.

The first parameter ε1 is the threshold for detecting changed
descriptors. The bigger the value, the more the descriptors
will be classified as changed. Fig. 11 illustrates the rela-
tionship between the number of changed descriptors and ε1,
from which we can see that the total number of changed
descriptors increases slowly as ε1 becomes larger. Fig. 13
shows the changed descriptors for four different values of
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Fig. 13. Detected changed descriptors for various values of ε1 = 2−3, 20, 23, 26.

Fig. 14. Changed regions for different thresholds ε2 = 20, 2−3, 2−6, 2−9, all experiments being performed with ε1 = 1.

ε1 = 2−3, 20, 23, 26. If ε1 is very small, we detect less
keypoints in changed and unchanged regions. On the contrary,
if ε1 becomes larger, we detect more keypoints in both changed
and unchanged regions. Under the a contrario hypothesis,
the final result is robust if ε1 varies, which can be seen from
Figs. 11 and 13. It can be seen that ε1 is a robust parameter.
In our experiment, we set ε1 = 1.

The second parameter ε2 is the threshold for grouping the
keypoints. In Fig. 12, we show the regions whose NFA is
less than 1. Here for better visualizing, the NFA value is
transformed by − log(NFA). We can observe that the NFA
is different in different regions. As expected, the regions with
a larger number of changed descriptors have a larger value
− log(NFA). In Fig. 12, the region where a construction site
has completely disapeared has the largest value − log(NFA),
while the regions with small changes like moving cars have
a smaller value for − log(NFA). This indicates that the NFA
is a reasonable indicator of the magnitude of changes. Fig. 14
illustrates the detection results with ε2 = 20, 2−3, 2−6, 2−9.

G. Computing Time

In this section, we discuss the computing time of the
algorithm. Recall that the algorithm is made of five steps:
keypoints extraction, matching, mapping, changed keypoints
detection, and grouping.

In the first step, the keypoints are first detected and the
corresponding descriptor is classical. It accounts for about a
quarter of the overall process. In the second step, we detect
matched keypoints for each one from a large set of candidates.
This is a costly step which is kept reasonable thanks to the

TABLE I

AVERAGE TIME COST (IN SECONDS) OF EACH STEP FOR DETECTING

CHANGES ON 33 PAIRS OF IMAGES WITH SIZE 2000 × 2000

predefined searching scope W . In the third step, keypoints
from one image are mapped into the other image by using the
MAC-RANSAC algorithm, which is processed in a sliding
window with width w and 50% overlapping. In each window,
affine mapping functions are estimated from four pairs of
matched keypoints, using 1000 trials. The fourth step, estimat-
ing the threshold automatically by an a contrario procedure
from the mapped keypoints, has marginal computational cost.
The last step is more costly since it necessitates the grouping
of the changed keypoints using (4) and (5) with a multiscale
strategy. However, evaluation of (4) is greatly reduced using
the Hoeffding inequality [71].

Table I shows the average cost of each step for 33 pairs of
images with size 2000 × 2000. We set W = 50 and w = 50
in this experiment. The CPU is an Intel Core i7-5930K with
3.50 GHz. The program is written in C++ with MATLAB
interface. The total cost of the change detection procedure is
about 10 min, which is practicable in an offline scenario.

V. CONCLUSION

In this paper, we have proposed a change detection method
enabling one to compare images having the same spatial
resolution but that are not necessarily preregistered. Thanks to
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the use of invariant local descriptors, the method is robust
to radiometric changes and local geometric distortions, for
instance corresponding to parallax effects. Because of this
geometric robustness and because these descriptors are adapted
to geometric structures, the method is especially adapted to
high-resolution urban scenes. There are several ways this paper
could be continued. First, the method could be extended to
images with different spatial resolutions by taking advantage
of the scale feature of the local descriptors. Second, we wish
to produce a larger scale evaluation involving ground truth
on high-resolution urban images. Next, one should take into
account shadows that in practice are responsible for frequent
false detections. Last, the method will fail in the case of low
contrast scenes, where few keypoints are detected. In such
situations, a dense keypoint extraction could be considered.
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