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1. Introduction

Since the last few years, new optical (Quickbird, Pleiades) and synthetic aperture
radar (SAR) (TerraSAR-X, COSMO-SkyMed) sensors that provide high-resolution
images have been launched. The arrival of these sensors opens new perspectives for
pattern recognition problems and, specifically, for road network extraction. Indeed,
new approaches exploring the characteristics of these high-resolution sensors have
been proposed in the literature (Poulain, Inglada, and Spigai 2008; Tison et al.
2004; Negri et al. 2006; Hedman et al. 2010; Lacoste, Descombes, and Zerubia
2010; Türetken et al. 2013; Miao et al. 2015a,b). Moreover, the need of multi-
sensor image processing methods to tackle problems related to scene interpretation
is increasing (Sportouche, Tupin, and Denise 2009; Poulain et al. 2009; Brunner,
Lemoine, and Bruzzone 2008; Tupin and Roux 2003; Hinz and Baumgartner 2003).

The problem of road network extraction in remote sensing images has been stud-
ied for a long time because of its importance in many applications such as urban
planning, map making and updating, traffic management, industrial development,
cartography and so on. Besides, the volume of collected imagery is increasing rapidly
in recent years and, consequently, manual processes become very time consuming.
This problem is considered a very difficult task mainly because the spatial and
spectral features of the roads can be very complex and variable. Despite of what
may be inferred, using images with better resolution does not make the problem
easier. Indeed, the presence of many objects caused by vehicles, traffic signs and
buildings, usually mask parts of the roads present in the image.

There are many works in the literature proposing different approaches, either
automatic or semi-automatic. An approach that is used in general is a two-step
analysis. The first level is dedicated to a feature extraction step and the second
level involves some methods for grouping analysis, i.e., a high level step aiming
to extract the final road network by using structural/contextual information. Con-
cerning the first step, different methods proposed in the literature use techniques
such as edge detection (Zhou, Venkateswar, and Chellappa 1989; Canny 1986; Steger
1998), road mask filters (Gamba, Dell’Acqua, and Lisini 2006), adaptive directional
filtering (Dell’Acqua, Gamba, and Lisini 2005), statistical analysis (Skriver et al.
2005), morphological operators (Chanussot, Mauris, and Lambert 1999; Katartzis
et al. 2001) and others. In the case of the second step, there are works in the liter-
ature using minimisation of a global cost function applying Markov random fields
(MRF) (Tupin et al. 1998; Katartzis et al. 2001; Negri et al. 2006; Tupin, Housh-
mand, and Dactu 2002), tracking methods (Vosselman and Knecht 1995; Zhou,
Bischof, and Caelli 2005) and dynamic programming (Barzohar and Cooper 1996).
Other works also use genetic algorithms for this step (Jeon, Jang, and Hong 2002).

Concerning data fusion, Hall and Llinas introduced the multi-sensor data fu-
sion (Hall and Llinas 1997), where some applications, process models and identi-
fication of applicable techniques were covered. When it comes to image fusion to
tackle the problem of road network extraction, some works can be found in the
literature. Hedman et al. (2010) and Lisini et al. (2006) used feature-level fusion
in order to improve road extraction in high-resolution images. Lisini et al. propose
an approach using optical and SAR data for extracting roads with different char-
acteristics and provides the possibility to make the fusion of results coming from
different sources. Huang et al. propose a road line extraction method based on a
new feature fusion approach, i.e., the complementary information of two kinds of
line feature is used. A fusion method was also used by Lisini, Gamba, and Luebeck
(2011) where the backscattering characteristic of X-band and P-band are employed
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to extract roads from airborne dual-band SAR image. Recently, a new stereoscopic
road network extraction framework based on the decision-level fusion of optical and
SAR imagery was proposed by He et al. (2013).

Although many achievements have been made on the extraction of road networks
from SAR imagery, this kind of data is seriously affected by related noise, which
makes difficult to obtain good results using existent methods in the literature (Sun
et al. 2014). There are still problems to be tackled due to the high complexity
and difficulty of this task. Some very recent efforts in this sense can be found such
as the work by Lu et al. (2014), where the authors propose a new method based
on the region growing algorithm, which is suitable for different resolution SAR
images. In this method, a weighted ratio line detector is used as a first step and
the region growing approach is used as the second step to optimise the network.
The work by He et al. (2014) uses a multi-scale linear feature detector and beamlet
framework. Improvements for the representation of circle roads are also proposed.
Even though new methods for road extraction from SAR images have been proposed
such as the ones described before, there are not very recent efforts to improve fusion
based methods.

Regarding graphical models, the use of graphs have been emerging rapidly as a
consolidated representation for image processing and analysis (Lezoray and Grady
2012). Indeed, many different concepts can be defined using graphs and a large
number of real-world problems can be modelled using this approach. In particular,
probabilistic graphical models have found many developments and applications in
different areas of research, due to their appropriateness to represent discrete data
by modelling neighbourhood relationships. Besides, these models also provide an
interesting way to define theoretical algorithms for the processing of functions re-
lated to graphs. Graphical models have become a unified representation for image
processing and analysis, mainly because of its discrete nature and mathematical
simplicity.

Graphical models, specifically MRFs and related models, have been used to tackle
main problems on image processing such as segmentation/classification, image reg-
istration, and feature detection. If we consider works related to satellite images,
some very recent works can be found in the literature. Salberg and Trier (2012)
propose a hidden Markov model for the analysis of multi-source time series or re-
mote sensing images in order to detect changes in the spatial coverage of forests.
Moser and Serpico (2012) propose a novel unsupervised change detection technique
based on MRFs, line processes, and a dictionary of SAR-specific probability density
models. Different techniques for image classification can be found in (Xu et al. 2013;
D’Elia et al. 2014; Hoberg et al. 2015). Xu et al. use random fields of latent topics to
propose an efficient unsupervised semantic classification method for high-resolution
satellite images. D’Elia et al. also explore the problem of classification using features
extracted from a segmentation algorithm based on tree structured Markov random
fields (TS-MRFs). Finally, Hoberg et al. propose a method for multi-temporal and
contextual classification of remote sensing images based on Conditional Random
Fields (CRFs). Works using graphical models for feature extraction and registra-
tion can be found in (Song, Huang, and Zhang 2014; Papila, Kent, and Kartal 2014;
Yang et al. 2014).

In this context, we develop a unified framework that is easy to use and to extend
for integrating information of multiple optical and radar satellite sensors (Perciano
et al. 2011). The present paper introduces the following original and relevant contri-
butions. The use of connected components to represent road primitives is developed
for the first time, simplifying important steps of the detection process and making
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the framework more reliable. We highlight that the use of connected components
changes completely the modelling behind the framework. Besides, a second high
level step is also introduced (two levels MRF). And last but not least, as an applied
contribution, data fusion is used in the new method taking advantage of the infor-
mation provided by different sources (optical, radar and multi-temporal images),
improving the road detection results. The aim of the paper is to describe the pro-
posed framework with its different steps and to present experimental results and
perspectives/scenarios for its usage. Together, these features improve the results
provided by other previous approaches from the literature.
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2. Markovian framework for road extraction

2.1. Introduction

Figure 1 presents a flowchart that summarises the steps of the proposed approach.
We briefly mention all the steps that make up the framework (the details are worked
in the next sections) containing two main blocks (dashed lines rectangles):

• The first block is a multi-scale approach including 3 main steps:
◦ Low level step (line detection): from the input image (or images

from different sources), a process of line detection is carried out in order
to find road candidates, which are grouped by connected components
(1);

◦ Graph construction: using the connected components found in the
previous step, an attributed relational graph is built (2);

◦ Graph labelling: a MRF is defined on the built graph, and a minimi-
sation process is done in order to find the optimal binary labelling of
the graph. Here the data coming from different sources is also used (if
applied). The labelling is mapped back to the image to find the final
road network (3).

• The results of each scale are merged together to form the input of the next
block:

◦ Road sections level: the previous merged result is processed to obtain
only road sections and crossroads (4);

◦ Second high-level step: a new graph is built and a second minimi-
sation process is carried out which leads to the final road extraction (5
and 6).

It can be observed that the proposed fusion approach is done at the low-level
step, where the line detection is applied to all the used images. The multiple source
data is also used in both high-level steps. In the next sections each step mentioned
above is explained in detail.

2.2. Line detection and low-level fusion

2.2.1. Line detection

Considering SAR imagery, there are several classical edge detectors in the litera-
ture, such as T distribution method (Cook et al. 1994), log-likelihood hypothesis
testing method (Caves and Quegan 1994), ratio method (Touzi, Lopes, and Bous-
quet 1988), ratio line detector and cross-correlation line detector (D1D2) (Tupin
et al. 1998), the unbiased detector of curvilinear features (Steger 1998) and so on.
Ratio detector (Touzi, Lopes, and Bousquet 1988) provides the relation between the
false alarm and the image edge obtained from the statistical properties of the SAR
image. This detector is widely used for its statistical based deduction of threshold.
The D1D2 detector (Tupin et al. 1998) is based on the ratio detector, as highlighted
by R. Touzi. The D1D2 detector proposed by Tupin improves the ratio detector by
adding the capability to detect linear objects with a certain width. In this work we
use D1D2 detector for the low-level step. This detector is defined as the symmetrical
sum (Bloch 1996) of the responses of two detectors, for each pixel of the image:

λ(r, ρ) =
rρ

1− r − ρ+ 2rρ
, (1)
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Figure 1.: Flowchart presenting all the steps of the proposed framework. It is com-
posed by two main blocks (dashed lines): a multi-scale approach including a low-
level step, a graph construction and a graph labelling; and a second high-level step
where only road sections are considered. The framework can be used with images
from different sources, from which a low-level fusion approach is carried out and a
fusioned likelihood is used for the high-level step.
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where r is the D1 detector, a ratio edge detector, which is defined as:

r = min(r1,2, r1,3) (2)

with ri,j = 1 −min(µi/µj , µj/µi), µi and µj are the empirical mean values of the
regions i and j (see Figure 2), respectively, and ρ is the definition of D2 detector,
a cross-correlation line detector:

ρ = min(ρ1,2, ρ1,3) (3)

with

ρi,j =

√
ninj(µi − µj)2

1 + (ni + nj)(niσ2
i + njσ2

j )
, (4)

where σ2
i denotes the variance of the amplitudes in region i and ni is the number of

pixels in region i. The final response of the detection is a magnitude image which

�
�
�
�

w

h

R1R2 R3

p

Figure 2.: Line detection mask used for a specific pixel p given a direction (vertical
here), a width w and a height h. The ratio and the cross-correlation between region
R1 and each region around it, R2 and R3, are calculated and the symmetrical sum
in Equation (1) is used to combine the two measures.

is thresholded and thinned, resulting in a binary output.
In this work we also explore optical images for the experiments. In this case, for

the low-level detection, the same criterion (D1 and D2 detectors) is used. Although
not optimal for optical images, the same detection approach can be applied.

2.2.2. Low level fusion

In the proposed approach we introduce the idea of data fusion using the same
procedure for line detection described above. For this purpose, the line detectors are
calculated for all images from different sources. Suppose that I = {I1, I2, . . . , Im} is
a set of images of the same region, acquired from different sensors and appropriately
registered. After calculating the responses r and ρ for each image in I, a set of
responses is obtained, ΛI = {rI1 , ρI1 , rI2 , ρI2 , . . . , rIm , ρIm}. The symmetrical sum
presented in Equation (1) is used in the following general form to combine all the
measures in ΛI:

Λ(x1, . . . , xn) =
g(x1, . . . , xn)

g(x1, . . . , xn) + g(1 − x1, . . . , 1− xn)
, (5)

where g(x1, . . . , xn) = x1x2 . . . xn. The idea behind this procedure is that the higher
the line detector response, the greater the chance that a linear structure is present
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in the images. A clear advantage about fusing the detections from different sources
is to increase the chance to detect roads that do not appear in all the images. For
instance, optical images depend on good weather conditions to clearly capture all
the roads, which is not always possible. Adding the information of a radar image
of the same area may help solving this problem.

The final result from the detection, after fusing the responses of all images, is a
magnitude image with the fused line detection response of each pixel of the image.
In order to obtain a binary result, the magnitude image is thresholded and thinned.
The thinning process may result in small spur lines, but those are disregarded during
the graph modelling process. After this process, all the structures found are mapped
to a graph as described in the next section.

2.3. Graph modelling

We now describe the approach used to build the proposed graph model. There are
different ways to represent an image using a graph: the nodes of the graph can
represent pixels, borders, regions or any other structure obtained from an image.
In this work, we use a broadly known graphical model, the MRF, and our graph is
built using connected components obtained from the low-level step as explained in
the following.

2.3.1. Connected components’ graph

Differently from the works in the literature, this work proposes to treat the struc-
tures detected at the low-level as connected components. Starting from the thinned
binary image (Figure 3a), all the connected components are detected and (1) for
each component all the extremities and crossings are detected and (2) for each
crossing, the connected component is subdivided (Figure 3b). This process aims to
obtain connected components as curves with only two extremities. Then, all pos-
sible connections between the connected components are found (Figure 3c) and a
graph is built where each connected component is a node of the graph (including the
possible connections) and two nodes of the graph are connected if their correspond-
ing components share an extremity (Figure 3d). Notice that because of the use of
the connected components, no step of polygonal approximation, as used in (Tupin,
Houshmand, and Dactu 2002) and other works, is needed. Possible connections be-
tween the connected components must be found according to some proximity and
alignment constraints as explained in details in the next section.

Formally, let Cdetected be the set of connected components detected at the low-
level step, considering that each component is a simple curve with two extremities.
In a real detection problem, these components may or may not represent real roads
in the image. We assume that the final road network is composed by those compo-
nents detected at the low-level step and by the connections between them, removing
appropriately the false detections. Consequently, we consider also the set of all the
possible connections between the connected components, Cconnections. Let i and j be
any two connected components in Cdetected, let Ek

i with k ∈ {1, 2} be the extremi-

ties of i (i = Ẽ1
i E

2
i ), and let El

j with l ∈ {1, 2} be the extremities of j (j = Ẽ1
jE

2
j )

where ÃB denotes the connected component joining A and B. Denoting by iRj the
relation of a possible connection (which will be defined in Section 2.3.2), we have:

Cconnections = {Ẽk
i E

l
j , i ∈ Cdetected, j ∈ Cdetected and iRj}. (6)
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Figure 3.: Proposed graph modelling where connected components are used instead
of line segments (numbers represent identified connected components). (a) Example
of line detection response after threshold. (b) Detection of connected components
and crossings. (c) Identification of the possible connections between connected com-
ponents. (d) Graph generated from the connected components.

The computation of Ẽk
i E

l
j in Cconnections will be described in the next section. The

complete set of connected components is given by C = Cdetected ∪Cconnections. This
set C is endowed by a graph structure where each node of the graph G represents
a connected component and there is an edge between two nodes i and j if their
corresponding components share an extremity as presented in Figure 3d. According
to the previous construction, the following neighbourhood can be defined for G:

∂i = {j ∈ C | ∃(l, k) ∈ {1, 2}, El
j = Ek

i , j 6= i}. (7)

Notice that this neighbourhood covers two connection cases: a possible connec-
tion between components or a connection by crossroads, as can be observed in Fig-
ure 3b. According to this neighbourhood, we define an irregular grid, differently
from regular grids defined by 4-connected or 8-connected neighbourhoods for in-
stance. G is an attributed relational graph: each node i of G stores the attribute
Li = min(1, (Lengthi/Dmax)) ∈ [0, 1], where Lengthi is the length of the connected
component and Dmax is a normalisation factor (chosen empirically). We introduce
also for each node i an attribute of local homogeneity Hi = σi/µi, where σi and µi

are the standard deviation and the mean of the intensities of the pixels in the region
where the connected component is passing through (area around the connected com-
ponent). Each edge of G connecting two nodes i and j stores the attribute related
to the angle between their corresponding connected components, which is denoted
by α = ∡ij (α ∈ [0, π[). This angle is calculated considering the direction vector
at the extremities of each component (see Figure 4). Despite of the disconnected
appearance of the components i and j in Figure 4, due to illustration purpose,
these components are connected in practice. The cliques of the graph, CG, are the
complete subgraphs of G that correspond to all subsets of connected components
sharing an extremity.

The aim of using connected components instead of segments is to maintain, in
general, complete structures detected at the low-level without subdividing them
into many segments. As a consequence, without those subdivisions, a lower number
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j
i

~vi

~vi~vj
α

~vj

Figure 4.: Example on how to calculate the angle between two connected compo-
nents i and j (∡ij) considering the direction vectors ~vi and ~vj of the extremities
of each component.

of primitive structures has to be processed during the next steps of the processing
chain and the number of possible false paths is decreased. Besides, the built graph
is simplified as the number of nodes decreases considerably. Finally, the use of
connected components makes the framework more robust in the sense that it can
be applied to the detection of different and more complex structures beside roads,
as it is more flexible with the curvature of the structures.

2.3.2. Possible connections - best path approach

As this work considers connected components instead of line segments, the inter-

mediate connections Ẽk
i E

l
j (Equation (6)) between connected components are also

represented as components.
Firstly, there is a possible connection iRj between two connected components

i and j if the Gestalt principles of proximity and alignment apply, i.e., the two
extremities being connected are close enough and if the alignment between the
components is acceptable. These two principles aim to obtain connections resulting
in ǫ-meaningful events (Desolneux, Moisan, and Morel 2000), i.e., the connection is
“visually acceptable” in terms of visual perception.

Secondly, instead of tracing a straight line, the possible connection between two
connected components corresponds to the best path between the two closest ex-
tremities. The best path is calculated using a dynamic programming algorithm
taking into account the intensities of the pixels of the input image. For this pur-
pose, a geodesic distance is used as the work by Perciano, Hirata, and de Cas-
tro Jorge (2010). The distance between the two pixels (extremities) pi and pj is the
minimum path between these two pixels according to the image topology. Let us
consider a path P = {p1, p2, . . . , pn}, where pi and pi+1 are connected neighbours
and i ∈ {1, 2, . . . , n− 1}. The length of P is

l(P) =

n−1∑

i=1

dΩ(pi, pi+1). (8)

The neighbourhood (Ω) used in this work is 8-connected and dΩ(pi, pi+1) =
|I(pi)−I(pi+1)|, where I(·) refers to the intensity value of a pixel. Even though the
minimum path is mainly calculated using the intensity values of the pixels, we also
add the information about the angle between the start point and the end point.
This means that the algorithm will prefer a path that deviates less the direction
towards the end point, unless the intensity variation is too high.

Using this approach, a more accurate connection can be ensured in complex
cases where a straight line does not match the searched structure as in the example
presented in Figure 5. The connection is improved with the use of connected com-
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ponents instead of segments. In Figure 5a, a circular intersection is present in the
selected region of interest of a radar image. The line detection result for this region
is shown in Figure 5b. The original method used by Tupin et al. traces straight
lines for all possible connections between the road primitives as shown in Figure 5c.
In doing so, the details of the circular intersection are lost. On the other hand,
using the proposed method, all the best paths between the connected components
are calculated, thus retaining the shape of the circular intersection, as presented in
Figure 5d.

50m

(a) (b)

(c) (d)

Figure 5.: Example of the application of best path method to obtain the possible
connections between the road primitives. (a) Region of interest from an original
radar image. (b) Line detection result. (c) Connections obtained using the method
by Tupin et al.. (d) Connections obtained using the proposed method.

The definition of the geodesic distance as shown before is flexible in terms of
the type of image. In order to apply the same method to multispectral images, for
example, the intensity values of the pixels from all (or the most representative)
spectral bands can be combined in the calculation of the geodesic distance. The
way the values are combined is of great impact, so different methods should be
considered depending on the type of image. The most simple approach, for example,
would be to consider the mean value of the intensities of all bands and using that
value as I(pi).

The network reconstruction process is held as a labelling process of the graph
G, i.e., the identification of the nodes belonging to a road or not. This process is
explained in the following section.

2.4. Network reconstruction

2.4.1. Markovian model

Let L = {l1, l2 . . . lN} be the set of all the labels, li(i = 1 . . . N), of the nodes
(connected components) i of the graph G. L is a binary labelling where li = 1 if
the node i belongs to a road and li = 0 otherwise. The road network corresponds
to the optimal labelling that is obtained by the minimisation of an energy function
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derived from a probabilistic model (Tupin et al. 1998). The energy function can be
written as:

U(L) = Ulikelihood(L,D) + Uprior(L), (9)

where D is the set of measures calculated from the data.
The first term of the energy function, Ulikelihood(L,D), is the data attachment term

and it is calculated using the line detectors from the low level step. In our method
the measure is calculated along the connected component taking into account the
changes of directions (see Figure 6). As exemplified in Figure 6a, according to Tupin
et al., the measure is calculated for each line segment separately. On the other hand,
in the present method the measure is calculated once for each connected component
considering the variation of directions along the structure. So, the observation di

(a)

(b)

Figure 6.: Comparing the calculation of the measure for the likelihood term. (a)
Using line segments as proposed by Tupin et al., the measure must be calculated
for each line segment (b) Using connected components as proposed, the measure is
calculated along the connected component considering the variation of directions
along the structure.

related to each connected component is calculated as the mean of the line detector
responses along it.

Higher responses mean that the connected component has more chance to be a
road. In this work, the potentials V (di|li) related to the observation di and label li
used by Tupin, Houshmand, and Dactu are maintained, which were experimentally
obtained after using manual segmentation of roads:

V (di, li = 0) = 0, if di < t1 (10)

V (di, li = 0) =
di − t1
t2 − t1

, if t1 < di < t2 (11)

V (di, li = 0) = 1, if di > t2 (12)

V (di, li = 1) = 0, ∀di, (13)

where t1 ≤ t2 ∈ [0, 1]. Consequently, if there is a good association between di
and li, the value of the potential is low. In order to respect the normalisation
constraint (Tupin et al. 1998), the constant lnZ is added to the potentials V (di, li =
0), with Z = t1+(1− t2)(1/e)− (t2− t1)((1/e)−1). Since Z < 1, we have lnZ < 0.
Besides, in order to take into account the length of the connected components, the
potentials are multiplied by Li. Using the potentials above, the energy term for the
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data attachment is defined as

Ulikelihood(L,D) =

N∑

i=1

V (di, li). (14)

The second term, Uprior(L), represents the structural information about roads.
The local configurations, taking into account the cliques of the graph, should express
the contextual knowledge (a priori information). In the context of the proposed
framework, the user has the option to choose between the prior knowledge about
roads considered in (Tupin et al. 1998) and (Tupin, Houshmand, and Dactu 2002),
i.e., the user may choose between a configuration for non-urban or urban areas.
This term can be written as the sum of the local clique potentials, VC(li):

Uprior(L) =
∑

C∈CG

VC(li, i ∈ C) =
∑

C∈CG

VC(L). (15)

There are four parameters used in the definitions of the clique potentials: Ke pe-
nalises extremities, i.e., small and isolated roads; Kl ponders the length of the
connected components; Kc considers the curvature between components and Ki

penalises cliques with too many intersections.
Choosing Ke > 0 and Kl > 0 favours long structures. If Kc > 0, structures with

high curvature are penalised and if Ki > 0, isolated structures are penalised. All
potentials VC(L) are null except for the cliques of higher order which correspond to
the set of connected components that have a common extremity. For a clique C of
this kind, the potentials are defined as in (Tupin et al. 1998; Tupin, Houshmand,
and Dactu 2002):

∀i ∈ C | li = 0 → VC(L) = 0 (16)

∃!i ∈ C | li = 1 → VC(L) = Ke −KlLi

∃(i, j) ∈ C2 | li = lj = 1, → VC(L) = −Kl(Li + Lj)

∡ij >
π

2
+Kc sin∡ij

∃!(i, j, k) ∈ C3 | li = lj = → VC(L) = −Kl(Li + Lj +

= lk = 1, iRj, iPk, jPk Lk) +Kc (sin∡ij+

+ 1/2 (cosRi,k + cosRj,k))

∃!(i, j, k, l) ∈ C4 | li = · · · = ll = → VC(L) = −Kl(Li + Lj +

= 1, iRj, kRl, iPk, jPl +Lk + Ll) +Kc(sin∡ij

+sinRk,l)

otherwise → VC(L) = Ki

∑

i|i∈C

li

where iRj is the connection between two components, iPk denotes the parallelism
between two components and Cm denotes an m-clique or a clique of size m. The
four and five rules are optional, depending on the kind of structure present on the
image. These rules are appropriate in the case of roads in urban areas for instance.

As said before, in order to find the road network, a minimisation process is carried
out using Eq. (9). Simulated Annealing (Kirkpatrick, Gelatt, and Vecchi 1983) is
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used along with the Gibbs sampler to execute this process.

2.4.2. Multi-scale approach

After the previous step, a road network is obtained. However, as the line detector
used in the low-level only takes into account structures with width less or equal
than 5 pixels, some roads may not be detected in this first step. In order to prevent
that and to detect larger roads, a multi-scale approach is used. An image pyramid
is created degrading the resolution by averaging the intensities of n×n pixel blocks;
in this work n = 2 and n = 4 are used. The extraction process is carried out for
each scale, and a single result is obtained making the union of the results of each
scale.

A cleaning step is applied to the merged result in order to remove some overloaded
data due to the detection of some roads in more than one scale.

2.4.3. Additional MRF step based on road sections

The final road network extracted after the execution of the previous steps has a
more structured characteristic, because of the contextual information included in
the MRF. However, this result still carries a reasonable amount of false detections
and some parts of the roads are not detected. As an attempt to improve this result,
an additional step is proposed in this work. The idea is to take the output of the
previous step and pass it through a new high-level optimisation step as explained
below (see Figure 7):
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Figure 7.: Graph modelling for the additional high-level step (numbers represent
identified connected components). (a) Example of output of the first high-level step.
(b) Extension of the connected components. (c) Final graph representation.

• Process the image in order to obtain only road sections and crossroads: for
each extremity of a connected component, extend the component to the closest
connected component or to the limits of the image;

• Build a graph similarly as explained in Section 2.3 where each road section
is a node of the graph and two nodes are connected if their corresponding
sections share a crossroad;

• Proceed with the network reconstruction step as explained in Section 2.4. For
the calculation of the likelihood term in Eq. (9), analysis is retained.

Figure 8 presents an example of zoomed results before and after the second high-
level step where false alarms remaining from the previous step are removed, as
indicated by the red arrows.
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200 m

N

(a) (b)

Figure 8.: Comparison of results of a zoomed region of Toulouse area, centre at
(43.5985o N, 1.3880o E), before (a) and after (b) the proposed second high-level
step. The red arrows indicate the false alarms removed.

A consideration should be made about the first step explained above: one con-
nected component is extended only if the distance of the extension is lower than
a certain value and the likelihood measure of the extension is above a threshold
(both values are parameters chosen empirically). The important point is that no
connected component is isolated from the main road network. This additional step
is much simpler and faster than the previous one, as the graph is much smaller. So,
the extra computational time is not considerably increased and the improvements
encountered by the results justify its use.
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3. Results and discussion

This section presents the results obtained using the proposed framework. First, the
results using optical and radar images separately are presented in Section 3.1. Sec-
tion 3.2 presents the results using the proposed low-level fusion approach, explained
in Section 2.2.2, considering optical and radar data, and also multitemporal data.
The reference data used for all the experiments were determined manually.

3.1. Images from a single source

3.1.1. Optical images

For the experiments using optical data, panchromatic images with 0.7m resolution
obtained from the Quickbird sensor are used. The two regions used, corresponding
to an area from Toulouse, France, are shown in Figures 9a(i) and 9b(i) along with
their reference data in Figures 9a(ii) and 9b(ii). The reference data were obtained
manually using the road atlas of each region as reference. The results of applying the
proposed framework for road detection without fusion for each region are presented
in Figures 9a(iii) and 9b(iii). Roads detected correctly are marked in green, while
those detected incorrectly are marked in red and the missing roads are marked in
black.

3.1.2. Radar images

For the experiments using radar data, images with 1m resolution obtained from
the TerraSAR-X sensor are used. The same regions chosen for the optical data are
used here. They are shown in Figures 10a(i) and 10b(i) along with their reference
data in Figures 10a(ii) and 10b(ii). The results of applying the proposed framework
for road detection without fusion for each region are presented in Figures 10a(iii)
and 10b(iii). As before, roads detected correctly are marked in green, those detected
incorrectly are marked in red and the missing roads are marked in black.

We can notice the different aspects of the responses in each case relative to the
characteristics of each image, optical or radar. The extraction process using the
radar image seems to be efficient for detecting the main roads of the regions. How-
ever, some details (small or thin roads) are lost during the process. On the other
hand, the extraction result using the optical image contains more false detections,
although it is also capable to detect the main roads. This happens because we deal
with a high-resolution optical image and the low-level detection is very sensitive to
the details present in the image. Thus, more road candidates are detected during
the low-level step. Besides that, one can notice that some other structures are mis-
taken with roads, such as rivers. Another interesting aspect is that depending on
the region, it can be difficult to detect some roads in the optical image, because
sometimes the contrast of the road region and its surrounding is too low. For in-
stance, in the result presented for the first region, we have an entire road in the
middle of the region that was not detected using the optical image. This can happen
also on the other way around, where we have not detected roads in the radar image
that can be detected in the optical one depending on the local contrasts.

In Table 1, some comparative results between the proposed method and the
one in (Tupin et al. 1998) are presented considering the same regions analysed
before. The values for the number of vertices using line segments (Tupin et al.
1998) and connected components (proposed) are compared. The decrease is about
30%. Besides, the Matthews Correlation Coefficient (Matthews 1975) value, given
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Region 1 Toulouse, France acquired with Quickbird sensor

300m

(i) (ii) (iii)

(a)

Region 2 Toulouse, France acquired with Quickbird sensor

300m

(i) (ii) (iii)

(b)

Figure 9.: Results for optical images: (i) Original images (ii) Reference data (iii)
Detection results where the roads detected correctly are marked in green, those
detected incorrectly are marked in red and the missing roads are marked in black.
The center of the regions are at (43.6003o N, 1.3889o E) and (43.6025o N, 1.4059o

E) respectively.

by

MCC =
(TP)(TN)− (FP)(FN)√

[(TP) + (FP)][(TP) + (FN)][(TN) + (FP)][(TN) + (FN)]
, (17)

is also compared for each region. TP, TN, FP and FN refer to the number of
true positives, true negatives, false positives and false negatives, respectively. The
MCC may be obtained directly from the confusion matrix of a binary classification,
resulting in a value between −1 and 1, where 1 indicates perfect classification and
−1 indicates total discordance between the obtained classification and the reference
data. The proposed method outperforms the other one for all cases.
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Region 1 Toulouse, France acquired with TerraSAR-X sensor

300m

(i) (ii) (iii)

(a)

Region 2 Toulouse, France acquired with TerraSAR-X sensor

300m

(i) (ii) (iii)

(b)

Figure 10.: Results for radar images: (i) Original images (ii) Reference data (iii)
Detection results where the roads detected correctly are marked in green, those
detected incorrectly are marked in red and the missing roads are marked in black.
The center of the regions are at (43.6003o N, 1.3889o E) and (43.6025o N, 1.4059o

E) respectively.

3.2. Images from different sources

3.2.1. SAR and optical fusion

In order to show the results of the proposed fusion approach, we use here the same
regions shown before. These regions are previously co-registered using geometric
and acquisition information. Figure 11 presents the results for the first and the
second regions by applying the proposed fusion approach.

As expected, the result using the fusion of the two images exploits their comple-
mentary information, thus leading to an improved result.

Table 2 presents a quantitative analysis of the results of the two regions, named R1
and R2 in the first column, using the correctness, completeness and MCC indexes.
The correctness measures the detection accuracy relative to the reference data. The
completeness measures may be interpreted as the inverse of the failure error. As the
actual road network was manually obtained, the values in Table 2 have more relative
than absolute meaning. The most important thing is to notice the improvements
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Region 1

Optical Radar

Our method Tupin et al. Our method Tupin et al.

No. of vertices 14754 20205 18265 23991
MCC 0.2872 0.256 0.378 0.3274

Region 2

Optical Radar

Our method Tupin et al. Our method Tupin et al.

No. of vertices 9242 14442 14384 20071
MCC 0.2368 0.2098 0.2779 0.2249

Table 1.: Comparison between the results of the proposed method and the method
in (Tupin et al. 1998). Results of our method are emphasised in bold text.

shown by the results using the fusion.

Data Completeness (%) Correctness (%) MCC

R1 Optical image 36.6 33.7 0.2872
Radar image 48.6 39.4 0.3780

Fused 65.6 55.1 0.5601

R2 Optical image 34.8 33.7 0.2368
Radar image 41.5 35.6 0.2779

Fused 47.0 45.3 0.3744

Table 2.: Quantitative evaluation of the results comparing the single source ap-
proach and the data fusion for regions 1 and 2 (R1 and R2). Best results are
emphasised in bold text.

3.2.2. Multitemporal fusion

The last set of experiments is concerned with the fusion of multitemporal images.
We use two multitemporal stacks of images from a region of Saint Gervais – France,
and one stack of images from Chamonix – France, obtained in different days:

• 13 images obtained using the TerraSAR-X sensor of 1m resolution
• 4 images obtained using the COSMO-SkyMed sensor of 3m resolution
• 13 images obtained using the TerraSAR-X sensor of 1m resolution, Chamonix

region

The idea here is to compare the result of applying the low-level fusion approach
using all the images of the stacks to the result applying the framework only to the
image of the quadratic mean of all the images. The image of the mean is considered
an ideal result, as it has a high quality, similar to a filtered one, because the roads
are stable features and the incidence angles were similar.

Figure 12a presents one of the images of the TerraSAR-X stack, along with the
quadratic mean image and its reference data, respectively. Figure 12b presents one
of the images of the COSMO-SkyMed stack, and also the corresponding quadratic
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Results corresponding to the areas shown in Figures 9a and 10a

(i) (ii) (iii)

(a)

Results corresponding to the areas shown in Figures 9b and 10b

(i) (ii) (iii)

(b)

Figure 11.: Results fusing optical and radar data: (i) Results using only the optical
images (ii) Results using only the radar images (iii) Results using the proposed
fusion approach. Green: correct detection. Red: incorrect detection. Black: missing
roads.

mean image and the reference data, respectively. Similarly, figure 12c presents one of
the images of the TerraSAR-X stack (Chamonix region), and also the corresponding
quadratic mean image and the reference data, respectively. The results obtained
using those images are shown in Figure 13. For the three stacks, the road networks
obtained using the quadratic mean image (Figures 13a(i), 13b(i) and 13c(i)) and
the low-level fusion approach (Figures 13a(ii), 13b(ii) and 13c(ii)) lead to similar
MCC indexes, as observed in Table 3. On the other hand, also for the three stacks,
the best MCC indexes are achieved by the road networks obtained after merging the
results from the quadratic mean and the low-level fusion (Figures 13a(iii), 13b(iii)
and 13c(iii)). The merging is done by a simple OR combination. Even though
more false detections are observed in those cases, the number of true detections is
considerably increased.

From the quantitative results observed in Table 3, it is possible to note that the
results for both stacks are very similar despite of the higher number of TerraSAR-X
images and the better resolution of this stack. Similarly to other problems explored
in remote sensing, images with better resolution do not always ensure a better
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Images from TerraSAR-X multitemporal stack of a region in Saint Gervais – FR

300m

(i) (ii) (iii)

(a)

Images from COSMO-SkyMed multitemporal stack of a region in Saint Gervais – FR

300m

(i) (ii) (iii)

(b)

Images from TerraSAR-X multitemporal stack of a region in Chamonix – FR

300m

(i) (ii) (iii)

(c)

Figure 12.: Multitemporal image data. (i) One of the original images of each mul-
titemporal stack (ii) Quadratic mean of all the original images from each multi-
temporal stack (iii) Reference data of the corresponding regions. The center of the
regions are at (45.9130o N, 6.7068o E), (45.9137o N, 6.7067o E) and (45.9272o N,
6.8727o E) respectively.

result. In order to understand better these results, an analysis of the fusion of the
13 TerraSAR-X images was carried out. The low-level fusion was accomplished for
a varying number of images, from 1 to 13, in chronological order of acquisition. For
each experiment the MCC was calculated, as presented in Figure 14. It is noticed
from the analysis that the result using 6 images gives a quality measure very close to
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Results corresponding to the stack shown in Figure 12a

(i) (ii) (iii)

(a)

Results corresponding to the stack shown in Figure 12b

(i) (ii) (iii)

(b)

Results corresponding to the stack shown in Figure 12c

(i) (ii) (iii)

(c)

Figure 13.: Results for multitemporal image data. (i) Obtained results using only
the quadratic mean image of each stack (ii) Obtained results using the proposed
low-level fusion for each stack (iii) Results obtained merging the quadratic mean
and the low-level fusion for each stack. Green: correct detection. Red: incorrect
detection. Black: missing roads.

the best result. This can be a clue that depending on the combination of the images
chosen from the stack, a good result can be obtained with a decreased number of
images. Besides, the CSK and TerraSAR-X images, though very similar, are not
exactly the same. Additional analysis of multitemporal stacks should be carried out
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Data Completeness (%) Correctness (%) MCC

St-Gervais Mean 42.0 57.6 0.4437
(TSX) Fusion 41.0 59.4 0.4473

Fusion+Mean 50.8 51.7 0.4607

St-Gervais Mean 40.6 61.5 0.462
(CSK) Fusion 44.0 58.7 0.4684

Fusion+Mean 53.1 52.1 0.4795

Chamonix Mean 23.0 42.8 0.2735
TSX) Fusion 20.6 45.8 0.2700

Fusion+Mean 28.1 40.1 0.2911

Table 3.: Quantitative evaluation of the results applying the proposed framework
to the three different multitemporal stacks. Values are presented for three different
fusion approaches: (Mean) quadratic mean of all the images, (Fusion) low-level
fusion, and (Fusion+Mean) merging mean and low-level fusion. Best results are
emphasised in bold text.

Number of images
2 4 6 8 10 12

M
C
C

0.34

0.36

0.38

0.40

0.42

0.44

Figure 14.: Analysis of the influence of the number of images used for the fusion
of the TerraSAR-X images. It can be observed that fusing the first 6 images of the
stack a measure close to the best is obtained.

in future works, and dealing with the fusion of other satellite sensors.
Tables 4 (optical, radar and optical/radar) and 5 (multitemporal fusion) present

the values of the parameters used in all experiments shown before. There are few
variations for the parameters in the case of optical/radar fusion, mainly for the
high-level step, which have more variations in the case of multitemporal fusion.
This fact emphasises the stability and flexibility of the proposed method, which
turns to be not too sensible to the parameters setting. Indeed, the parameters are
set empirically, but the same set can be used for the same kind of landscape, giving
similar detection performance. In the case of the low-level step when fusing images,
the values of ρ and r are usually higher in order to control the final result of the
low-level fusion.

Initial results of the framework described here applied to the fusion of TerraSAR-
X and Cosmo-SkyMed high-resolution images for road extraction may be found
in (Sportouche et al. 2012).
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Scale
Low level Graph High level

ρ r Dimensions (height,width) Lmax Dmax Ke Kl Kc Ki

(pixels)

Region 1

3 [0.35, 0.5] [0.35, 0.5] (3, 3) [30, 40] [30, 40] [0.3, 0.4] −0.12 0.3 0.3

2 [0.3, 0.45] [0, 3, 0.5] (5, 4) [60, 70] [60, 70] [0.3, 0.4] −0.12 0.3 0.3

1 0.3 [0.3, 0.5] (5, 5) [100, 110] [100, 110] [0.3, 0.4] −0.12 0.3 0.3

Region 2

3 [0.38, 0.45] [0.35, 0.5] (4, 3) [30, 40] [30, 40] [0.21, 0.3] −0, 12 0.3 0.3

2 0.35 [0.35, 0.5] (5, 4) 70 70 0.3 −0.12 0.3 0.3

1 [0.3, 0.35] [0.3, 0.5] (5, 5) 100 100 0.3 −0.12 0.3 0.3

Table 4.: Intervals of parameters’ values used for the experiments with optical, radar
and optical/radar images. Parameters values are set empirically.

Image
Low level Graph High level

ρ r Dimensions (height, width) Lmax Dmax Ke Kl Kc Ki

(pixels)

St-Gervais (TSX)

Mean 0.45 0.45 (4, 4) 120 30 0.2 −0.22 0.35 0.08

Fusion 0.44 0.44 (5, 4) 120 30 0.3 −0.4 0.35 0.1

St-Gervais (CSK)

Mean 0.35 0.35 (3, 3) 120 30 0.21 −0.2 0.3 0.1

Fusion 0.45 0.45 (3, 3) 120 30 0.25 −0.3 0.3 0.15

Chamonix (TSX)

Mean 0.3 0.35 (3, 3) 110 30 0.21 −0.21 0.3 0.1

Fusion 0.45 0.5 (3, 3) 110 30 0.3 −0.35 0.3 0.1

Table 5.: Values of the parameters used for the multitemporal fusion. Parameters
values are set empirically.
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4. Conclusions

The idea of fusing information for object detection, image classification and, con-
sequently, for SAR and optical image interpretation has been increasingly studied
nowadays. The framework proposed here is flexible, and each module can be eventu-
ally changed depending on the application. Besides, different feature detectors can
be used for the low-level step and the energies of the MRFs can be also improved
or changed. In fact, we intend to test other feature detectors for the optical image
in order to improve the final result after fusion as, for instance, edge and visual
alignments detectors.

Further studies will be carried on multi-sensor and multi-model fusion using this
framework, such as using SAR images taken from different angles and from dif-
ferent sensors (as the example of fusing TerraSAR-X and Cosmo-SkyMed images).
Another interesting future path is to extend this framework for polarimetric SAR
images, for instance relying on recent low level detection methods for this kind of
images (Zhou et al. 2011).
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