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How advanced image processing helps for SAR
Image restoration and analysis

Florence Tupin

I. OVERVIEW reduce noise [4]. But patch similarity can also be applied to

: . stereovision or change detection.
The past few years have seen important advances in remote : . . ,
g’he third family are the “graph-cut” approaches, where an

sensing imagery. The new sensors have improved resolution ) . . .
in all dimensions, spatial resolution with reduced pixelesj 'Mad€ Processing problem is converted into the search oha mi

temporal resolution with shorter revisit times and spécts- imum cutin agraph [5]. Efficient minimum cut algorithms have

olution with increased number of spectral bands. With the?gen proposed for computer vision problems [6] and the focus

new specifications, new challenges have appeared. The hl?g ut on designing a graph to solve a given image processing

amount of remote sensing data raises new computationaéss?ls , Theses appro_aches _have been malnly_ used to 9pt|m|ze
unctionals or energies derived from Markovian modeling or

[1] and asks for faster processing approaches. New applisat larizati hes. A f del is the Totalavari
are accessible or can achieve new results like change def&@ arization approaches. A famous model is the Totaiavari

tion, natural disaster monitoring, urban and landscapeita, tion minimization [7] which can be exactly minimized in onfe o

biomass measurement. Theses advances are especiallgrtrugsr discrete form using a multiple layers graph [8], [9]. Gina
Synthetic Aperture Radar (SAR) sensors, with metric regmiu cut based approaches have also become very popular for many

available for civil satellite data, new spectral bands (hdbevith denmsmg and partltlmnmg problems. ]

ALOS, X band for TerraSAR-X and COSMO-SkyMed), new We will see in thls letter how these three theor|¢§ (among
interferometric potential thanks to TanDEM-X [2], redudes others) h_ave contrlbute_d to the development of efficientstoo
visit time with constellations like COSMO-SkyMed. In spitd® SAR image processing.

of these improvements, SAR images remain difficult to inter-
pret. New difficulties arose with the increase of spatiabres
lution: previously unnoticeable targets are now visibleg ot

scatterers are more numerous. Beyond speckle noise intrins One of the main difficulties of SAR imagery is the speckle

to_ coh_er_ent Imagery, geometric (_jlstortlons d_ue to d|stazam,x_ phenomenon. Radar are coherent imagery systems, leading to
pling limit our visual understanding of such images, anedir ;

; . f b . dbva SAR i S@terferences between electro-magnetic waves backeedtigy
Interpretation of an ur an area imaged by a SeNsoris e reflectors inside a pixel. These interferences causergst
reserved to expert photo-interpreters.

variability of radiometric values, even for a physicallythoge-
neous area. In his seminal work [10], Goodman has derived the
Together with progress made with recent sensors, new p¥ay level distributions of radar images: Rayleigh disttibn
erful image processing methods have emerged in the recgfamplitude image, Nakagami for multi-looked data (multi-
years. Among the major advances made last decade by [$6k meaning that some pixels have been averaged), Gamma
image processing and computer vision communities, we hagg multi-looked intensity image. However, these modeleeha
chosen to emphasize three of them for their long-term piatenishown some limits when dealing with high resolution images.
and applicative interest for SAR imaging. Since the beginning of SAR images, many distributions have
The first family of advances in signal and image processimgen proposed to model radar data: K distribution [11], log-
is related to the progress in statistical modeling of miit@®® normal distribution, Weibull distribution etc. These diisti-
tive noise, which is particularly important to deal with S&R- tions can be well adapted to some specific cases. They are
agery. Therefore, the first point we would like to mentiorhie t ysually defined by some parameters that have to be empjricall
Mellin framework proposed in [3] to deal with positive ramdo |earnt on some small local areas of the images. The tradeeff b

II. SAR DATA STATISTICAL MODELING

variables and their multiplication. ~ tween bias and variance of the estimators requires larggomin
The second family of methods is based on the idea 6izes while keeping a homogeneous statistical population.
“patches”. Patches are small image parts (typically 5 or | the past recent years, a powerful framework has been de-

7 x 7 pixels). They capture fine scale information such as teyg|oped by J.-M. Nicolas to unify the set of distributionsdan
ture, bright dots or edges. Given their very local extergyth 1o provide efficient tools to compute parameter estimatgs [
are highly redundant, i.e., many similar patches can bedoufthe whole theory is built on the observation that radar ampli
in an image. These similar patches can then be combinedy@e or intensity is intrinsically positive. ThereforeetRourier

The author is with the Signal and Image Processing Depattoferelécom transform, which is an mtegral over the Se.t of all real .V.alue
ParisTech, 75634 Paris Cedex, France, (email: florende@telecom- should be replaced by some transform defined on positive val-
paristech.fr) ues only. This is the case of the Mellin transform, which has
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the following form:

+oo
D(s) = /0 2V p(z)da

wheres is a complex number, angstands here for the random
variable distribution. Mimicking the characteristic fuioa and

all the definitions that can be derived from it, like moments
and cumulants, a second kind characteristic function based
Mellin transform has been defined, leading to log-momends an
log-cumulants. The Mellin convolution, which is the counte
part of the convolution in the positive value domain, presd

a natural way to define the distribution of products of indepe
dent random variables (whereas the regular convolutioisdea
with sum of variables). Without going too far into the detail
of this still evolving theory, we would like to mention what
seems to us important contributions of this work. Firstapar
eter estimation based on log-cumulants gives low variastie e
mators, allowing the use of analysis windows of reducedssize
(figure 1). Secondly, this work has enlightened the relation
ships between the different distributions (Gamma, K, iB€€rrig 2 Thes,-rs representation gives the positioning of the distributions
Gamma, Weibull, log-normal,...) thanks to Mellin convadut in the log-cumulant space (axes are the second and thirduogdant). Spe-
and thanks to a diagram defined by the second and third |G 23es eBresent e Carna axc ruese Camne st e
cumulants (figure 2). Thirdly, the Fisher distribution h@s a og-normal distributions are represented by the vertii.dn this figure, two
peared as a “generic” distribution with 3 parameters adbjote original 3-looks ERS data are represented on the top, orethéo a vegeta-

: : tion area, and on the right for an urban area. In the bottorredoh image, the
a wide range of surfaces (urban areas, vegetation, etc}.) [12 local parameters are computed onxIlll windows giving a point in theo-rx3

space. We can observe that for these two images their repagisas do not
correspond to the same distributions. The vegetation areesituated near the
Gamma axis, whereas urban areas are spread in the middief gaetdiagram
corresponding to Fisher and log-normal distributions.

0.8

0.6

IIl. SAR DATA DENOISING

Whereas the Mellin framework takes into account the vari-
ability of the scene within a region with a variety of distrib
tions seen as Mellin products, denoising approaches tnyge s
press signal-dependent speckle variability to recovesteme

' reflectivity.
a) Moments of order 1: b) Moments of order 2:  Nonp-local approaches and graph-cut based optimizatios hav
distribution of the am- distribution of the am- proven to lead to very efficient denoising methods. We will il
plitude pa(z) in red, plitude pa(z) in red, |ystrate in this section how these recent and popular imemge p
of wpa(x)(green) and of 2°pu(x)(green) and cessing approaches can be adapted to the case of SAR images.
log(x)pa(x) (yellow). log(x)2pa(x) (yellow).

Fig. 1. This figure illustrates the interest of the log-motremd log-cumulant A Non-local approaches
derived from the Mellin framework. In the case of moment catagion, the ] ) . ) . ) )
distribution is multiplied byz* before integration. This multiplication in-  The first family of methods described in the introduction is

creases the importance of the tail of the distribution whencreases. Yetthe p55ed on patch similarity. They are known as non-local ap-

tail can be strongly disturbed by bright scatterers prauyeirong parameter .

estimates. With the log-cumulant estimator, both head aitoftthe distribu- Proaches or NL-means [4]. The main idea of non-local meth-

tion are taken into account, giving more robust estimates. ods is to find similar patches in the image. In the case of image
denoising, this set of similar patches is then used to sggpre

This work has been first developed for amplitude or intensitiie noise, for instance by averaging the central pixels ohea

images, and has been adapted later by different authors-to patch.

larimetric data. We would like to mention the work of Anfinsen et us consider the Gaussian filter for comparison. Its

on the extension of the use of Mellin transform for polarineet principle is to average spatially close pixels to suppréss t

data by developing the matrix-variate Mellin transforrmfi@ noise. Spatially close pixels can belong to different papul

work, and exploiting it to better process polarimetric dd@].  tions, though. Therefore, improvements of this basic iceaeh
been proposed. Instead of taking “spatially close” pixels,
can take “radiometrically close” pixels [4]. In this casket
problem is to select a pixel which should be “radiometrigall
close from another pixel. And here comes the idea of patch
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comparison. A pixel can reasonably be assumed to be radioThe final algorithm is thus rather simple and results are in-
metrically close from another one, if their surroundinggb&ts teresting, with preserved edges and smoothed areas as can be
are similar (see figure 3). To denoise a pixgthe values of observed on figure 4.

pixelst are averaged with a weight depending on the similarity Other efficient denoising methods have been proposed in the
of the two patches surroundingand¢. This is a powerful ap- recent years like wavelet based methods [18], [19], [20] or
proach since there is no connectivity constraint betwesmd: BM3D based approaches [21]. One of the strengths of the pro-
compared to [14], [15], and far apart patches can be coresideposed probabilistic framework is that it allows the appiiza

to denoise a given pixel (hence the term “non-local” demgisi  of non-local methods faromplex datar vectorial dataas soon

as noise is well modeled by a parametric distribution. Tlhtus,
can be used efficiently to process interferometric or polat

ric data using the speckle noise described by a zero-mean com

te = — plex circular Gaussian distribution [10]. For instancehia tase
— [] Search window W, of interferometric images, weighted likelihood estimatdor
i — [ Similarity window A, reflectivity, _interferometric phase and_ _coherence are\/ddri_
=S — S and the weights measure the probability that the obsenstio
— B Similarity window &s | come from the same parameters for all the couples of pixels
— ©5 Scan of t of the two patches. Figure 5 illustrates the potential othsuc
s e > approaches. Instead of computing local hermitian produacts

derive interferometric information and thus losing spatso-
lution, such approaches can be used to compute interfarsgra
: . . N . at the nominal resolution of the data. The case of polarimetr
Fig. 3. The idea of non-local means is to denoise pixasing the weighted . . . . . .
value of pixelt. The weight of pixel: is computed by comparing the surround-data is similar with the estimation of the underlying comate
ing patch ofs and the surrounding patch bfPixelst are considered in a search matrix. Application of such a framework is described in [22]
window W. Figure extracted from [16]. Beyond the denoising application, patch similarity of aimpl

. I . tude, interferometric or polarimetric data can be very ulseir
This framework has been initially developed for Gaussmrh . L
change detection or movement monitoring.

noise: the denoising is done by averaging the noisy samples,
and the similarity criterion is based on the Euclidean dista
between the two patches. To adapt this framework to other
kinds of noise while keeping the principle of patch comparis
Deledalle et al. have proposed a probabilistic framewo.[1
The denoising task is expressed as a weighted maximumlikeli
hood estimation, and the weight definition is establishadkis

to a probabilistic approach. Besides, this probabiligtarfe-
work leads to similarity weights formed by two terms, one re-
lated to the noisy data (likelihood similarity) and the atbae

to the denoised data (prior similarity). For this seconditean
iterative scheme has been proposed which greatly imprbees t
results when strong noise is present on the data.

This framework can be applied to any noise having a known
distribution like Gamma or Poisson. In the case of SAR ampli-
tude images, the denoising scheme is the following:

« the denoising of pixes can be written as:

RWMLE) _ > w(s, t)A7

dorw(s,t)

whereA; is the amplitude of pixet andR, is the searched
for reflectivity.
« the weight at iterationi is computed as :

w(s, 1) =

1 Ask  Aig L |Ri;cl - Ri;cl|2
(4 , L N Y. B? .
exp[ Z(b °g<Am TA) T RTR

where A, ;. is the amplitude of the kth pixel of the patch cen-
tered ons, b = h/(2L —1), L is the number of looks andand

T are two parameters that can be set automatically [17];and
is the iteration.
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a) 100-looks image b) 1-look SAR image
Fig. 4.

a) denoised image

lllustration of the NL-means SAR denoising. Figujea the left is a 100-looks image obtained by multi-lookingeay High resolution image (image

acquired by ONERA, multi-looked by CNE® ONERA (©CNES). This image can be considered as a ground truth. Figusea 1-look image of resolutionxi
1 meter. Figure c) is the denoised version of the 1-look intg€&ine details are well preserved by this approach.
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b) Estimation of amplitude, phase, and coherence usindauai-denoising.

Fig. 5. lllustration of NL-InSAR. On the top, the originalt@rferometric data (amplitude, phase and coherence, wiabk)©ONERA ©CNES. On the bottom,
the non-local estimation of amplitude, phase, and cohereiiit no loss of resolution. The weights of the likelihoodireations are computed using the similarity

of the complex patches of the two interferometric imagesuRe are from [17].
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B. Regularization approaches look interferometric data for the likelihood term, and toran

Other powerful approaches for denoising are regularinatifuc® some prior knowledge preserving simultaneously phase
based methods which have also been extensively studied in @ d amplitude discontinuities. The phase and amplitudg-inf
past 10 years in the image processing and computer vision cdR@tion are hopefu_lly _I|_nked since they reflect the same scene
munities. The idea is to express the problem as an energy mfivoplitude discontinuities thus usually have the same locat
imization one, the energy being divided into two terms, orS Phase discontinuities and conversely. To combine tkemtis
related to the noise distribution (likelihood term) and titieer  tinuities, a disjunctive max operator has been used, piyid
one to the properties we expect for the solution (prior termj/€ll preserved fine structures [28]. Figure 6 shows an exampl
This energy can be derived for instance by a probabilistic apf 3D reconstruction using a joint regularization of theeiriér-
proach (discrete point of view), but also from variationatm Ometric phase.
ods establishing a functional to minimize (continuous poin
view). The likelihood term is usually linked to the model of
noise perturbating the data. The prior term or regulazati
term usually imposes the “smoothness” of the solution and is
expressed through interactions between neighboringgixel
popular model is a low total variation (TV model [7]) corre-
sponding to almost piecewise constant image or equivalentl
to a sparse gradient (only few values of the gradient can be
non zero). But other models like truncated quadratic or phi-
functions can be chosen [23].

Beyond the difficult choice of the right model to express our
prior knowledge on the scene, the minimization of the energy
functional is generally not easy. Indeed, for many casesean
pecially for radar imagery, the neg-log-likelihood is notwex.

In this case, usual continuous optimization methods sinhila
gradient descent can not be applied or risk to get stuck in a
local minimum. Recent approaches of combinatorial optmiz
tion based on graph-cut allow for exact optimization of gnes
composed of a convex prior term (like TV minimization) and &ig. 6. Example of 3D reconstruction using the regularizewrferometric
(possibly non-convex) data term [3], 9], Theses approacriese 2 ont oot amaluce e, s grsp Casmator, (or,
build a multiple layer graph, each layer corresponding tos p acquired by ONERA).

sible gray level of the solution and search for the minimurn cu

in this graph. The minimum cut gives tlegactsolution of the  These approaches can also be particularly useful for multi-
optimization problem in the discrete space (spatially & channel phase unwrapping [29]. Indeed, they provide a very
image and discrete gray level set). There are two main limitafficient way to combine different interferometric phasesai
tions to this important result. The first one is the quanmf multi-modal likelihood term, whereas a regu|arizationmém_

the gray levels which may not be easy for high dynamic imagggses to the unwrapped phase some smoothness constraints. |
like SAR data. It can be solved by combining a discrete opfk also possible to introduce atmospheric correctionseroih
mization step and a continuous one [24]. The second limit ignization scheme in an iterative way. These approachelsicou
the memory size. Indeed, the size of the graph is the sizesof #yovide a highly flexible framework to introduce prior knew
image multiplied by the number of considered gray levelsitndedge in Digital Terrain Model reconstruction in multi-chmah
should be stored in memory for the minimum cut computatiophterferometry or in ground movement monitoring in differe
This size is prohibitive for remote sensing images and blogig| interferometry [30]. Figure 7 illustrates the globalnabi-
cutting is not an acceptable solution. Recent approachesibanation of multi-baseline interferograms with automatimat

on multi-label partition moves [25] or dichotomy [26] latge spheric corrections using an affine model of phase variation
reduce the memory cost, but loosing the optimality guaeanteith elevation [31].

These models can bring interesting results for SAR imagery.
The first application is the amplitude denoising of a radar im
age. Inthis case, adapted prior can be defined. In[27], #neesc  We have tried to illustrate in the previous sections how ad-
is decomposed as the sum of two terms, a component with lsanced image processing methods which have been recently
total variation representing the “background” of the scene developed by the computer vision community can help SAR
cartoon-like model, and a sparse component representeng ithhage processing. We have focused on three of them, distri-
bright scatterers of the image with few non zero pixels. Thisution modeling, non-local methods, regularization apphes
model can be solved exactly using graph-cut optimization. with graph-cut optimization. Of course, the cited refenare

Another interesting application is the joint regularipatiof far from being exhaustive on these different subjects ahdrot
phase and amplitude of INSAR data [28]. In this case, it methods like wavelets-based methods would have deserved a
possible to take into account the exact distribution of the Mnore detailed presentation.

IV. DISCUSSION AND CONCLUSION
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Another recent and powerful theory which might well have go]
great impact in the coming years is compressive sensing [32]
[33]. This theory has shown that, despite Shannon theory, {g;
many signals only few measurements are required to allow a
faithful reconstruction, provided the signal has a spaepee-
sentation in a suitable space (i.e., few non-zero coeffigign
that representation). Reconstruction of sparse signala leng
history in radar literature. Recent results in compressed-s
ing have fueled several works in the areas of compressed SRA
acquisitions systems [34], SAR tomography [35] and for SAR
GMTI data [36] to cite only a few. We refer the reader to thé4l
recent review [37] for more on this very active subject.

Nevertheless, whatever the progress for low-level taskb su
as denoising, it is unlikely that they will allow SAR image-un[15]
derstanding without high level methods. The influence ofgeo
metric configurations combined with distance sampling & pr
dominant on the appearance of the objects in the image. Thd#él
fore, a step of object recognition highlighting the relasbip
between the different signals is usually necessary to fully [17]
derstand SAR information. Many works have been led in this
direction like [38] for optical data, or [39], [40], [41] eXqit- [18]
ing jointly SAR and optical images, or an external database.
The object level that could be available with metric resolut
is still difficult to reach with SAR images on their own. Dic- 19]
tionaries and learning methods could provide some key$éor t
next step of understanding.

(12]

[20]

V. ACKNOWLEDGMENTS

| would like to thank Jean-Marie Nicolas for our long colypy;
laboration, Loic Denis and Jérdme Darbon for our more re-
cent ones. Special thanks for all the past or actual memb 2r2ﬁ
of the SAR team of Telecom ParisTech, but particularly to the
PhD students Charles Deledalle, Aymen Shabou and Helene

Sportouche, whose results have illustrated this letteknawl-  [23]

edgments also to ONERA and CNES for providing the image%?']

REFERENCES [25]
A. Plaza. Computational issues in remote sensing dagtysis. |IEEE
Geoscience and Remote Sensing News|€t86):11-15, 2010. [26]
M. Zink. TanDEM-X: close formation achievedEEE Geoscience and
Remote Sensing Newsleft€t57):23—-25, 2010.

J.M. Nicolas. Introduction aux statistiques de dem@eespece : ap- [27]
plications des log-moments et des log-cumulants a I'aealges lois
d'image radar. Traitement du signal (french peer review journal;
translated by S. Anfinsen "Introduction to Second Kind Stas: Ap-
plication of Log-moments and log-cumulants to Analysis efld&
Images” (http://eo.uit.no/publications/JIMN-TRANS{d¥), 19(3):139—
167, 2002.

A. Buades, B. Coll, and J.M. Morel. Nonlocal Image and MoBenois-
ing. International Journal of Computer Visioid6(2):123-139, 2008.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximaterggeninimiza-
tion via graph cutslEEE Transactions on Pattern Analysis and Machine
Intelligence 26(2):147-159, 2001. (30]
Y. Boykov and V. Kolmogorov. An experimental comparisofi min-
cut/max-flow algorithms for energy minimization in visidPattern Anal-
ysis and Machine Intelligence, IEEE Transactions &(9):1124-1137,
2004.

L. Rudin, S. Osher, and E. Fatemi. Nonlinear total véwiatased noise
removal algorithmsPhysica D 60:259—-268, 1992.

H. Ishikawa. Exact optimization for Markov random fieldsth con-
vex priors. IEEE Trans. on Pattern Analysis and Machine Intelligence[33]
25(10):1333-1336, oct 2003.

J. Darbon and M. Sigelle. Image restoration with disei@instrained To- [34]
tal Variation part I: Fast and exact optimizatialournal of Mathematical
Imaging and Vision26(3):261-276, December 2006.

(1]
(2]
(3]

(28]

(4]
5]

[29]

(6]
(31]

[7]
(8]

9]

] E. Candes.

J.W Goodman. Statistical properties of laser specklitepns. InLaser
Speckle and Related Phenomenalume 9, pages 9-75. J.C Dainty
(Springer Verlag, Heidelberg, 1975), 1975.

] J. K. Jao. Amplitude distribution of composite terraadar clutter and

the K-distribution.|EEE Transactions on Antennas and PropagatiR-
32(10):1049-1062, oct 1984.

C. Tison, J.M. Nicolas, F. Tupin, and H. Maitre. A Newaftical
Model of Urban Areas in High Resolution SAR Images for Maikov
Segmentation.IEEE Transactions on Geoscience and Remote Sensing
42(10):2046-2057, oct 2004.

S. Anfinsen. Statistical analysis of multilook polarimetric radar imeg)
with the Mellin transform PhD thesis, University of Tromso, Norway,
2010.

J. Lee, S. Cloude, K. Papathanassiou, M. Grunes, andobdWbuse.
Speckle filtering and coherence estimation of polarimeec interfer-
ometry data for forest applicationsd EEE Transactions on Geoscience
and Remote Sensing8(12):2661-2672, 2003.

G. Vasile, E. Trouve, J. Lee, and V. Buzuloiu. Intepsiriven adaptive-
neighborhood technique for polarimetric and interferaimetar parame-
ters estimation.|EEE Transactions on Geoscience and Remote Sensing
44(6):1609-1621, 2006.

C.-A. Deledalle, L. Denis, and F. Tupin. Iterative Weigd Maximum
Likelihood Denoising With Probabilistic Patch-Based Wegy |IEEE
Transactions on Image Processjrif(12):2661-2672, 2009.

C.-A. Deledalle, L. Denis, and F. Tupin. NL-InSAR: Nochl Interfero-
gram EstimationlEEE Transactions on Geoscience and Remote Sensing
(1-12), 2010.

F. Argenti, T. Bianchi, and L. Alparone. Multiresolati MAP despeck-
ling of SAR images based on locally adaptive generalizeds&ian pdf
modeling. IEEE Transactions on Image Processiridp(11):3385-3399,
2006.

S. Solbo and T. Eltoft. Homomorphic wavelet-basedistiatl despeck-
ling of SAR imagesIEEE Transactions on Geoscience and Remote Sens-
ing, 42(4):711-721, 2004.

T. Bianchi, F. Argenti, and L. Alparone. Segmentati®ased MAP De-
speckling of SAR Images in the Undecimated Wavelet DomaEEE
Transactions on Geoscience and Remote Sens#f§9):2728-2742,
2008.

S. Parrilli, M. Poderico, C.V. Angelino, G. Scarpa, dndVerdoliva. A
non local approach for SAR image denoisin&EE International Con-
ference on Geoscience and remote Sensing (IGARSS).

C.-A. Deledalle, F. Tupin, and L. Denis. Polarimetri&[S estimation
based on non-local mean$EEE International Geoscience and Remote
Sensing Symposium (IGARSS), 2G#pes 2515-2518, 2010.

A. Blake and A. ZissermarVisual ReconstructianMIT Press, 1987.

A. Shabou, J. Darbon, and F. Tupin. A Markovian Approé&mhinSAR
Phase Reconstruction With Mixed Discrete and Continuousi@yation.
IEEE Geoscience and Remote Sensing Letfarges 526-530, 2010.

A. Shabou, J. Darbon, and F. Tupin. A graph-cut basedrikgn for ap-
proximate MRF optimization|EEE International Conference on Image
Processing (ICIP), 2009ages 2413-2416, 2009.

L. Denis, F. Tupin, J. Darbon, and M. Sigelle. SAR ImaggRlarization
with Fast Approximate Discrete MinimizationlEEE Transactions on
Image Processingl8(7):1588—-1600, 2009.

L. Denis, F. Tupin, and X. Rondeau. Exact discrete mimnation for
TV+L0 image decomposition modellEEE International Conference on
Image Processing (ICIRR010.

L. Denis, F. Tupin, J. Darbon, and M. Sigelle. Joint Regaation of
Phase and Amplitude of INSAR Data: Application to 3D recnrcdton.
IEEE Transactions on Geoscience and Remote Sendind1):3774 —
3785, 2009.

V. Pascazio and G. Schirinzi. Multifrequency InSAR dii reconstruc-
tion through maximum likelihood estimation of local plarggrameters.
IEEE Transactions on Image Processinigd (12):1478-1489, 2002.

A. Shabou.Multi-label MRF Energy Minimization with Graph-cuts: ap-
plication to Interferometric SAR Phase ReconstructiBhD thesis, Tele-
com ParisTech, France, 2010.

F. Chaabane, A. Avallone, F. Tupin, P. Briole, and H.itvé&a" Multitem-
poral correction of tropospheric effects in differential snterferometry.
IEEE Transactions on Geoscience and Remote Sensiag 2006.
Compressive samplingint. Congress of Mathematics
3:1433-1452, 2006.

D. Donoho. Compressed sensing&EE Trans. On Information Theory
52(4):1289-1306, 2006.

G. Rilling, M. Davies, and B. Mulgrew. Compressed sagdiased com-
pression of SAR raw dataSPARS’09 Signal Processing with Adaptive
Sparse Structured RepresentatipR609.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSINGL XX PP]

(35]
(36]

(37]

(38]

(39]

[40]

[41]

X. Zhu and R. Bamler. Very High Resolution SAR tomograpia com-
pressive sensingzringe 2009 Workshg®009.

L. Prunte. Application of Compressed Sensing to SAR/GRata. EU-
SAR 20102010.

L.C. Potter, E. Ertin, J.T. Parker, and M. Cetin. Sjggrand compressed

sensing in radar imagingProceedings of the IEEE8(6):1006—1020,
2010.
J. Inglada and J. Michel. Qualitative spatial reasgrfor high-resolution

remote sensing image analysifeEE Transactions on Geoscience and

Remote Sensing7(2), 2009.

V. Poulain, J. Inglada, M. Spigai, J. Tourneret, and Brion. High reso-
lution optical and SAR image fusion for road database updatEEE In-

ternational Geoscience and Remote Sensing Symposium 8§AR(2),

2010.

Wegner J.D, R. Hansch, A. Thiele, and U. Soergel. Higgolution opti-
cal and SAR image fusion for road database updatldEE Journal of
selected topics in applied Earth Observations and Rematsigg 2010.

H. Sportouche, F. Tupin, and L. Denise. Building exti@t and 3D re-

construction in urban scenes from high-resolution optical SAR space-
borne imageslEEE Transactions on Geoscience and Remote Sensing (to

appear) 2011.

Fig. 7. llustration of the regularization approaches faNDreconstruction :

from top to bottom, one of the interferometric phase and@ated coherence
(acquired by ERS2) and 3D visualization of the DTM. In thisegb interfero-

grams with different baselines have been used. The regatem model is TV

minimization and an iterative estimation of atmospherigections is done.



