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How advanced image processing helps for SAR
image restoration and analysis

Florence Tupin

I. OVERVIEW

The past few years have seen important advances in remote
sensing imagery. The new sensors have improved resolutions
in all dimensions, spatial resolution with reduced pixel sizes,
temporal resolution with shorter revisit times and spectral res-
olution with increased number of spectral bands. With these
new specifications, new challenges have appeared. The huge
amount of remote sensing data raises new computational issues
[1] and asks for faster processing approaches. New applications
are accessible or can achieve new results like change detec-
tion, natural disaster monitoring, urban and landscape planning,
biomass measurement. Theses advances are especially true for
Synthetic Aperture Radar (SAR) sensors, with metric resolution
available for civil satellite data, new spectral bands (L band with
ALOS, X band for TerraSAR-X and COSMO-SkyMed), new
interferometric potential thanks to TanDEM-X [2], reducedre-
visit time with constellations like COSMO-SkyMed. In spite
of these improvements, SAR images remain difficult to inter-
pret. New difficulties arose with the increase of spatial reso-
lution: previously unnoticeable targets are now visible, bright
scatterers are more numerous. Beyond speckle noise intrinsic
to coherent imagery, geometric distortions due to distancesam-
pling limit our visual understanding of such images, and direct
interpretation of an urban area imaged by a SAR sensor is still
reserved to expert photo-interpreters.

Together with progress made with recent sensors, new pow-
erful image processing methods have emerged in the recent
years. Among the major advances made last decade by the
image processing and computer vision communities, we have
chosen to emphasize three of them for their long-term potential
and applicative interest for SAR imaging.

The first family of advances in signal and image processing
is related to the progress in statistical modeling of multiplica-
tive noise, which is particularly important to deal with SARim-
agery. Therefore, the first point we would like to mention is the
Mellin framework proposed in [3] to deal with positive random
variables and their multiplication.

The second family of methods is based on the idea of
“patches”. Patches are small image parts (typically5 × 5 or
7 × 7 pixels). They capture fine scale information such as tex-
ture, bright dots or edges. Given their very local extent, they
are highly redundant, i.e., many similar patches can be found
in an image. These similar patches can then be combined to
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reduce noise [4]. But patch similarity can also be applied to
stereovision or change detection.

The third family are the “graph-cut” approaches, where an
image processing problem is converted into the search of a min-
imum cut in a graph [5]. Efficient minimum cut algorithms have
been proposed for computer vision problems [6] and the focus
is put on designing a graph to solve a given image processing
task. Theses approaches have been mainly used to optimize
functionals or energies derived from Markovian modeling or
regularization approaches. A famous model is the Total Varia-
tion minimization [7] which can be exactly minimized in one of
its discrete form using a multiple layers graph [8], [9]. Graph-
cut based approaches have also become very popular for many
denoising and partitioning problems.

We will see in this letter how these three theories (among
others) have contributed to the development of efficient tools
for SAR image processing.

II. SAR DATA STATISTICAL MODELING

One of the main difficulties of SAR imagery is the speckle
phenomenon. Radar are coherent imagery systems, leading to
interferences between electro-magnetic waves backscattered by
the reflectors inside a pixel. These interferences cause a strong
variability of radiometric values, even for a physically homoge-
neous area. In his seminal work [10], Goodman has derived the
gray level distributions of radar images: Rayleigh distribution
of amplitude image, Nakagami for multi-looked data (multi-
look meaning that some pixels have been averaged), Gamma
for multi-looked intensity image. However, these models have
shown some limits when dealing with high resolution images.
Since the beginning of SAR images, many distributions have
been proposed to model radar data: K distribution [11], log-
normal distribution, Weibull distribution etc. These distribu-
tions can be well adapted to some specific cases. They are
usually defined by some parameters that have to be empirically
learnt on some small local areas of the images. The tradeoff be-
tween bias and variance of the estimators requires large window
sizes while keeping a homogeneous statistical population.

In the past recent years, a powerful framework has been de-
veloped by J.-M. Nicolas to unify the set of distributions and
to provide efficient tools to compute parameter estimators [3].
The whole theory is built on the observation that radar ampli-
tude or intensity is intrinsically positive. Therefore, the Fourier
transform, which is an integral over the set of all real values,
should be replaced by some transform defined on positive val-
ues only. This is the case of the Mellin transform, which has
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the following form:

Φ(s) =

∫ +∞

0

x(s−1)p(x)dx

wheres is a complex number, andp stands here for the random
variable distribution. Mimicking the characteristic function and
all the definitions that can be derived from it, like moments
and cumulants, a second kind characteristic function basedon
Mellin transform has been defined, leading to log-moments and
log-cumulants. The Mellin convolution, which is the counter-
part of the convolution in the positive value domain, provides
a natural way to define the distribution of products of indepen-
dent random variables (whereas the regular convolution deals
with sum of variables). Without going too far into the details
of this still evolving theory, we would like to mention what
seems to us important contributions of this work. First, param-
eter estimation based on log-cumulants gives low variance esti-
mators, allowing the use of analysis windows of reduced sizes
(figure 1). Secondly, this work has enlightened the relation-
ships between the different distributions (Gamma, K, inverse
Gamma, Weibull, log-normal,...) thanks to Mellin convolution
and thanks to a diagram defined by the second and third log-
cumulants (figure 2). Thirdly, the Fisher distribution has ap-
peared as a “generic” distribution with 3 parameters adapted to
a wide range of surfaces (urban areas, vegetation, etc.) [12].

a) Moments of order 1:
distribution of the am-
plitude pA(x) in red,
of xpA(x)(green) and
log(x)pA(x) (yellow).

b) Moments of order 2:
distribution of the am-
plitude pA(x) in red,
of x2pA(x)(green) and
log(x)2pA(x) (yellow).

Fig. 1. This figure illustrates the interest of the log-moment and log-cumulant
derived from the Mellin framework. In the case of moment computation, the
distribution is multiplied byx

k before integration. This multiplication in-
creases the importance of the tail of the distribution whenk increases. Yet the
tail can be strongly disturbed by bright scatterers producing wrong parameter
estimates. With the log-cumulant estimator, both head and tail of the distribu-
tion are taken into account, giving more robust estimates.

This work has been first developed for amplitude or intensity
images, and has been adapted later by different authors to po-
larimetric data. We would like to mention the work of Anfinsen
on the extension of the use of Mellin transform for polarimetric
data by developing the matrix-variate Mellin transform frame-
work, and exploiting it to better process polarimetric data[13].

Fig. 2. Theκ2-κ3 representation gives the positioning of the distributions
in the log-cumulant space (axes are the second and third log-cumulant). Spe-
cific curves represent the Gamma and inverse Gamma distributions (in white
on the bottom figures, respectively on the left and on the right), whereas the
log-normal distributions are represented by the vertical axis. In this figure, two
original 3-looks ERS data are represented on the top, on the left for a vegeta-
tion area, and on the right for an urban area. In the bottom, for each image, the
local parameters are computed on 11×11 windows giving a point in theκ2-κ3

space. We can observe that for these two images their representations do not
correspond to the same distributions. The vegetation areasare situated near the
Gamma axis, whereas urban areas are spread in the middle partof the diagram
corresponding to Fisher and log-normal distributions.

III. SAR DATA DENOISING

Whereas the Mellin framework takes into account the vari-
ability of the scene within a region with a variety of distribu-
tions seen as Mellin products, denoising approaches try to sup-
press signal-dependent speckle variability to recover thescene
reflectivity.

Non-local approaches and graph-cut based optimization have
proven to lead to very efficient denoising methods. We will il-
lustrate in this section how these recent and popular image pro-
cessing approaches can be adapted to the case of SAR images.

A. Non-local approaches

The first family of methods described in the introduction is
based on patch similarity. They are known as non-local ap-
proaches or NL-means [4]. The main idea of non-local meth-
ods is to find similar patches in the image. In the case of image
denoising, this set of similar patches is then used to suppress
the noise, for instance by averaging the central pixels of each
patch.

Let us consider the Gaussian filter for comparison. Its
principle is to average spatially close pixels to suppress the
noise. Spatially close pixels can belong to different popula-
tions, though. Therefore, improvements of this basic idea have
been proposed. Instead of taking “spatially close” pixels,we
can take “radiometrically close” pixels [4]. In this case, the
problem is to select a pixel which should be “radiometrically”
close from another pixel. And here comes the idea of patch
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comparison. A pixel can reasonably be assumed to be radio-
metrically close from another one, if their surrounding patches
are similar (see figure 3). To denoise a pixels, the values of
pixelst are averaged with a weight depending on the similarity
of the two patches surroundings andt. This is a powerful ap-
proach since there is no connectivity constraint betweens andt
compared to [14], [15], and far apart patches can be considered
to denoise a given pixel (hence the term “non-local” denoising).

Fig. 3. The idea of non-local means is to denoise pixels using the weighted
value of pixelt. The weight of pixelt is computed by comparing the surround-
ing patch ofs and the surrounding patch oft. Pixelst are considered in a search
window Ws. Figure extracted from [16].

This framework has been initially developed for Gaussian
noise: the denoising is done by averaging the noisy samples,
and the similarity criterion is based on the Euclidean distance
between the two patches. To adapt this framework to other
kinds of noise while keeping the principle of patch comparison,
Deledalle et al. have proposed a probabilistic framework [16].
The denoising task is expressed as a weighted maximum likeli-
hood estimation, and the weight definition is established thanks
to a probabilistic approach. Besides, this probabilistic frame-
work leads to similarity weights formed by two terms, one re-
lated to the noisy data (likelihood similarity) and the other one
to the denoised data (prior similarity). For this second term, an
iterative scheme has been proposed which greatly improves the
results when strong noise is present on the data.

This framework can be applied to any noise having a known
distribution like Gamma or Poisson. In the case of SAR ampli-
tude images, the denoising scheme is the following:

• the denoising of pixels can be written as:

R̂(WMLE)
s =

∑

t w(s, t)A2
t

∑

t w(s, t)

whereAs is the amplitude of pixels andR̂s is the searched
for reflectivity.

• the weight at iterationi is computed as :

w(s, t)(i) =

exp

[

−
∑

k

(

1

h̃
log

(

As,k

At,k

+
At,k

As,k

)

+
L

T

|R̂i−1
s,k − R̂i−1

t,k |2

R̂i−1
s,k R̂i−1

t,k

)]

.

whereAs,k is the amplitude of the kth pixel of the patch cen-
tered ons, h̃ = h/(2L−1), L is the number of looks andh and
T are two parameters that can be set automatically [17], andi
is the iteration.

The final algorithm is thus rather simple and results are in-
teresting, with preserved edges and smoothed areas as can be
observed on figure 4.

Other efficient denoising methods have been proposed in the
recent years like wavelet based methods [18], [19], [20] or
BM3D based approaches [21]. One of the strengths of the pro-
posed probabilistic framework is that it allows the application
of non-local methods forcomplex dataor vectorial dataas soon
as noise is well modeled by a parametric distribution. Thus,it
can be used efficiently to process interferometric or polarimet-
ric data using the speckle noise described by a zero-mean com-
plex circular Gaussian distribution [10]. For instance in the case
of interferometric images, weighted likelihood estimators for
reflectivity, interferometric phase and coherence are derived,
and the weights measure the probability that the observations
come from the same parameters for all the couples of pixels
of the two patches. Figure 5 illustrates the potential of such
approaches. Instead of computing local hermitian productsto
derive interferometric information and thus losing spatial reso-
lution, such approaches can be used to compute interferograms
at the nominal resolution of the data. The case of polarimetric
data is similar with the estimation of the underlying covariance
matrix. Application of such a framework is described in [22].

Beyond the denoising application, patch similarity of ampli-
tude, interferometric or polarimetric data can be very useful for
change detection or movement monitoring.
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a) 100-looks image b) 1-look SAR image a) denoised image

Fig. 4. Illustration of the NL-means SAR denoising. Figure a) on the left is a 100-looks image obtained by multi-looking aVery High resolution image (image
acquired by ONERA, multi-looked by CNESc©ONERA c©CNES). This image can be considered as a ground truth. Figureb) is a 1-look image of resolution 1×
1 meter. Figure c) is the denoised version of the 1-look imageb). Fine details are well preserved by this approach.

a) Original interferometric datac©ONERA

b) Estimation of amplitude, phase, and coherence using non-local denoising.

Fig. 5. Illustration of NL-InSAR. On the top, the original interferometric data (amplitude, phase and coherence, with 1-look) c©ONERA c©CNES. On the bottom,
the non-local estimation of amplitude, phase, and coherence with no loss of resolution.The weights of the likelihood estimations are computed using the similarity
of the complex patches of the two interferometric images. Results are from [17].
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B. Regularization approaches

Other powerful approaches for denoising are regularization
based methods which have also been extensively studied in the
past 10 years in the image processing and computer vision com-
munities. The idea is to express the problem as an energy min-
imization one, the energy being divided into two terms, one
related to the noise distribution (likelihood term) and theother
one to the properties we expect for the solution (prior term).
This energy can be derived for instance by a probabilistic ap-
proach (discrete point of view), but also from variational meth-
ods establishing a functional to minimize (continuous point of
view). The likelihood term is usually linked to the model of
noise perturbating the data. The prior term or regularization
term usually imposes the “smoothness” of the solution and is
expressed through interactions between neighboring pixels. A
popular model is a low total variation (TV model [7]) corre-
sponding to almost piecewise constant image or equivalently
to a sparse gradient (only few values of the gradient can be
non zero). But other models like truncated quadratic or phi-
functions can be chosen [23].

Beyond the difficult choice of the right model to express our
prior knowledge on the scene, the minimization of the energyor
functional is generally not easy. Indeed, for many cases, and es-
pecially for radar imagery, the neg-log-likelihood is not convex.
In this case, usual continuous optimization methods similar to
gradient descent can not be applied or risk to get stuck in a
local minimum. Recent approaches of combinatorial optimiza-
tion based on graph-cut allow for exact optimization of energies
composed of a convex prior term (like TV minimization) and a
(possibly non-convex) data term [8], [9]. Theses approaches
build a multiple layer graph, each layer corresponding to a pos-
sible gray level of the solution and search for the minimum cut
in this graph. The minimum cut gives theexactsolution of the
optimization problem in the discrete space (spatially discrete
image and discrete gray level set). There are two main limita-
tions to this important result. The first one is the quantization of
the gray levels which may not be easy for high dynamic images
like SAR data. It can be solved by combining a discrete opti-
mization step and a continuous one [24]. The second limit is
the memory size. Indeed, the size of the graph is the size of the
image multiplied by the number of considered gray levels andit
should be stored in memory for the minimum cut computation.
This size is prohibitive for remote sensing images and block
cutting is not an acceptable solution. Recent approaches based
on multi-label partition moves [25] or dichotomy [26] largely
reduce the memory cost, but loosing the optimality guarantee.

These models can bring interesting results for SAR imagery.
The first application is the amplitude denoising of a radar im-
age. In this case, adapted prior can be defined. In [27], the scene
is decomposed as the sum of two terms, a component with low
total variation representing the “background” of the scenein a
cartoon-like model, and a sparse component representing the
bright scatterers of the image with few non zero pixels. This
model can be solved exactly using graph-cut optimization.

Another interesting application is the joint regularization of
phase and amplitude of InSAR data [28]. In this case, it is
possible to take into account the exact distribution of the M-

look interferometric data for the likelihood term, and to intro-
duce some prior knowledge preserving simultaneously phase
and amplitude discontinuities. The phase and amplitude infor-
mation are hopefully linked since they reflect the same scene.
Amplitude discontinuities thus usually have the same location
as phase discontinuities and conversely. To combine the discon-
tinuities, a disjunctive max operator has been used, providing
well preserved fine structures [28]. Figure 6 shows an example
of 3D reconstruction using a joint regularization of the interfer-
ometric phase.

Fig. 6. Example of 3D reconstruction using the regularized interferometric
phase with a joint prior with amplitude data, and graph-cut optimization (from
[28]). The amplitude image is superimposed on the computed elevation (images
acquired by ONERA).

These approaches can also be particularly useful for multi-
channel phase unwrapping [29]. Indeed, they provide a very
efficient way to combine different interferometric phases in a
multi-modal likelihood term, whereas a regularization term im-
poses to the unwrapped phase some smoothness constraints. It
is also possible to introduce atmospheric corrections in the op-
timization scheme in an iterative way. These approaches could
provide a highly flexible framework to introduce prior knowl-
edge in Digital Terrain Model reconstruction in multi-channel
interferometry or in ground movement monitoring in differen-
tial interferometry [30]. Figure 7 illustrates the global combi-
nation of multi-baseline interferograms with automatic atmo-
spheric corrections using an affine model of phase variation
with elevation [31].

IV. D ISCUSSION AND CONCLUSION

We have tried to illustrate in the previous sections how ad-
vanced image processing methods which have been recently
developed by the computer vision community can help SAR
image processing. We have focused on three of them, distri-
bution modeling, non-local methods, regularization approaches
with graph-cut optimization. Of course, the cited references are
far from being exhaustive on these different subjects and other
methods like wavelets-based methods would have deserved a
more detailed presentation.
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Another recent and powerful theory which might well have a
great impact in the coming years is compressive sensing [32],
[33]. This theory has shown that, despite Shannon theory, for
many signals only few measurements are required to allow a
faithful reconstruction, provided the signal has a sparse repre-
sentation in a suitable space (i.e., few non-zero coefficients in
that representation). Reconstruction of sparse signals has a long
history in radar literature. Recent results in compressed sens-
ing have fueled several works in the areas of compressed SAR
acquisitions systems [34], SAR tomography [35] and for SAR
GMTI data [36] to cite only a few. We refer the reader to the
recent review [37] for more on this very active subject.

Nevertheless, whatever the progress for low-level tasks such
as denoising, it is unlikely that they will allow SAR image un-
derstanding without high level methods. The influence of geo-
metric configurations combined with distance sampling is pre-
dominant on the appearance of the objects in the image. There-
fore, a step of object recognition highlighting the relationship
between the different signals is usually necessary to fullyun-
derstand SAR information. Many works have been led in this
direction like [38] for optical data, or [39], [40], [41] exploit-
ing jointly SAR and optical images, or an external database.
The object level that could be available with metric resolution
is still difficult to reach with SAR images on their own. Dic-
tionaries and learning methods could provide some keys for the
next step of understanding.
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cent ones. Special thanks for all the past or actual members
of the SAR team of Telecom ParisTech, but particularly to the
PhD students Charles Deledalle, Aymen Shabou and Helene
Sportouche, whose results have illustrated this letter. Acknowl-
edgments also to ONERA and CNES for providing the images.

REFERENCES

[1] A. Plaza. Computational issues in remote sensing data analysis. IEEE
Geoscience and Remote Sensing Newsletter, (156):11–15, 2010.

[2] M. Zink. TanDEM-X: close formation achieved.IEEE Geoscience and
Remote Sensing Newsletter, (157):23–25, 2010.

[3] J.M. Nicolas. Introduction aux statistiques de deuxième espèce : ap-
plications des log-moments et des log-cumulants à l’analyse des lois
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[40] Wegner J.D, R. Hänsch, A. Thiele, and U. Soergel. High resolution opti-
cal and SAR image fusion for road database updating.IEEE Journal of
selected topics in applied Earth Observations and Remote Sensing, 2010.

[41] H. Sportouche, F. Tupin, and L. Denise. Building extraction and 3D re-
construction in urban scenes from high-resolution opticaland SAR space-
borne images.IEEE Transactions on Geoscience and Remote Sensing (to
appear), 2011.  

 

−3

−2

−1

0

1

2

3

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 7. Illustration of the regularization approaches for DTM reconstruction :
from top to bottom, one of the interferometric phase and associated coherence
(acquired by ERS2) and 3D visualization of the DTM. In this case, 6 interfero-
grams with different baselines have been used. The regularization model is TV
minimization and an iterative estimation of atmospheric corrections is done.


