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M-NL: Robust NL-Means Approach
for PolSAR Images Denoising
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Abstract— This letter proposes a new method for polarimetric
synthetic aperture radar (PolSAR) denoising. More precisely,
it seeks to address a new statistical approach for weights
computation in nonlocal (NL) approaches. The aim is to present a
simple criterion using M-estimators and to detect similar pixels in
an image. A binary hypothesis test is used to select similar pixels
which will be used for covariance matrix estimation together
with associated weights. The method is then compared with
an advanced state-of-the-art PolSAR denoising method named
NL-SAR. The filter performances are measured by a set of
different indicators, including relative errors on incoherent target
decomposition parameters, coherences, polarimetric signatures,
and edge preservation on a set of simulated PolSAR images.
Finally, results for RADARSAT-2 PolSAR data are presented.

Index Terms— Detection, M-estimators, nonlocal (NL) means,
polarimetric synthetic aperture radar (PolSAR), Wishart
distribution.

I. INTRODUCTION

IN THE past decades, there has been a growing interest for
polarimetric synthetic aperture radar (PolSAR) images and

their use for terrain classification, target detection, and so on.
Speckle in PolSAR data significantly degrades the image qual-
ity as well as the application performances. In PolSAR images,
each pixel is given by a complex-valued matrix (or vector)
formed out of backscattered signals in different combinations
of the linear received and transmitted polarizations. Since
the scatterers are distributed and due to the coherency of
PolSAR systems, this matrix has a random nature and is
referred to as speckle noise. Therefore, in order to determine
the physical parameters of interest, a speckle reduction step is
usually applied, aiming at reducing the parameter fluctuations.
Different methods have been proposed to reduce speckle in
PolSAR data [3]. Recent approaches of image processing and
computer vision rely on patch-based comparison to select
similar samples. The idea was born with the first works of
Buades et al. [4], [5] and then extended and adapted to
(Pol)SAR images by several authors, such as in [6] and [7].
In these methods, the covariance matrices (CMs) of scattering
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vectors (SVs) are estimated using carefully selected samples
in order to reduce the speckle. The SVs are usually mod-
eled by complex circular Gaussian vectors and completely
characterized by their CM. The CM, unknown in practice,
is then obtained by averaging, i.e., using the well-known
sample CM (SCM), which, in the Gaussian context, is known
to be the maximum likelihood (ML)-estimator (MLE) and
Wishart-distributed.

Nevertheless, the Gaussian distribution is not always a good
approximation for PolSAR data, since, for instance, this model
is not able to describe textured scenarios. Therefore, it is nec-
essary to increase the complexity of the underlying distribution
model. This has been successfully done by introducing the
so-called spherically invariant random vectors (SIRVs) [8].
The SIRV displays an observation as a product of a Gaussian
random process with the square root of a nonnegative random
scalar variable that contains the information about the texture
variation. Consequently, the SIRVs encompass a wide class of
well-known distributions, such as t-distribution, K-distribution,
or inverse Gaussian texture distribution. In a non-Gaussian
environment, the SCM may not provide accurate results for
the CM estimate. For this reason, M-estimators have been
introduced and broadly employed and analyzed in robust
statistics and signal processing [9]–[11]. M-estimators are a
wide class of scatter matrix (SM)1 estimators robust to the data
model. These estimators are given by fixed-point equations
which makes the direct analysis of their statistical properties
very difficult. Nevertheless, it has been recently shown that
the behavior of M-estimators can be well approximated by
Wishart distribution [12], [13] which is of great importance in
various applications.

In this letter, thanks to the new properties of M-estimators,
we introduce a new NL-means algorithm to estimate CM in
PolSAR data. Then, we evaluate the performances of this
method and compare it with the NL-SAR method. NL-SAR is
a state-of-the-art method composed of several steps: preesti-
mation, weights computation, bias reduction, and best estimate
selection. In this letter, the focus is on the two first steps.

1) Preestimation: Instead of using a Gaussian kernel,
we propose to use an M-estimator in order to prees-
timate matrices in each pixel and compare patches.

2) Weight Computation: In this step, instead of learning
kernels to weights similarities, we first select similar
pixels based on the statistics of a robust similarity test
and, then, compute weights using only selected pixels.

1SM is equal to the CM up to a scale factor when the latter exists.
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These steps are repeated for a set of different parameters,
which results in several estimates in each pixel. Finally,
we perform bias-reduction and select the best estimate as
in NL-SAR.

This letter is organized as follows. Section II introduces
some background about PolSAR images and M-estimators.
Section III presents the proposed method and the correspond-
ing algorithm, with discussions. In Section IV, the results for
simulated and RADARSAT-2 data are presented. Finally, some
conclusions are drawn in Section V.

Notations: Vectors (resp. matrices) are denoted by bold-
faced lowercase letters (resp. uppercase letters). T and H ,
respectively, represent the transpose and the Hermitian opera-
tor. Tr(·) represents the trace of a matrix. Finally, | · | stands
for the determinant of a matrix.

II. THEORETICAL BACKGROUND

A. PolSAR
Polarimetric SAR sensors measure the amplitude and

phase of backscattered signals in four combinations of the
linear received and transmitted polarizations: horizontal–
horizontal (HH), horizontal–vertical (HV), vertical–
horizontal (VH), and vertical–vertical (VV). These signals
form the complex scattering matrix S

S =
[

SHH SHV
SVH SVV

]

where SI J denotes the complex scattering amplitude for the
received polarization I and the transmitted polarization J .
The reciprocity theorem says that the cross-pol channels of
the scattering matrix are equal, that is SHV = SVH. Therefore,
there are only three independent complex coefficients required
to characterize the SV s = [SHH

√
2SHV SVV]T or alterna-

tively, the SV is replaced by the linear transformation k =
(1/
√

2)[SHH + SVV SHH − SVV 2SHV]T known as the Pauli
representation of the SV [14].

B. PolSAR Modeling
So far, the most used model for the underlying distribution

of PolSAR data is the complex Gaussian circular distribution.
To reduce the effect of inherent speckle noise, PolSAR images
are often spatially averaged, and the data are represented by
the SCM �̂SCM = (1/N)

∑N
n=1 snsH

n (or the sample coherency
matrix �̂SCM = (1/N)

∑N
n=1 knkH

n ). Under the assumption
that N > 3, the estimate is complex Wishart distributed with
N degrees of freedom (DoFs) around the expectation value �

(true CM of Gaussian data).
Since the Gaussian distribution fails to give a good approx-

imation in high-textured scenarios, an alternative is to use
the SIRV model: k = √τn, where τ is a texture parameter
whose distribution is unspecified, with mean value equal to 1,
and n is the speckle vector, following a multivariate Gaussian
distribution. SIRV represents a subclass of complex elliptically
symmetric (CES) distributions. In this context, the perfor-
mances of the SCM can be really degraded and one needs
other estimators that are better adapted to a non-Gaussian
framework.

C. M-Estimators
Let (k1, . . . , kN ) be an N-sample of m-dimensional

complex-independent CES-distributed vectors (with the
same PDF). An M-estimator is defined by the solution of the
following M-estimating equation:

�̂ = 1

N

N∑
n=1

ϕ
(
kH

n �̂
−1

kn
)
knkH

n (1)

where ϕ is any real-valued weight function on [0,∞) [9] that
does not need to be related to the PDF of the underlying dis-
tribution. The existence and uniqueness of the solution of (1)
as well as the convergence of the corresponding recursive
algorithm have already been shown, provided the function
ϕ satisfies a set of general assumptions [11]. In particular,
the resulting estimators are consistent estimators of the SM
(up to a scale factor). Some of the widely used M-estimators
are: Tyler’s M-estimator [10], [15], Huber’s M-estimator, and
Student’s M-estimator.

III. ROBUST M -NLMEANS METHOD

In this section, we present step-by-step the proposed method
for weights computation and discuss about its benefits.

A. Robust Preestimation
In order to compute the (dis)similarity between two pixels,

one needs to compute a preestimation of the CM. In NL-SAR,
this preestimation is done using truncated Gaussian on the
patch of the size S = (2s + 1) × (2s + 1). In this method,
we propose to use a Student’s M-estimator given as the
solution of

�̂t = m + ν/2

S

S∑
n=1

knkH
n

ν/2 + kH
n �̂
−1
t kn

(2)

where m is the vector dimension and ν is the DoF parameter.
This estimator is very interesting, since it represents a sort of
tradeoff between the SCM (ν → ∞) and Tyler’s estimator
(ν = 0), the least and the most robust estimators. The SCM
can be completely degraded with only one outlier while, on the
other hand, Tyler’s estimator is entirely resistant to aberrations
but gives the estimation of so-called “shape” matrix, i.e., loses
the information about matrix power. Therefore, Student’s
M-estimator represents a good compromise that simultane-
ously can be robust and preserve the power information.

B. Pixel Selection
Using these preestimated values, neighboring samples are

selected around each pixel. The central pixel at location l is
compared with all pixels in a circular window following a
spiral path (see [1] for more details). To compute the dissim-
ilarities between two pixels instead of classical generalized
likelihood ratio tests, we propose to use the Box’s M-test
defined as

L = |�̂1|S/2|�̂2|S/2

|�̂|S
where �̂1 is obtained with a sample k(1) = (k1, . . . , kS), �̂2
with k(2) = (kS+1, . . . , k2S) and �̂ with k = (k(1), k(2)).
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This statistic has values between 0 and 1, where the values
close to 0 reject the hypothesis that the matrices �̂1 and �̂2
are equal and values close to 1 accept it. By modifying the
statistic L, Box has obtained the approximated χ2 distribution

u = −2(1− β)ln(L) ∼ χ2(m(m + 1)/2)

with β = (3/2S)((2m2 + 3m − 1)/(6(m + 1))), where m is
the size of the SV, usually 3. We then propose to compute the
similarity between two patches centered in pixels l and l ′ as

�(l, l ′) =
∑
τ

u[(l + τ ), (l ′ + τ )] (3)

where τ ∈ [−p, p] is a 2-D shift indicating the location within
each patch of size P = (2 p+1)×(2 p+1). Dissimilarities are
then compared to the threshold in order to select similar pixels.
Under the hypothesis H0 that two patches follow the same
distribution, � has the χ2 distribution with d = (1/2)m(m +
1)P DoF. The critical region of the test is then given by{

Rc = �,� > χ2
Pf a

(d)
}

with Pfa is the probability of false alarm and χ2
Pfa

(d) is the
quantile of order 1− Pfa of χ2(d).

C. Weights Computation
Once similar pixels are chosen, we proceed to the weights

computation. To define the weights from the dissimilarity
measure �

(
l, l ′

)
, we propose to use an exponential kernel

ω(l, l ′) =

⎧⎪⎨
⎪⎩e
−|�(l, l ′)− c|

λ if l �= l ′

1 if l = l ′.
(4)

The parameter c = E[�(l, l ′)|H0] is the expected dissimi-
larity of two patches under the H0 and the threshold λ can be
computed as λ = F−1

χ2
(

d
)(1 − PF A). This mapping from the

(dis)similarities to the weights prevents any pixel from having
a larger weight than the central pixel. The parameter c has
been introduced in order to give a weight close to 1 when
the compared pixels come from the same distribution while
preventing the noise enforcing. We normalize the quantity with
λ in order to obtain comparable weight values for different
values of p.

Finally, the weighted MLE is given by the weighted means

�̂N L (l) =
∑

l′ ω(l, l ′)k′k′H∑
l′ ω(l, l ′)

. (5)

The method is recapped in Algorithm 1. First, the maximum
sizes of search windows W , patch P , and preestimation scale
S are set together with the threshold λ and the constant c
that differs for each patch size. Then, the preestimation is
performed for all pixels in the image and for all values of
0 ≤ s ≤ S, where s = 0 means the preestimation is off,
i.e., the matrix is equal to kkH for the pixel at location l with
coordinates (x, y). Then, for all window sizes, the central pixel
is compared with all pixels in the window using the preestima-
tions corresponding to different values of s and different sizes
of patches to perform the patch comparison. Then, for each

Algorithm 1: M-NL Method

Initialization: W,P,S, λ, c, ν
forall the x, y do

for s = 0 : S (scale size) do
Preestimation with (2)

forall the x, y (coordinates of pixel l) do
for w = 1 :W (search window size) do

Compute �x and �y
x ′ = x +�x
y ′ = y +�y; 
 coordinates of pixel l’
for s = 0 : S do

for p = 1 : P (patch size) do
Compute �(l, l ′) with (3)
if �(l, l ′) ≤ λ[p] then

Compute ω(l, l ′) with (4)
else

ω(l, l ′)← 0

forall the s, p, w do
Compute �̂N L with (5)
Bias-reduction step → �̂N L R B

return The best estimate

triple of (s, p, w), an estimate �̂NL is computed. Afterward,
for each �̂NL, the new one �̂NLRB is obtained in order to
reduce the bias introduced in the first one and finally, the best
one (with the highest number of looks) is selected for each
pixel giving the final filtered image. This final part, enclosed
within the box, is the same as in NL-SAR and will not be
detailed because of the lack of space.

IV. EXPERIMENTS: IMPLEMENTATION AND EVALUATION

A. Simulated Data

In this section, the results obtained for simulated and
PolSAR data are presented. The simulated images have been
generated using a Markov random field (MRF) following a
Gibbs distribution as in [2]. Then, a polarimetric behavior has
been assigned to the different parts of the designed images.
The polarimetric signatures have been sampled from the
PolSAR data as explained in the reference. The procedure is as
follows. First, a random number C of polarimetric classes are
chosen between 3 and 5, C−1 classes for distributed scatterers,
and the last class for point scatters (targets). A ground truth is
generated using an MRF and the targets correspond to squares
of sizes varying between 2 × 2 and 5 × 5 pixels. For each
distributed scatterer, one of the seven possible polarimetric
signatures is randomly assigned and the Gaussian speckle
noise is generated according to them. Finally, the targets
generated using the remaining eighth polarimetric signature
are added to the speckle noise. The exact values of CMs
can be found in [2]. After the denoising, the set of following
parameters has been evaluated.

1) Radiometric Parameters σ : Diagonal elements of the
CM (power information).
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2) Complex Correlation Parameters ρ: Derived from the
three complex off-diagonal terms (channels correlation).

3) Incoherent Decomposition Parameters: Entropy (H ),
anisotropy (A), and the mean alpha angle (α)—
scattering mechanism.

4) Co-polar and cross-polar polarization signatures
(PSs) [16].

5) Edge preservation (EP).
For the first three groups of parameters, the estimated value
is obtained as the corresponding mean value from the pix-
els for every scattering class (SC) and for every simulated
image, given the filter. Then, the absolute relative bias of the
estimated parameter is computed. The final (average) value is
chosen as the median across all the simulated images and the
various SCs. Then, the co- and cross-polar signatures of the
average CM of the pixels belonging to a given SC of every
simulated image are obtained (91 × 181 values). The average
value for each class and image is obtained as a median value
of absolute relative bias for every orientation and ellipticity
angle. Then, as in the previous case, the final value is obtained
as the median across all the images and classes. Finally, EP is
measured on the boundary positions between extended targets.
First, the gradient preservation (GP) is obtained as the average
ratio of the observed gradient values on the power bands of
the filtered power band image to the gradient values on the
ground truth image. Then, the simple mapping from GP to EP
is performed in order to give a measure close to 0 in the case
of edge oversmoothing or undersmoothing and values close
to 1 for good EP.

In order to perform the comparison, we have simulated
one hundred 128× 128 artificial PolSAR images as described
previously. The set of parameters used in both methods is:
window size: {32, 52, . . . , 252}, patch size: {32, 52, . . . , 112},
and scale: {0, 1, 2}. Since the speckle is Gaussian, we have
chosen ν to be big enough (ν = 100) in order to preserve
the information about the texture and ensure the convergence
of the solution in the preestimation step. The values for λ
have been computed using the corresponding formula from
Section III-C.

Fig. 1 shows the results of two different simulated images.
The images are presented in the following order, from left
to right and from top to bottom: original image (ground
truth), speckle, NL-SAR results, and M-NL results. The first
image [Fig. 1(a)] contains two classes for distributed scatterers.
As can be seen from Fig. 1(c) and (d), the homogeneous areas
are much better smoothed with M-NL than with NL-SAR
while the edges are better captured and less blurred. The sec-
ond image [Fig. 1(e)] consists of three SCs. In this case,
we display the filtered images together with the difference of
the filtered image and corresponding ground truth in order to
better visualize the results. From Fig. 1(i) and (j), one can see
that in some parts of the images, the noise is apparently more
reduced with M-NL. This is the most visible (green points)
at the image borders, and one can look, for instance, the top
border and corners of the images. Obviously, the M-NL gives
an estimation closer to the ground truth in both the cases. The
visualization of the difference also reveals that most of the
targets are better estimated with M-NL, which cannot be seen

Fig. 1. Application to simulated data: results for two different realizations.
(a) and (e) Ground truth. (b) and (f) Speckle. (c) and (g) Results obtained
with NL-SAR. (d) and (h) Results obtained with M-NL. (i) and (j) Difference
between the results and ground truth for NL-SAR and M-NL, respectively.

directly from Fig. 1(g) and (h). Some of them are marked in
red squares.

Table I lists the evaluation parameters defined above. The
numerical results have been computed over the set of simulated
PolSAR images and the final values are compared. One can
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TABLE I

FILTERING RESULTS FOR SIMULATED DATA: ALL MEASURES BUT
EP (EP ∈ [0, 1]) ARE ABSOLUTE RELATIVE ERRORS IN %

Fig. 2. Real data: San Francisco Bay—512 × 512 PolSAR images. (From
left to right) Speckle, results obtained with NL-SAR, and results obtained
with M-NL.

note that M-NL outperforms NL-SAR in almost all measures
except ρ and A. Thus, it could be more convenient to use
NL-SAR for terrain classification based on correlation coef-
ficient or when measuring surface roughness implementing
anisotropy parameter. On the other hand, M-NL gives a better
estimation of radiometric parameters, almost all incoherent
decomposition parameters, PSs, and EP parameters. A sig-
nificant improvement in EP is also visually noticeable on the
simulated images, and thus these results are not surprising.

B. RADARSAT-2 PolSAR Data
Finally, the results for real data are given. Three different

parts of San Francisco Bay are presented from top to bottom
representing different scenarios in PolSAR images, such as
water, vegetation, and urban areas. In this case, we do not
dispose any information about the ground truth, and thus
one can analyze the results only visually. First, one can note
that M-NL better smoothes the homogeneous areas, while
preserving well the edges in textured scenarios. It can also
be noted that, as in the case of simulated data, M-NL gives
results with higher contrast.

Last but not least, we would like to mention that an advan-
tage of this method is also its simplicity, since, after the prees-
timation, it immediately starts to measure the dissimilarities

and computes weights using a single, simple formula. On the
other side, NL-SAR first needs to analyze noise in a homoge-
neous area in order to learn its distribution. Then, when the
denoising step starts, a binary search is necessary to find the
corresponding quantile and then a mapping is used to evaluate
the weight, which obviously requires more steps.

V. CONCLUSION

This letter has investigated a new statistical approach for
NL estimation in PolSAR imagery. The proposed method
relies on M-estimators and has been compared with the
NL-SAR method showing better results. It should be noted
that the proposed method has common steps with NL-SAR.
Yet, the estimation of NL estimates, the crucial part of any
NL denoising method, is based on the statistical behavior of
M-estimators, which improves the method simplicity.
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