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Abstract

Change Detection (CD) aims at identifying physical changes in multi-temporal data of

the same scene. It is one of the most important topics in multi-temporal remote sensing

image analysis, because of its many monitoring applications. One of the most important

imaging sensors for CD is Synthetic Aperture Radar (SAR), which have imaging capa-

bilities for all-day all-weather conditions. In the last two decades, a relevant increase of

SAR imagery has been observed with (sub)metric resolution (Very High Resolution SAR)

and/or with multiple polarimetric channels (Polarimetric SAR). The two kinds of SAR

imagery provide an enhanced information with respect to the past that can be investi-

gated for improving the CD capabilities. To this end, novel advanced methodologies need

to be designed. In this thesis, we devoted our attention to improving the state of the

art both in PolSAR and VHR SAR multi-temporal image analysis with focus on change

detection. Concerning the PolSAR imagery, the availability of multi-polarization multi-

temporal scattering information represents an added value for detecting changes. In the

literature, polarimetric information has been mainly exploited for single-data image clas-

sification, exploring the discrimination capabilities of the polarimetric features. For CD

applications, the largest part of the literature considered PolSAR imagery for tackling bi-

nary CD only and a poor effort has been devoted in the discrimination of multiple kinds

of change classes. However, polarimetric data can provide relevant information in many

monitoring applications

. In this thesis, we aim at developing advanced methodologies for the exploitation of the

polarimetric information in multi-temporal information extraction. More in detail the

contributions are focused on the following tasks.

1. An approach for unsupervised multi-class change detection in bi-temporal dual-pol

SAR images is proposed. The approach is based on a multi-dimensional change

index that describes the multitemporal scattering behaviors of samples along each

polarimetric channel. Based on the scattering theory, the change index is expected

to behave in different ways according to the kind of change. A theoretical analysis is

conducted to detect change preferred direction and an unsupervised strategy based on

this index is designed to automatically distinguish among the multiple change classes.

2. An approach for unsupervised change detection of built-up areas from bi-temporal

full-pol SAR images is proposed. The approach introduces a novel change index

based on both scattering power and scattering mechanism information for focusing



on changes built-up elements.

3. An approach for the characterization of the temporal evolution and change dynam-

ics in full-pol SAR image time-series is proposed. The approach exploits both the

main polarimetric decomposition features and the wavelet analysis in the time do-

main. It explores wavelet approximation and detail components for multi-temporal

classification and change detection purposes.

Concerning the VHR SAR imagery, the metric resolution represents a key factor in anal-

ysis of built-up areas, allowing for building level analysis. The investigation of VHR

SAR imagery has proven to be effective in the detection of fully destroyed buildings, be-

cause of the large difference in the scattering pattern before and after the destruction.

Less effort has been devoted in the analysis of partially-destroyed buildings. However, this

building category has also a critical role in damage-assessment applications, thus partially-

destroyed building detection represents a relevant topic.

In this thesis, an approach for the unsupervised detection of fully and partially destroyed

buildings in bi-temporal VHR SAR images is proposed. A novel multi-temporal scatter-

ing model for partially destroyed buildings is introduced to the literature and integrated,

together with the model of fully destroyed buildings, into a hierarchical change detection

strategy, based on the expected change size.

For all the contributions, an analysis of the state of the art and limitations is conducted.

Then, a detailed description of the proposed methods is provided. Experimental results for

each of the methods are illustrated to confirm their validity.

Keywords:

Remote Sensing, Radar, Bi-temporal Change Detection, Multi-polarization, Very High

Resolution, Polarimetric Change Vector, Multi-class Change Detection, Built-up Change

Detection, Building Change Detection, Partially-Destroyed Building.
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Chapter 1

Introduction

In this chapter, an overview of the proposed contributions is presented. The chapter

delineates the importance of the change detection problem, the potentiality and the limits

offered by the enhanced information in SAR imagery in terms of geometry (i.e., Very-High

Resolution SAR imagery) or polarimetry (i.e., PolSAR imagery). These aspects point the

novelty of the contributions of this thesis. Finally, a description of the structure of the

thesis is presented.

1.1 Introduction and Motivations

Since long, remote sensing technology has proven to be an important support for the

Earth observation and for understanding man-made and natural phenomena. The key

aspect of the remote sensing, indeed, lies in the information acquisition when the targets

are too far or complex to be studied with proximity sensing. Thus, imaging sensors, using

either active or passive technology, are mounted on either spaceborne or airborne plat-

forms and are able to provide satellite/airborne images for a wide range of applications.

The most adequate choice depends on the geometrical and radiometrical characteristics

the phenomenon to be analyzed [37; 129].

In the recent years, thanks to the support from satellite constellations and proper data

policies, the scientific community dealt with a large amount of available images. This

led the data processing and analysis turning to unsupervised or weakly supervised strate-

gies. Moreover, the same support increased the interest of the community to the use of

multi-temporal data. In particular, they have been applied to classification, which uses

multi-temporal information for having larger robustness, and change detection.

This thesis focuses on the Change Detection (CD) problem, which aims at identifying

changes through the analysis of two or more images acquired at different times over the

same scene. CD is used for several applications related to the analysis of both man-made
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Figure 1.1: Temporal evolution of the geometrical resolution capabilities for SAR

systems.

(e.g., damage assessment [33; 140], urbanization [17]) and natural scenes (e.g., crop mon-

itoring [67], deforestation [215]). Looking at the change temporal scale, abrupt changes

are evaluated with the comparison of a pair of multi-temporal images (i.e., pre- and

post-event) [146], while smooth changes require the analysis of an image time seriesfor

monitoring the evolution [97].

In remote sensing imagery, two main categories of images are considered, namely optical

and SAR images. Optical images are acquired by passive sensors and present a large

information content given by the multiple spectral channels in both the visible and the

infrared spectrum. For these images, a large effort has been put in the development of

automatic unsupervised CD methodologies [112; 139]. However, the utilization of the

optical imagery is limited by the dependence on both the daytime season and the cloud-

coverage weather conditions. Conversely, Synthetic Aperture Radars (SARs) are active

sensors that transmit and receive coherent radiation backscattered from the targets with

an off-nadir geometry. SAR systems may be designed at different microwave frequencies,

ranging from the L (e.g., Sentinel-1 and PALSAR) to the X band (e.g., TerraSAR-X

and Cosmo-SkyMed). The use of a microwave active technology makes these instruments

insensitive to both night and cloud coverage, creating a benefit for the multi-temporal

applications, where a prompt acquisition may be required. On the other hand, the inter-

pretation of the SAR imagery is a complex task, because of the geometrical distortions

over non-flat targets and the intrinsic speckle noise [165].

Let us consider the most important SAR systems operating in the last two decades. A

large part of the available SAR imagery is characterized by a geometrical resolution in

the order of decades of meters (i.e., Medium Resolution SAR) and the backscattering in-
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Figure 1.2: Temporal evolution of the polarimetric capabilities for SAR systems. Be-

cause of the processing boundaries, SAR systems operate with a trade-off between fine

geometrical resolution and the use of more polarimetric channels.

formation measured with the same polarization for both the transmitted and the received

radiation,i.e., single-pol information. The SAR of the ERS-1 mission, acquiring on the

single VV polarimetric channel with a resolution of 30 meters (see Fig. 1.1 and Fig. 1.2),

is an example of such systems. From the radiometrical perspective, this involves a lim-

ited characterization of the scattering. From the geometrical perspective, the comparison

between the geometrical resolution and the average scatterer size presents the resolution

cells as homogeneous and makes a pixel-based analysis as appropriate.

In the last decade, SAR sensors has shown a remarkable enhancement of the imaging

capabilities in terms of geometrical resolution and polarimetric content. Concerning

the geometrical resolution, some satellite missions (e.g., Cosmo-SkyMed, TerraSAR-X

or TANDEM-X, see Fig. 1.1) and airborne missions provided data with resolution at

metric or sub-metric scale, i.e. Very High Resolution (VHR) data [204; 40]. This kind of

imagery provided a novel vision, in particular when focusing on a urban scenario, where

we may have the necessity of discriminating targets at metric scale, such as buildings or

part of them. In the CD perspective, some interest in the literature has been already

devoted to the automatic analysis of urban changes at building scale (i.e., the detection

of demolished or new buildings) [146]. A Poor effort has been spent in the analysis of

VHR SAR data for discriminating multiple kind of building changes, depending on the

change severity (i.e., different level of demolition) [119].

For MR SAR imagery, an enhancement in the polarimetric content has been achieved by

means of Polarimetric SAR (PolSAR) systems, which detect backscattering information

with different polarization combinations for the transmitted and the received radiation

(e.g., Sentinel-1, which works with two polarimetric channels, or PALSAR2 and the future

RADARSAT Constellation Mission, exploring the full combination, see Fig. 1.2). Polari-
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metric capabilities have proven to largely help the target detection and the classification

of SAR images in single-time analysis [122]. However, a small effort has been applied in

the use of polarimetric information in change detection or isolating/separating different

kinds of changes over multi-temporal SAR images [175].

Thus, advanced tailored methodologies need to be designed for: i) the exploitation of the

polarimetric information for discriminating multiple change classes; ii) the exploitation

of the meter-scale scattering information for discriminating building changes at different

severity scale, because of the lack thereof.

1.1.1 Overview of the Novel Contributions

On the basis of the aforementioned considerations about both the VHR and the Polari-

metric SAR imagery and the limitation in their use in the automatic detection of multiple

kind of changes, this thesis focuses on the development of advanced methodologies for the

unsupervised change detection in discriminating multiple kinds of change. Concerning

the analysis of PolSAR imagery, the following contributions are introduced in this work.

1. an approach for unsupervised multi-class change detection in bi-temporal dual-pol

intensity SAR images;

2. an approach for unsupervised change detection of built-up areas from bi-temporal

full-pol SAR images;

3. an approach for the characterization of the temporal evolution and the detection of

abrupt and smooth changes in full-pol SAR image time-series;

Concerning the analysis of VHR SAR imagery, the contribution of the thesis focuses

on the detection of fully and partially destroyed buildings from bi-temporal VHR SAR

images. The next sub-sections give a brief description of the proposed approaches.

1.1.2 A Novel Framework for Unsupervised Multi-class Change Detection in

Dual-pol Intensity SAR Images

In the last decade, acquisitions from Polarimetric SAR systems have become more and

more popular, in particular considering dual-pol acquisition mode (e.g, Sentinel-1). This

increased the interest in the use of the polarimetric information for change detection

applications. The literature tackled the problem by focusing on a binary CD problem,

distinguishing classes of change and no-change only. However, the polarimetric informa-

tion introduces the possibility of exploring the kind of the change and, thus, discrimi-

nating multiple change classes. In this work, a novel multi-dimensional change index is
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introduced for the representation of the multi-temporal polarimetric information. Based

on the scattering theory, the index introduces the discrimination of the different change

classes. Based on this model, an automatic unsupervised CD strategy for bi-temporal

dual-pol SAR images is presented. The strategy automatically estimates and separates

the multiple kinds of changes.

1.1.3 An Unsupervised Approach to Change Detection in Built-Up Areas by

Multi-Temporal Full-pol SAR Images

The use of full-polarimetric complex information has been often consider in the detection

of urban targets by considering single-time SAR images, because of its scattering pecu-

liarities. However, the multi-temporal changes of urban areas represent an important

information that has been poorly tackled in the PolSAR-based literature. This contri-

bution proposes an unsupervised approach for detecting changes of built-up elements in

bi-temporal full-polarimetric SAR images. The approach introduces a novel change index,

based on the joint use of overall scattering power and average scattering mechanism infor-

mation, that is very sensitive to changes associated to built-up elements. Unsupervised

thresholding of the proposed index based on the Bayesian theory leads to the identification

of classes associated to constructed and demolished built-up elements.

1.1.4 Wavelet Temporal Analysis of Polarimetric Decomposition Parameters

over Alpine Glaciers

The continued acquisitions from operating Polarimetric SAR systems led the scientific

community to the use of image time series for multi-temporal applications, as they also

guarantee information redundancy for a robust analysis. In order to define multi-temporal

comparison operators, wavelet transform can be applied in the temporal domain. The

transform can both provide average information, that can be adopted for making a ro-

bust estimation of the scene and used for discriminating different classes, and the detail

information, associated to the change level of the sequence. This work investigates the

performance of the combination of multiple polarimetric features and wavelet strategies

for both the multi-temporal classification and changes analysis. An application scenario

is considered for the analysis, describing the seasonal evolution of a glacier site in France.

1.1.5 An Unsupervised Approach to Change Detection in Built-Up Areas by

Multi-Temporal Full-pol SAR Images

Multi-temporal SAR data with a metric geometrical resolution represent an important

tool in the change detection of buildings. Based on the geometrical model of the building
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and the scattering theory, multi-temporal models have been inferred for fully destroyed

buildings, but it is frequent the case of buildings with partial damages. In this chapter,

we propose a geometrical model for the partially destroyed building, based on specific

assumptions, and we conduct a scattering analysis for the definition of a multi-temporal

pattern associated to the damaged building. We integrate the model into an automatic

unsupervised approach for the detection of both fully and partially destroyed buildings

from multi-temporal VHR SAR data.

1.2 Structure

The thesis is organized into six chapters. In the present chapter, the motivations for the

research contributions were presented and the novel contributions sketched.

Chapter 2 delineates the characteristics of the SAR imagery and the current state of the

art for CD problem with multi-temporal in multi-temporal polarimetric and VHR SAR

images.

Chapter 3 introduces a novel framework based on a pair of multi-temporal dual-pol in-

tensity SAR images for the detection of multiple kinds of change. The framework maps

changes into different regions of the proposed feature space, based on the polarimet-

ric backscattering properties. It also estimates and automatically separates the optimal

number of change classes. The effectiveness of the framework has been tested on three

multi-temporal datasets with different kinds of change and different complexity, acquired

by Sentinel-1.

Chapter 4 presents a novel approach for the automatic detection of changes in built-up

areas based on the complex information of multi-temporal full-polarimetric SAR images.

The method considers features coming from the state-of-the-art polarimetric decompo-

sitions in order to define a robust change index sensitive to the changes in the built-up

elements. An unsupervised thresholding strategy is applied for detecting changes. The

approach has been validated on two bi-temporal datasets of full-polarimetric images ac-

quired by UAVSAR.

Chapter 5 presents a novel framework for time series of full-pol SAR images based on the

joint use of arithmetical and geometrical wavelet transforms on full-polarimetric features.

The multi-temporal features are exploited for both the separation of multi-temporal natu-

ral classes and for the analysis of changes with different temporal evolution. The proposed

framework has been evaluated on a multi-temporal dataset of Radarsat-2 full-polarimetric

image time series.

Chapter 6 introduces a novel methodology for the detection of partially and fully de-

stroyed buildings in multi-temporal VHR SAR images. The methodology is based on the



Structure 7

definition of multi-temporal scattering model for fully and partially destroyed buildings,

under some simplifying assumptions. For both the cases, the model is used for the defini-

tion of a fuzzy-logic set that associates patterns of multi-temporal scattering to buildings

multi-temporal signatures. A hierarchical approach is considered for separating the build-

ing changes at different scales. The effectiveness of the framework has been tested on two

multi-temporal VHR SAR datasets acquired by Cosmo-SkyMed constellation over the

city of L’Aquila before and after the earthquake in 2009.

Finally, Chapter 7 draws the conclusions of this thesis and provides future developments.

The chapters describing the novel contributions in this dissertation are to be considered

as independent to each other and therefore result self-consistent. Readers interested to

one of the aforementioned topics can read a single chapter without the need of reading

the whole dissertation.



8 Introduction



Chapter 2

State of the art

This chapter aims at providing a basic knowledge of the benefits and the drawbacks as-

sociated to SAR imagery with meter-scale resolution and with polarimetric information

It also aims at illustrating the state of the art about the unsupervised change detection

problem with VHR SAR and PolSAR imagery. The chapter is organized into four sec-

tions. The first section describes the fundamentals of SAR image processing at medium

resolution, leading to the novel aspects introduced by both the VHR and the Polarimetric

SAR systems. In the last three sections, an overview of the different unsupervised change

detection methodologies present in the state of the art is illustrated for medium resolution

SAR imagery (Section 2.2), where the research has been mainly focused in the past, then

for Polarimetric SAR (Section 2.3) and for VHR SAR (Section 2.4) imagery.

2.1 Background on SAR imagery

SAR is an imaging active system operating in the microwave spectrum, in a range of

frequencies delimited by the P (0.25-0.5 GHz) and the Ka band (25-40 GHz). Most of

the operating SAR systems work in L (1-2 GHz), C (2-4 GHz) or X band (8-12 GHz).

The SAR operating principle makes it poorly sensitive to both sunlight-illumination and

cloud-coverage conditions and sensitive to the roughness and dielectric properties of the

targets. These two peculiarities make SAR system as one of the most interesting remote

sensing systems [182]. SAR systems exploit the radar principle, by transmitting microwave

pulses and measuring the signal intensity and the target distance. In particular, a coherent

measure of the intensity is obtained from the set of elementary scatterers present in the

area element. SAR are mounted on moving platforms (i.e., airborne or spaceborne). By

exploiting the platform movement along the azimuth direction, and the transmission of

the signal with a squinted geometry along the slant-range direction, orthogonal to the

movement, SAR creates a scattering intensity image in the range-azimuth domain. In
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Figure 2.1: SAR imaging geometry.

order to improve the discrimination capabilities of the imaging radar, SAR exploits the

use of proper signal waveforms and the target illumination from multiple positions in the

azimuth direction.

2.1.1 SAR imaging principle

Fig. 2.1 shows the SAR imaging geometry. Let us define the nominal incidence angle

θ of the radiation with respect to the target surface normal. It is possible to separate

the analysis for range and azimuth directions. Along the range direction, the antenna

illuminates the ground with an angle θ, while in the azimuth direction the pointing is

vertical. For an antenna with dimensions lal, lac along and across track respectively, radar

footprint dimensions can be derived from the antenna theory [182].

Sr =
λR0

lal cos θ
(2.1)

Sa =
λR0

lac
(2.2)

being R0 and λ the slant-range distance of the target and wavelength of the microwave

pulse. In order to evaluate the geometrical resolution on the range direction, we consider

the pulse waveform. SAR systems use frequency-modulated signals like chirps, which have

a instantaneous frequency linearly increasing with time fi(t) = rct, being rt the system

chirp rate [165]. For a signal with time width τ and corresponding bandwidth Bc = rcτ ,

SAR presents a geometrical resolution along the ground range direction as follows:

δgr =
c0

2B sin θ
=

δsr
sin θ

(2.3)
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being c0 and δsr the wave propagation speed and the geometrical resolution along the

slant range direction, respectively. The azimuth geometrical resolution equals to Sa for a

real antenna, but the value is significantly improved by generating the synthetic aperture

for the antenna. This considers the target illumination from multiple positions in azimuth

(see Fig. 2.1), with the creation of an antenna with dimension Lsa:

Lsa =
2λR0

lac
(2.4)

this leads to a final value δa for the azimuthal resolution:

δa =
λR9

Lsa
=
lac

2
(2.5)

2.1.2 SAR image properties

SAR imagery measures the target scattering, which typically considers an aleatory com-

ponent modeled as Lambertian cosine law and a deterministic specular component. The

presence of the two components is related to ratio between the target surface roughness,

indicated in terms of a root-mean-square height s and λ. In particular, rough surfaces (i.e.,

s >> λ) tend to present a Lambertian scattering, while smooth surfaces (i.e., s << λ)

tend to present a specular scattering.

As mentioned above, two important properties of the SAR images are the presence of a

multiplicative noise on the scattering intensity and the strong geometrical distortions in

presence of non-flat targets. The scattering echo propagating from the single elementary

cell to the SAR antenna is a complex signal, composed by in-phase and quadrature com-

ponents. Each of the two components is a coherent sum of the contributions from the

multiple elementary scatterers of the target cell. An amplitude-phase representation for

the overall signal is typically considered.

r(t) =
N∑
n=1

√
σ0ne

jφn (2.6)

being σ0n, φn the intensity and the phase of the complex contribution from the n-th ele-

mentary scatterer and N the total number of elementary scatterers in the cell.

For MR SAR images on homogeneous regions, it is reasonable assuming a large val-

ues N for the resolution cells. This implies a fully-developed speckle phenomenon and a

probabilistic modeling for the two signal components, assumed both with Gaussian distri-

bution with same variance. The corresponding amplitude and intensity result distributed

as Rayleigh-Rice and exponential probability density function (pdf), respectively. This

results in a multiplicative noise effect on the SAR data. The effect can be mitigated by
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Figure 2.2: Geometrical distortions in SAR images.

considering an averaging homogeneous intensity values (multilooking). The multi-looked

intensity is modeled with a random variable x Gamma distributed and presents a mean

intensity reduced by a factor L, being L the Equivalent Number of Looks (ENL) and σ2

the variance of the two Gaussian complex components [182; 143].

p(x) =
LLxL−1

σ2L(L− 1)!
exp

(
−Lx
σ2

)
(2.7)

More flexible statistical models have been also proposed in the literature for SAR ampli-

tude and intensity [156; 157; 120; 126]. Conversely, a uniform pdf is generally considered

for the SAR phase.

Because the off-nadir acquisition geometry, the illumination of non-flat targets may gener-

ate three possible geometrical distortions. Fig. 2.2 provides an overview of the distortions.

In the foreshortening effect, the sensor maps the inclined surfaces facing and opposing the

sensor with shortened and lengthened regions, respectively. Layover sums multiple con-

tributions from positions with same slant range and maps them into a bright single value.

Conversely, shadow maps very low scattering for target elements occluded by obstacles

[182].

2.1.3 Polarimetric SAR (PolSAR) imagery

In the interaction between the target and the microwave radiation, polarimetry plays

an important role. We consider a plane of incidence containing the propagation direc-

tion vector and orthogonal to the surface. In that plane, the electrical field presents two

components oscillating in the plane of incidence (i.e., parallel polarization) and on a or-

thogonal direction (i.e., orthogonal polarization). Assuming a linear polarization basis,
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Figure 2.3: Polarimetric imaging principle.

parallel and orthogonal polarization are redefined as vertical and horizontal polarizations,

respectively. By alternatively transmitting and receiving with the two orthogonal linear

polarizations, co-polarization (co-pol) and cross-polarization (cross-pol) scattering com-

plex coefficients are derived (see Fig. 2.3). They are represented in a more compact form

as a scattering matrix S [182; 122].

S =

Shh Shv

Svh Svv

 (2.8)

being Spq the complex scattering coefficient measured for the transmission and reception

with polarizations p and q respectively, p, q ∈ {H, V }. For natural targets, reciprocity

theorem asserts the equivalence of the two cross-pol coefficients (i.e., Shv ' Svh). Clas-

sical SAR systems consider the single and same polarization for both transmitted and

received radiation, measuring scattering on a single polarimetric channel (i.e., HH or VV

for linear-polarization systems). A larger information content related to multiple polari-

metric channels, is obtained with Polarimetric SAR (PolSAR) systems, which measure

scattering on more polarimetric channels, by varying the polarization for the transmitted

and/or received radiation. In particular, dual polarimetric (dual-pol) data consider two

polarimetric channels with a fixed transmission polarization (i.e., HH-HV or VV-VH) or

co-polarization channels only (i.e., HH-VV). Full polarimetric (full-pol) data consider all

the polarimetric channels (i.e., HH-HV-VH-VV)

The scattering characterization with matrix S is reasonable only for elementary targets,

with a deterministic behavior. Natural targets are distributed, thus their scattering is

determined by the composition of multiple contributions from elementary scatters. Thus,
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a scattering second-order statistics as the Covariance matrix C is considered as descriptor.

C = k†l kl =


C11 C12 C13

C21 C22 C33

C31 C32 C33

 (2.9)

being kl =
[
Shh Shv Svv

]
the complex scattering vector represented in the lexicographic

basis. An alternative formulation considers a representation in the Pauli basis, with a scat-

tering vector kp = 1√
(2)

[
[Shh + Svv;Shh − Svv; 2Shv

]
and the corresponding Coherency

matrix T .

T = k†pkp = RCRT (2.10)

R =


1 1 0

0 0
√

2

1 −1 0

 (2.11)

In homogeneous areas, complex scattering vector can be modeled with a multivariate

zero-mean Gaussian distribution, with covariance matrix Σ.

p(k,Σ) =
1

πp|Σ|
exp

(
−kHΣ−1k

)
(2.12)

being p the number of polarimetric channels and k the complex scattering vector, k ∈
{kl, kp}. This makes the corresponding second-order statistics modeled with a complex

Wishart distribution.

p(M) =
1

Γp(L)|Σ|n
|C|L−p exp{−tr|Σ−1M |} (2.13)

being tr(·) the matrix trace operator, L the number of looks and M ∈ {C, T}. Advanced

statistical models for polarimetric imagery of heterogeneous areas have been proposed in

[79; 92; 30; 90].

T allows a simple representation of the scattering associated to different scattering mech-

anisms, in particular surface scattering, volume scattering and the double-bounce, asso-

ciated to dihedral structures. The scattering intensity of these mechanisms is represented

on the diagonal elements of T . Polarimetric decompositions from the state of the art

can be applied to T in order to derive a set of few features describing the polarimetric

behavior of the target [64]. In [65], eigenvalues λi and corresponding eigenvectors vi =[
cosαi, sinαi cos βie

δi , sinαi sin βie
γi
]T
ejφi of the matrix T, i = 1, 2, 3, λ1 > λ2 > λ3 ≥

are used for deriving three polarimetric features, namely Anisotropy A, Entropy H and

average Alpha angle α.

A =
λ2 − λ3

λ2 + λ3

(2.14)
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H =
3∑
i=1

λi∑3
i=1 λi

log

(
λi∑3
i=1 λi

)
(2.15)

α =
3∑
i=1

λiαi∑3
i=1 λi

(2.16)

H measures the degree of scattering randomness ranging from 0 (i.e., a single scattering

mechanism is present) to 1 (i.e., all the scattering mechanisms have equal power). A

measures the importance of the second dominant scattering mechanism in the range 0-1

as well. α characterizes the average scattering type of the target cell. High values are

associated to the double-bounce scattering mechanism, while low values are associated to

the surface scattering. Intermediate values are associated to the volume scattering [122].

Other strategies consider T as the linear combination of contributions associated to ele-

mentary targets, for which coherency matrix can be derived from the scattering properties.

In particular, most of the power-based decompositions consider three [211; 89; 122] or four

contributions [26; 220; 187], associated to the double-bounce, surface, volume and helix

scattering.

T = fsTsurf + fdTdouble + fhThelix + fvTvolume (2.17)

being fs, fv, fh, fd, Tsurf , Tvolume, Thelix, Tdouble the power coefficients and the coherency ma-

trices associated to the surface, volume, helix and double-bounce mechanism, respectively

[122]. The two polarimetric decompositions are at the base of both the CD method pre-

sented in Chapters 4 and 5.

2.1.4 Very High Resolution SAR (VHR SAR) imagery

As introduced above, the VHR SAR are characterized by a metric or sub-metric geomet-

rical resolution. In the analysis of urban areas, this resolution introduces the capability

of investigating the scene at building level. Fig. 2.4a and 2.4b shows a comparison of

two SAR example images acquired over urban areas at medium and very-high resolution,

respectively.

In VHR SAR imagery, the comparison of the metric geometrical resolution and the

common targets makes the number of elementary scatterers in the resolution cell much

lower than that for MR SAR imagery. Thus, the speckle is not fully developed and

the scattering composition presents a more complex probabilistic behavior than that de-

scribed above. In the literature, different statistical models have been proposed for both

the scattering amplitude and the intensity over heterogeneous regions. They rely on a

statistical model with two aleatory variables associated to the speckle and the texture of

the scene [90; 203; 227], respectively. The texture becomes uniformly distributed in the
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(a) (b)

Figure 2.4: SAR images from TerraSAR-X sensor acquired over the Luneburg urban area (Ger-

many): (a) MR image (simulated); and (b) VHR image.

MR SAR data.

Moreover, the geometrical distortions and the presence of specular contributions becomes

strongly present in VHR SAR images, in particular for urban scenes, where the build-

ings scattering present a geometric composition of different regions associate to layover,

double-bounce and shadow [146].

2.2 Unsupervised Change Detection in SAR imagery

Change detection aims at identifying changes of natural features by analyzing images ac-

quired on the same scene at different times, typically with the same acquisition modalities.

A preliminary processing stage is usually assumed for the data, including both radiometric

and calibration of the single-time data and co-registration of the multi-temporal images

on common geometry (i.e., coverage and pixel size). A denoising stage aims at reduc-

ing the speckle effect. CD strategies can tackle bi-temporal analysis [112; 17; 22; 4; 7;

127; 169; 224; 109; 4; 136; 192; 108], in which images are pre- and post-event, or time-

series analysis, describing phenomena temporal evolution on a larger set of acquisitions

[178; 199; 198; 68; 135; 46; 112; 37].

In the first instance, let us consider bi-temporal CD. In the literature, several methods

involving SAR imagery for bi-temporal CD have been proposed. An overview of the prin-

cipal methods is presented in Table 2.1. Some methods considered the information fusion

from SAR and optical data [44; 63; 173; 213], or the integration with ancillary GIS-based

data [94; 73; 207]. However, a large part of SAR CD approaches considers multi-temporal

SAR information, with same sensors and same acquisition modalities (i.e., nominal inci-

dence angle and geometrical resolution). These approaches are grouped into supervised,
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semi-supervised and unsupervised approaches, depending on the amount of prior infor-

mation describing the nature of the change (i.e., land-cover transition), that can be used

for the training the detector. Supervised CD methods include post-classification compar-

ison, in which single-time SAR images are classified with supervised approaches and the

multi-temporal comparison of the classification maps generates the CD map (see Fig. 2.5)

[174; 74]. The map represents possible transitions of land-cover classes. However, the ac-

curacy of post-classification comparison methods is affected by that of both the single-time

classification maps. An alternative supervised strategy considers the joint classification

Figure 2.5: Block scheme for a CD approach based on post-classification comparison.

of the input multi-temporal images with deep neural networks [103]. However, super-

vised approaches suffer from the lack of large training data, so many applications tend

to consider unsupervised CD approaches (see Fig. 2.6). Some approaches consider the

joint image analysis with robust multi-dimensional clustering (i.e., Fuzzy c-means [8]).

However, the presence of speckle and geometrical characteristics in SAR imagery affect

Figure 2.6: Block scheme for a CD approach based on joint analysis of the multi-

temporal images.

the effectiveness of these approaches. This leads the preference to methods relying on: i)

a comparison of the input bi-temporal images, generating a change index CI; and ii)the
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extraction of the change information from the CI (see Fig. 2.7). Several strategies for

Figure 2.7: Block scheme for a CD approach based the multi-temporal comparison and

the extraction of the change information.

the two steps have been proposed in the literature. More details for the two steps are

illustrated in the subsections below.

2.2.1 Bi-temporal Comparison

Let X1, X2 be the two SAR images acquired on the same scene at times t1, t2, t1 < t2 and

properly pre-processed. The multi-temporal comparison and the generation of CI can be

performed either pixel- or context-based. Most of the pixel-based CI indices is defined

with a ratio operator (e.g., ratio [156; 225], min-ratio [17; 5; 224], log-ratio [22; 24; 95; 33],

Gauss-log-ratio [108]), in which intensity increase and decrease are mapped into values

larger or smaller than 1, respectively. The effectiveness of this operation. compared to

that of image differencing (popular for CD in optical images) is motivated by the statistical

model of the single-time images X1, X2. By assuming a model in Eq. 2.7 for both images,

and defining Xr = X2/X1 and Xd = X2 − X1 as the image ratio and difference CIs,

respectively, the two corresponding pdfs would result:

P (Xr) =
(2L− 1)!

(L− 1)!2
XL−1
r X̄r

L

(Xr + X̄r)2L
(2.18)

P (Xd) =
LL

(L− 1)!

exp
(
−LXd

X̄2

)
(X̄1 + X̄2)L

L−1∑
j=0

j!(L− 1 + j)!

(L− 1− j)!
XL−1−j
d

[
X̄1X̄2

L(X̄1 + X̄2)

]j
(2.19)

The two expressions show how p(Xr) depends on the ratio of the intensity means, while

p(Xd) depends on both the difference of the intensity means and the single-time intensity

values. So, ratio-based operators highlight changes in the same ways for both high and

low values, unlike the difference-based operators [182; 37]. The use of the log-scale for
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ratio (i.e., log-ratio operator) gives a more symmetric contrast for the increase and de-

crease change and changes the residual speckle component into an additive contribution.

Log-ratio maps scattering increase and decrease into values larger and smaller than 0,

respectively. In binary change detection, a single class of intensity change is inferred by

considering minimum/maximum ratio [17; 109] (or absolute value of log-ratio [108]).

xMR = 1−min

{
I2

I1

,
I1

I2

}
(2.20)

XGLR =

∣∣∣∣log
X2

X1

∣∣∣∣ (2.21)

Ratio operation is exploited also in context-based strategies, using the intensity of the pixel

neighborhood [93; 76; 198; 102; 229; 57; 100]. The use of context-based operators provides

a suitable and robust detection for changes of large targets, as they detect changes in the

mean value associated to the pixel neighborhood. For the same reason, they exhibit larger

robustness to speckle presence. In turn, pixel-based indices are more suitable detectors

in case of changes preserving the neighborhood mean information. Mean-ratio [93; 76] is

one of the neighborhood-based operators, it is defined as the ratio of the intensity means

computed in a local neighborhood.

XµR(x) =

∑
i∈N(x) I2(i)∑
i∈N(x) I1(i)

(2.22)

being N(x) the neighborhood of the pixel x. In [198], a robust mean ratio operator is

defined with a non-local approach, in which the was taken by considering all the pixels j

of the image, j 6= x with weights expressed in terms of pixel ratio pdf.

XNLM
i (x) =

∑
j 6=i

1

Z(x)
exp(−d(x, j)2

h2
)Xi(j) (2.23)

being h a filtering parameter and Z(i) a normalization constant. In [100], a linear combi-

nation of the pixel-based and context-based mean-ratio operators is defined as CI, taking

into account both the single-pixel intensity values and the local neighobrhood information,

with weights dependent on the scene heterogeneity.

XmixR =
¯σ(x)
¯µ(x)

min(I1(x), I2(x))

max(I1(x), I2(x))
+

(
1−

¯σ(x)
¯µ(x)

) ∑
i∈N(x) min(I1(x), I2(x))∑
i∈N(x) max(I1(x), I2(x))

(2.24)

A different approach considers neighborhood for a local estimation of the image statistical

properties for the single-time image and a statistical similarity measure defined as CI. One

of the most popular similarity measure is represented by the Kullback-Leibler distance

(KLD) [113].

KLD(X1, X2) =
1

2
(KL(X1, X2) +KL(X2, X1)) (2.25)
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KLD(X1, X2) =

∫
p(X1) log

p(X1)

p(X2)
dX1 (2.26)

Parametric forms of the distance can be derived assuming single-time statistical models.

In [113], a parametric expression of the KLD based on the Gamma distribution model has

been proposed with Edgeworth-series approximation. Other similarity measures in the

literature include the mutual information [7; 4; 7], Jeffrey divergence [233] and Jensen-

Shannon distance [222]. Some works considered the use of image transformations for CD,

which highlight the geometrical information of the SAR images. In particular, Stationary

Wavelet Transform [5; 32; 70; 11], Non-Subsampled Contourlet Transform [108; 128] and

Fast Discrete Curvelet Transform [190; 11] separate the approximation and the details

information on different scale levels and orientation levels.

Minor approaches include a keypoints-based graph [169] and the comparison of single-time

segmented SIFT images [214].

2.2.2 Change information extraction

Let be R the CI feature selected for the multi-temporal comparison. In the analysis

of R for the unsupervised extraction of the change class, different strategies have been

proposed in the literature, based on either clustering or definition of separating thresholds.

Hard clustering, such as k-means [234; 127; 115] or mean-shift clustering [4; 7], and soft-

clustering approaches such as the Fuzzy C-means [101; 102; 141; 191], have been proposed

in the literature. K-means clustering considers the iterative minimization of the within-

class sum of squares [80]. The assignment of the feature sample r to one of the K classes

based on the minimum distance between the sample and the centroids. In the fuzzy

C-means, the class assignment is based on fuzzy membership functions describing the

effectiveness of the pixel assignment for each class. The separation of the P points into

C classes is obtained with the iterative minimization process of the cost function J

J =
N∑
n=1

K∑
k=1

umknd
2(yn, ck) (2.27)

At each iteration, both the centroids ck and the membership functions ukn are updated

as follows.

ck =

∑N
n=1 u

m
knyn∑N

n=1 u
m
kn

(2.28)

ukn =

[
K∑
j=1

d2(yn, ck)

d2(yn, cj)

]− 1
m−1

(2.29)
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being d(yn, ck) = ‖yn − ck‖2. The mean-shift clustering is an iterative non-parametric

procedure which estimates the continuous pdf by considering the local density over values

t and using a Kernel smoothing function K(s − t) decreasing with distance s [7]. A

derivative of the Kernel function is used for estimating the point at the next iteration,

until convergence The algorithm estimates the modes associated to the sample set.

For thresholding strategies, The normalized data distribution p(r) is modeled as a mixture

of K components associated to the K classes. Each class ω is defined with a prior

probability P (ω) and marginal distribution p(r|ω). Without loss of generality, let us

consider a binary CD problem, with two classes: no-change ωnc and change ωc separated

with threshold value T .

p(r) = P (ωnc)p(r|ωnc) + P (ωc)p(r|ωc) (2.30)

The analysis can be extended to K classes (i.e, two change classes associated to intensity

increase and decrease), with the definition of K − 1 threshold values. Some thresholding

approaches fix a false alarm probability Pfa [57]. A numerical estimation of the threshold

T can be obtained, considering the integral expression of Pfa in terms of the probability

density function p(r).

Pfa = 1−
∫ t

−∞
p(r)dr (2.31)

Automatic thresholding selection can be obtained based on the Bayesian theory, with

equality of the class posterior probabilities, or the minimization of a class-dependent cost

function. In Bayesian approaches [35; 32; 55; 24; 25; 197], the separating threshold is

decided such that:

P (ωc)p(r|ωc) = P (ωnc)p(r|ωnc) (2.32)

Both prior probabilities and marginal distributions are estimated with Expectation Max-

imization (EM) algorithm, which iteratively estimates the mixture parameters giving the

maximum likelihood estimation. Some thresholding approaches are based on the opti-

mization of a histogram-based cost function J(T )(e.g., Kittler-Illingworth thresholding

[113; 22; 23; 17] or its generalized version [157; 69])

J(T ) =
Lmax∑
l=Lmin

h(r)c(r, T ) (2.33)

being h(r) the histogram of r, Lmax, Lmax the minimum and maximum bin of h(r) and

c(r, T ) a function defined as:

c(r, T ) =

−2 logP (ωu|r, T )) r ≤ T

−2 logP (ωc|r, T )) r > T
(2.34)
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For both the groups of automatic thresholding strategies, prior probabilities and marginal

distributions are determined with Maximum Likelihood Estimation or, for more complex

models, with Method of Log-Cumulants [157]. Several statistical models have been pro-

posed for marginal distributions modeling log-ratio (i.e., Gaussian [24] and Generalized

Gaussian [25], Generalized Gamma ratio [125]), SAR amplitude ratio (e.g, Log-normal

[156; 17], Nakagami-ratio, Weibull-ratio [17; 224], Generalized Gaussian [17] or Gener-

alized Gamma ratio [69]). Other approaches refined the model by introducing a depen-

dence of the class prior probabilities on the spatial context. This was typically modeled

as Hidden Markov Chain [51], a Markov Random Field [212; 219; 102; 24] or Conditional

Random Field [125]. The estimation of the unknown terms and the context-based prior

model is conducted with Simulated Annealing, Maximal Posterior Mode [51] or Iterated

Conditional Mode [225]. Other approaches include active contours [56] and the fusion of

change informaiton coming from multiple channels [157] or scale levels [32; 5; 113; 55].

For CD methodologies based on an automatic thresholding selection, the effectiveness of

the selection assumes that change and no-change classes have a proper statistical repre-

sentation. For input images with large size, as for the case of VHR SAR imagery, it is

possible that the no-change class presents a sharply dominant part in the mixture. This

would introduce errors in the automatic threshold selection. In order to overcome this

effect, a split-based CD approach was introduced in [33]. The approach divides the CI into

S rectangular split, each with size SR × SA. For the k-th split, a measure of the internal

change information is defined with pixel variance σ2
k. Large variance values indicate the

equivalent presence of change and no-change classes, while small variance values indicate

that the no-change class has a dominant presence in the split. Let µσ2 and σσ2 be the

mean and the standard deviation of the variance set σ2
k, k = 1, ..., S. Threshold selection

is finally applied on a subset of image splits with a larger class balance. The split set is

composed based on the condition:

σ2
k ≥ µσ2 +Bσσ2 , k = 1, ..., S (2.35)

The split-based approach has been applied in the definition of CD approaches tailored for

specific applications, such as the building damage assessment [146] or the port surveillance

[39]. The approach was used in the development of both the unsupervised CD method for

Full-pol SAR images presented in Chapter 4 and the unsupervised CD method for VHR

SAR images presented in Chapter 6.

In [33; 5] the authors considered a scale-driven CD approach based the combination of the

multi-temporal information at different scale, in order to preserve detail information and

mitigate the presence of outliers in the final CD map. In the approach, Xlr is decomposed

with a dyadic approach at different resolution scale levels. The result of the decomposition
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is image set Xms = {X0
lr, X

1
lr, ..., X

N−1
lr }, where Xn

lr represents the log-ratio information

at scale scale n, n = 0, ..., N − 1 and X0
lr indicates the original image (i.e., X0

lr = Xlr).

The decomposition was conducted with Two-Dimensional Stationary Wavelet Transform,

which keeps the transform invariant to translation, by avoiding the decimation step (used

in Discrete Wavelet Transform). Other approaches in the literature consider Laplacian

pyramid decomposition [3].

The filtering process starts with the definition of {Xlr as approximation wavelet com-

ponent of level n = 0. For each scale level n, a set of high-pass and low-pass filters is

iteratively applied the approximation component. This generates a four components in

the wavelet domain: a lower-resolution approximation component (i.e., X
LL(n+1)
lr ) and

three detail components for vertical (i.e., X
LH(n+1)
lr ), horizontal (i.e., X

HL(n+1)
lr ) and di-

agonal (i.e., X
HH(n+1)
lr ) directions, respectively. The four components can be defined in

terms of two-dimensional signal convolution as follows:

X
LL(n+1)
lr (i, j) =

Dn−1∑
p=0

ln [p] ln [q]X
LL(n)
lr (i+ p, j + q) (2.36)

X
LH(n+1)
lr (i, j) =

Dn−1∑
p=0

ln [p]hn [q]X
LL(n)
lr (i+ p, j + q) (2.37)

X
HL(n+1)
lr (i, j) =

Dn−1∑
p=0

hn [p] ln [q]X
LL(n)
lr (i+ p, j + q) (2.38)

X
HH(n+1)
lr (i, j) =

Dn−1∑
p=0

hn [p]hn [q]X
LL(n)
lr (i+ p, j + q) (2.39)

being Dn the length of the wavelet filters at scale n and ln, hn the impulse response

of the low-pass and high-pass filters, respectively. The response for the high-pass filter

is obtained by reversing the order of the coefficients and by changing the sign of the

even-indexed coefficients. A Two-Dimensional Inverse Stationary Transform (2D-ISWT)

is applied to the approximation components X
LL(n)
lr , n = 0, ..., N − 1 for obtaining the

multi-scale image set Xms. In 2D-ISWT, a set of inverse filters
[
l(k)
]−1

, k = 1, ..., n

are applied for each approximation component X
LL(n)
lr . Inverse filter response

[
l(k)
]−1

is

defined such that: [
l(k)
]−1

(p) ∗
[
l(k)
]

(p) = δ(p) (2.40)

The multi-scale decomposition was used in the development of the unsupervised CD

method for VHR SAR images presented in Chapter 6.
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Table 2.1: Overview of the principal bi-temporal CD methods for MR-SAR imagery.

Multitemporal

Input data

Multitemporal

comparison
Detection strategy

Methods based

on image

comparison

Single-pixel ratio

Constant false alarm probability [57],

Bayesian [198],

KI thresholding[69; 225],

K-means [115]

Single-pixel min-ratio KI thresholding [17; 156]

Single-pixel log-ratio
Bayesian [24; 22; 32; 35; 125]

KI thresholding [23; 25; 109]

Single-pixel Gaussian

log-ratio

K-means [108],

Bayesian (Wang2016)

Local-context-based

mean ratio

Bayesian [76; 51],

Fuzzy C-means [102]

Nonlocal-context-based

mean ratio

Manual thresholding [224],

Bayesian [198]

Mutual information Mean shift clustering [7; 5; 4]

Kullback-Leibler distance KI thresholding [113]

Jeffrey divergence K-means [233]

Jensen-Shannon distance Bayesian with context [222]

Gabor transform K-means [127]

Wavelet transform

Bayesian [5; 33; 54],

Manual thresholding [70; 113],

Active contours [56],

Multiscale fusion [33; 113]

Curvelet transform Manual thresholding [190]

Contourlet transform K-means [128; 108]

Keypoints-based graph Manual thresholding [169]

Others

Information fusion SAR+GIS [94; 73; 207]

Information fusion SAR+Optical [44; 63; 173; 213]

SAR Post-classification comparison [174; 74]

SAR Supervised joint classification [103]

SAR Unsupervised joint classification [8]

SIFT-based SAR segmentation+comparison [214]
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2.3 Unsupervised Change Detection in PolSAR imagery

If we consider Polarimetric SAR imagery, a large effort has been devoted to binary CD. In

particular, many approaches in the literature defined the CD problem as hypothesis test,

where the two hypotheses H0 and H1 were associated to the change and no-change class.

The hypothesis test was typically evaluated with a similarity measure and a threshold

value defined by fixing a desired false alarm probability. The approaches considered either

Likelihood (or Generalized Likelihood) ratio test [163; 117; 52; 67; 162; 19], complex-kind

Hotelling-Lawley trace [6], mutual information [82], feature-space geometrical distances

[180; 58] and statistical distances [161; 81; 58].

Likelihood ratio tests the goodness of fit of the statistical model of the two multi-temporal

images. For Wishart distribution, the test evaluates the equality of the two covariance

matrices in terms of likelihood, with hypotheses Σ1 6= Σ2 and Σ1 = Σ2 = Σ associated to

change ad no-change, respectively.

LLR =
L(Σ)

L(Σ1)L(Σ2)
=

(n+m)(n+m)p

npnmpm

|C1|n|C2|n

|C1 + C2|n+m
(2.41)

being L(Σ) the model likelihood, n,m the number of looks of C1 and C2, respectively.

Based on the logarithmic form of LLR, Symmetrical Revised Wishart distance and

Bartlett distance have been proposed [230].

dW (C1, C2) =
1

2

(
log |C1|+ log |C2|+ tr(C−1

1 C2 + C−1
2 C1)

)
(2.42)

Most of the approaches were based on the assumption of homogeneous areas for the

two multi-temporal images. A hypothesis Log-Likelihood test for heterogeneous data

was proposed in [152]. A multi-variate version of the Kullback-Leibler divergence has

been proposed for polarimetric SAR data in [81; 161], given the assumption of Wishart

distribution for the two single-time polarimetric covariances C1, C2.

KLD(C1, C2) =
1

2
(KL(C1, C2) +KLD(C2, C1)) (2.43)

KL(C1, C2) =
1

2

∫
Supp(C)

p(C1) log
p(C1)

p(C2)
dC =

1

2
log

(
|Σ2|n

|Σ1|n

)
+ Ltr(Σ−1

2 Σ1 − I) (2.44)

For the computation of the entropy-based test, an entropy measure H(Ci) is defined for

the covariance matrix Ci, i = 1, 2. For large number of looks L, the entropy difference

considering the true and the estimated distribution tends to be a Gaussian with variance

σ2
H . The entropy-based test [161] compares the entropy associated to the two multi-

temporal images, with an index:

SH{C1, C2} = L
|H(C1)−H(C2)|2

σ2
H(C1) + σ2

H(C2)
(2.45)
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Popular entropy measures considered in the state of the art are Shannon HS and Renyi

entropy with order β HR.

HS = −
∫
pC(C,Σ, L) log pC(C,Σ, L)dC (2.46)

HR = (1− β)−1 log

∫
pβC(C,Σ, L)dC (2.47)

In [180], the authors considered a transformation of the complex Covariance matrix C

into a real-value Kennaugh matrix K [122] and the computation of geodesic distance

between the target Kennaugh matrix and Kennaugh matrix associated to elementary

targets. Geodesic distance GD between two Kennaugh matrices K1, K2 is given by

GD(K1, K2) = cos−1

(
tr(K−1

1 K2)√
tr(K−1

1 K1)
√
tr(K−1

2 K2)

)
(2.48)

A PCA-based K-means clustering was applied for detecting the change class. Automatic

thresholding approaches (e.g., Kittler-Illingworth thresholding) for the aforementioned

similarity measure were proposed in [134; 223; 96].

Other approaches are based on the definition of curvelet-based features from multiple

polarimetric channels [189; 43], the optimization of contrast measures [71; 147; 148; 149;

176]), the fusion of change detection maps obtained by multiple SAR features [157], or the

thresholding of multi-temporal features from state-of-the-art polarimetric decompositions

[196; 121; 61; 62; 193].An overview of the principal PolSAR-based CD methods is reported

in Table ??. A large part of these methods tackled the CD as a binary problem, mea-

suring a single change class. A poor effort has been devoted in the separation of change

classes, with thresholding of cross-correlation coefficients derived after polarization state

conformation [176] or the thresholding of decomposition features, following the paradigm

for the single-pol SAR images [167].

2.4 Unsupervised Change Detection in VHR SAR imagery

The peculiarities illustrated above for VHR SAR data make the CD approaches for MR

SAR data not much effective, requiring some modifications. Thus, some dedicated CD

strategies were proposed in the literature for the analysis of VHR SAR data. In [5; 4; 7],

CD considers the bivariate analysis of the pair of VHR SAR images. Mean-shift clustering

is applied on multi-temporal data scatterplot and modes of the bivariate distributions are

derived. Changes are associated to modes distant from the scatterplot diagonal.

In [31], a wavelet decomposition is applied to the single-time VHR SAR images. Ap-

proximation and detail coefficients for the two images are grouped into a feature vector,
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Table 2.2: Overview of the principal bi-temporal CD methods for Polarimetric SAR imagery.

CD strategy Reference

(Generalized) Likelihood Ratio [52; 67]

Hotelling-Lawley trace [6; 96]

Mutual Informaiton [82]

Geometrical distances [180; 58]

Statistical distances [81; 161]

Curvelet transform [189; 43]

Optimization of contrast features [148; 149; 176]

Decomposition features thresholding [196; 121; 62]

Multi-channel CD fusion [157]

modeled as a multi-variate Gaussian. Pairwise components are compared with Kullback-

Leibler divergence and a total sum of the different contributions is defined as CI.

In [190], multi-temporal comparison of the two images is applied on the Curvelet-transformed

images and soft thresholding applied. Curvelet transform is exploited in a unsupervised

strategy for the detection of building damages [42]. Their use on the pre-event image

allows the detection of candidates associated to double-bounce and the integration of this

information with the multi-temporal CI.

In [21], a local estimation of the statistical properties of both the single-time images is

performed, by considering complex coherent SAR data. A complex Gaussian model is

assumed for each single-time image, with a Markovian model for taking into account the

pixel context. Unknown model parameters are retrieved with EM algorithm. A similarity

measure of the two single-time image models, expressed in terms of the Kolmogorov-

Smirnov test, is used for producing the CD map.

A robust CD approach based on the multi-scale representation of the Jensen-Shannon

divergence has been proposed in [222]. In this approach, Jensen-Shannon divergence is

computed on multi-scale components of the single-time VHR SAR images. The multiple

similarity measures are modeled as a hierarchical MRF, so an estimation of the marginal

posterior model is used for generating the final CD map.

Because of the very high resolution, the single pixel may not convey enough informa-

tion and pixel- and context-based methods may not be very efficient in tackling the

multi-temporal analysis for heterogeneous scenes. Thus, object-based CD methods were

developed for the analysis of multi-temporal VHR SAR data [136; 226; 111; 98]. The
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methods consider a preliminary segmentation of the single-time images and a comparison

and change information extraction on the segmented single-time images. Some approaches

consider the segmentation on the single-time image with region growing ??. Here, the two

segmented maps are compared for generating a preliminary change extent. This informa-

tion is exploited in a pixel-based multi-temporal comparison of the VHR SAR images for

refining the final CD map.

Two CD approaches, tailored for maritime surveillance [39] or monitoring of built-up ar-

eas [146], are based on a different object-based strategy. This considers a pixel-based CD

and the extraction of objects from the single-time images obtained for an optimal scale

level, depending on the characteristics of investigated targets. The objects are derived

with window-based detectors and a multi-temporal comparison of the objects is conducted

with statistical similarity measures.

Other approaches consider the segmentation on the change index. In [136], the two single-

time images are compared and thresholded. Region growing was applied on pixels showing

a large multi-temporal variation, until convergence. A connected component analysis was

conducted on the resulting multi-temporal objects for deriving the final CD map.

In [77], the two VHR SAR images are directly compared for the derivation of a pixel-

based CD map. Then, then an object-based analysis is conducted on the CI, by applying

morphological component analysis with wavelet and curvelet transform, yielding a object-

based CD map. The two CD maps are finally combined into a global CD map.



Chapter 3

A Novel Framework for

Unsupervised Multi-class Change

Detection in Dual-pol Intensity SAR

Images

In the recent years, Polarimetric SAR (PolSAR) systems became a suitable tool for multi-

temporal monitoring, with regular acquisitions in different polarimetric channels. Change

Detection (CD) methods in polarimetric data mainly focus on binary change detection,

whereas the polarimetric information provides features that can be exploited for separating

multiple kinds of change. In this contribution, we introduce a novel model for the char-

acterization of multi-temporal changes in bi-temporal dual-polarimetric data. The model

is based on the novel definition of a polarimetric change vector (PCV), which separates

kinds of change in terms of target properties of the two considered scenes, according to

the scattering theory. The proposed model is used to design an unsupervised CD strategy

that discriminates the multiple kinds of change classes. Experimental results conducted on

three multi-temporal PolSAR datasets with different complexity in terms of number and

kinds of change classes confirm the effectiveness of the approach and the better perfor-

mance with respect to the state of the art. 1 2

1The candidate would thank Dr. Shane Cloude for his precious comments in the analysis of the single-time

backscattering behavior.
2Part of this chapter appears in [171].
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3.1 Introduction

The temporal monitoring of the Earth is a crucial topic for several applications. Some

applications consider the analysis of long-time series for studying the impact of climatic

events at large time scale[118]. Others focus on the impact of abrupt changes and require

a steady monitoring of the area, such as in the case of disaster management [61; 167; 171].

In this context, Change Detection (CD) is defined as the process of identifying changes

by means of the analysis of images acquired at different times over the same geographical

area. For CD, spaceborne Synthetic Aperture Radar (SAR) imagery represents a powerful

tool, as the acquisition of these data is not affected by the cloud coverage and the sun

illumination. These properties increase the amount of useful regular acquisitions that can

be considered on the scene compared to passive sensors, especially in extremely cloudy

areas.

SAR systems provide a measure of backscattering information of the scene, by transmit-

ting and receiving with linear polarization (i.e., H or V ) [143]. The interpretation of this

information is a complex task, as SAR imagery is characterized by geometrical distortions

and multiplicative speckle noise. Geometrical distortions are given by the squinted ge-

ometry of acquisition over non-flat targets (e.g., mountains or built-up areas). Speckle is

due to the coherent sum at the receiver of the signals returned by the multiple elementary

scatterers in the SAR resolution cell.

Because of the properties of the SAR data, target discrimination in either single-time or

multi-temporal analysis requires appropriate methodologies. In the literature, several CD

approaches based on SAR data have been presented. Some of them are based on the

multi-temporal comparison of the classification maps generated from the single-time SAR

images (i.e., post-classification comparison methods [16]). However, a large part of the

state-of-the-art approaches are based on the comparison of multi-temporal SAR images

and the unsupervised information extraction from the resulting Change Index (CI). The

CI can be derived on either a pixel-by-pixel basis or by exploiting the spatial context

information. The latter option mitigates the effects of the speckle noise on the results.

Several comparison operators have been proposed for the generation of the CI and can

be selected on the basis of the kind of data and their statistics. In SAR data, by areas

with uniform texture, pixel intensity is modeled with an exponential probability density

function and the noise is modeled as being multiplicative. These elements support the use

of ratio-based comparison operators [184], including normalized-mean ratio [4; 17], log-

ratio [143; 157; 22; 146] or Gauss log-ratio [108]. The representation in the logarithmic

scale has the double effect of transforming the residual noise in an additive contribution

and enhancing ratio values smaller than 1, which corresponds to backscattering decrease.
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Other approaches are based on distance measures (i.e., Kullback-Leibler distance [113])

or features coming from the Information Theory (e.g., Mutual Information [44]), and take

advantage of neighborhood information.

The aforementioned approaches mostly rely on the use of single polarimetric channels.

Because of this, they often end up with identifying presence/absence of changes or in the

best case they distinguish no-change from backscattering increase and decrease only. Nev-

ertheless, the backscattering variation in single polarimetric data provides only a limited

information about the nature of the kind of change, so that a multi-class change detec-

tion is not feasible or limited to the detection of backscattering increase and decrease.

In this context, Polarimetric SAR (PolSAR) sensors extend the SAR imaging capabili-

ties by transmitting and/or receiving on more polarizations [122], thus providing a more

powerful tool for multi-class CD. Two types of polarimetric data are available, namely

full-polarimetric (full-pol) and dual-polarimetric (dual-pol). In full-pol data, all the com-

binations are exploited, by transmitting and receiving on the two alternate polarizations

(H and V ). In dual-pol data, only two of the combinations are taken. In some cases,

the two combinations are related to a fixed transmitting polarization (i.e., HH −HV or

V V − V H). In others, only co-polarizations (i.e., HH − V V ) are considered. For simple

targets, PolSAR data are usually expressed in terms of the scattering matrix S [122]:

S =

Shh Shv

Svh Svv

 (3.1)

where Spq is the complex scattering coefficient for the pq- polarimetric channel. In case of

targets with complex spatial structure, the characterization is demanded to second-order

statistics, with the definition of a polarimetric covariance matrix C:

C = e†e =


C11 C12 C13

C21 C22 C33

C31 C32 C33

 (3.2)

being e =
[
Shh Shv Svv

]
the scattering vector and (·)† the hermitian operator. Diago-

nal elements of C are associated to the scattering intensity for the different polarimetric

channels. Same information can be represented by the Coherency T through a change

of basis as well. Advanced polarimetric decompositions of this matrix provide features

effectively enhancing the polarimetric information [122; 167]. For full-pol data, both S

and C have all non-zero elements. For dual-pol data, one of the elements of S is set to

zero, while a subset vector e with the two non-zero elements is used for the definition

of C [122]. In this chapter, we focus on the use of dual-pol intensity data with fixed



32
A Novel Framework for Unsupervised Multi-class Change Detection in Dual-pol Intensity SAR

Images

transmitting polarization.

CD applications exploiting polarimetric data are typically based on likelihood ratio tests

[67; 122], the fusion of change maps obtained by single polarimetric features [122] or

the descriptive analysis of the features coming from the polarimetric decompositions

[43; 122; 143; 157; 167]. However, to the best of our knowledge, the aforementioned CD

approaches aim at performing binary CD (i.e., they identify presence/absence of change

without considering that changes may have different causes and thus semantic); sometimes

they separate among increase and decrease of the backscattering in single polarimetric

channel, but none of them aims at distinguishing among several possible multitemporal

backscattering mechanism associated to different kinds of change on the ground [167].

Nevertheless, the information from polarimetric channels suggests the possibility of sepa-

rating more than one or two kinds of change and of providing hints about their semantic

meaning, leading to a multi-class CD. Unsupervised multi-class CD has been tackled in

multi-temporal optical images, with the definition of multidimensional change index and

proper techniques for the information visualization and thresholding [38; 133]. However,

the difference between optical and PolSAR data in terms of both available channels (spec-

tral and polarimetric, respectively) and data statistics makes the optical-based methods

from the literature not applicable [183]. A first attempt to jointly use more polarimetric

channels for multi-class change detection has been done by the authors in [171] only re-

cently. Thus, more effort is required to fully take advantage of the polarimetric channels

information for the discrimination of multiple (i.e., more than two) change classes.

In this chapter, we propose a framework for the representation and the discrimination of

change classes based on a model of the multi-temporal behavior of dual-pol SAR backscat-

tering information, which is inspired by [171]. These changes are mapped into specific

regions of the space of the polarimetric change vectors and their physical meaning is ana-

lyzed according to their impact on the backscattering. We also propose an unsupervised

CD strategy which exploits the proposed model for separating the no-change class and

discriminating the different kinds of change. The strategy is proposed for medium/high

resolution SAR images, so that samples can be assumed as independent and identically

distributed. An automatic estimation of the optimal number of change classes is obtained

by the use of a state-of-the-art model selection criterion (i.e., Bayesian Information Cri-

terion). The capability of the proposed method to identify multi-class changes becomes

highly interesting due to the growing offer of polarimetric data in public archives, in par-

ticular for the analysis of the dual-pol data, which are freely available in Sentinel-1 data

archive [205].

The chapter is structured into five sections. Sec. 3.2 illustrates the proposed CD polari-

metric framework and describes the behavior of the change and no-change classes. Sec.
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3.3 presents a novel unsupervised CD strategy for complex PolSAR data, based on the

proposed framework. Sec. 3.4 presents datasets and experimental results. Finally, Sec.

?? draws the conclusions and illustrates future developments.

3.2 Intensity-based Polarimetric Change Vector Analysis

3.2.1 Polarimetric Change Vector

Let us consider two intensity dual-pol SAR images X1, X2 with size M×N , acquired over

the same scene at times t1, t2(t1 < t2), respectively. Let us assume that pre-processing step

is applied to the pair of images (i.e., calibration, multilooking, geocoding and coregistra-

tion). By considering intensity data, off-diagonal elements of the matrix C are neglected,

thus no correlation information is assumed between the two polarimetric channels. Each

polarimetric image Xi, (i = 1, 2) is modeled as a data-cube structure, in which the generic

spatial location (x, y) is associated to a vector Xi(x, y)(x = 1, ...,M, y = 1, ..., N), with

two components. Let p be the fixed transmission polarization and q its orthogonal polar-

ization. Xi is defined as follows:

Xi(x, y) = [Xpp
i (x, y), Xpq

i (x, y)], p, q ∈ {H,V }, p 6= q (3.3)

where Xpp
i (x, y), Xpq

i (x, y) are the backscattering coefficients measured for the pixel in

position (x, y) of the i-th image on the co- and cross-polarimetric channels, respectively.

Starting from the information in X1 and X2, a multi-temporal model can be derived for

mapping multiple kinds of change based on their backscattering properties. The proposed

model is based on a novel multi-polarimetric multi-temporal log-ratio comparison of the in-

put images and on the subsequent representation of the multi-polarimetric multi-temporal

information in the dual-pol log-ratio feature space. The novel comparison operator is a

polarimetric version of the log-ratio:

XLR = [Xpp
LR, X

pq
LR] (3.4)

Xpp
LR = log

Xpp
2

Xpp
1

(3.5)

Xpq
LR = log

Xpq
2

Xpq
1

(3.6)

The output XLR is named as Polarimetric Change Vector (PCV). Each PCV component

refers to a polarimetric channel and thus codes different characteristics of the change

information. Log-ratio components in the PCV have positive/negative values associated

to increase/decrease of the SAR intensity in the corresponding polarimetric channel and,
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thus, to different kinds of change. The PCVs span a two-dimensional orthonormal feature

space. The information in this feature space can be represented in a two dimensional co-

ordinate systems: the Cartesian one (given by the log-ratio values for the two polarimetric

channels) or the polar one. The relationship between polar and Cartesian coordinates is

given by:

ρ =
√

(Xpp
LR)2 + (Xpq

LR)2, ρ ≥ 0 (3.7)

φ = arctan
Xpq
LR

Xpp
LR

, φ ∈ [0, 2π] (3.8)

where ρ is the magnitude and φ is the direction of the PCV. No-change and change

classes can be characterized according to their magnitude and direction properties. On

the one hand, no-change class does not exhibit relevant backscattering variation in both

the co- and cross-pol channels. Both the PCV elements assume values close to 0. Thus,

ρ is expected to have values close to 0 as well. On the other hand, change classes are

associated to significant backscattering variations (either positive or negative) in one or

both the polarimetric channels, (i.e., one or both the conditions Xpp
1 6= Xpp

2 and Xpq
1 6= Xpq

2

are satisfied). Therefore, at least one of the two PCV elements is significantly different

from zero. In these cases, magnitude values are in average higher than those of the no-

change class.

Let ωnc be the class of unchanged pixels. The complementary class Ωc represents the

macro-class of all the possible kinds of change. In the feature space, classes ωnc and Ωc

can be separated with a magnitude threshold Tρ, thus the corresponding loci, namely a

circle Cnc and an annulus Ac, are defined as:

Cnc = {ρ, φ : 0 ≤ ρ ≤ Tρ, 0 ≤ φ < 2π} (3.9)

Ac = {ρ, φ : ρ > Tρ, 0 ≤ φ < 2π} (3.10)

Direction values are almost uniformly distributed and thus exist in the whole domain

of φ. Therefore, the direction provides no relevant information for the no-change class.

Nevertheless, the direction can be used for discriminating among the change classes in the

macro-class of changes Ωc, as it assumes different values according to the effects of changes

on the physical parameters of the scene. Different change classes assume positive, null

or negative values for each PCV element. They correspond to different possible direction

values in the PCV polar domain. For the sake of simplicity, we assume eight possible

preferred direction values. The first four directions φ ∈ {π
4
, 3π

4
, 5π

4
7π
4
} correspond to the

cases in which the absolute values of the two PCV elements Xpp
LR and Xpq

LR are similar

to each other. The second set of directions φ ∈ {0, π
2
, π, 3π

2
} includes the cases in which

the absolute value of one component is stronger than the other. Each kind of change
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can be mapped into a region of the PCV feature space surrounding its specific preferred

direction. Let ωck, k = 1, ..., 8 be the k-th change class, where:

Ωc =
8⋃

k=1

ωck (3.11)

Each class ωck is mapped into an annular sector Sk having magnitude greater than Tρ
and limited by the thresholds T φk1, T

φ
k2 along the direction. The first sector presents a

discontinuity for φ = 0. This discontinuity makes the sector S1 as the union of two

intervals defined by thresholds T11, T12

Sk = {ρ, φ : ρ > Tρ, T
φ
k1 ≤ φ < T φk2, T

φ
k1 ≤ T φk2}, k 6= 1 (3.12)

S1 = {ρ, φ : ρ > Tρ, 0 ≤ φ < T φ12, T
φ
11 < φ < 2π, T φ11 ≥ T φ12} (3.13)

Despite the sensitivity of the backscattering to a large set of physical variables, three

main variables are individuated that characterize land-cover backscattering, namely the

local roughness, the water content and the presence of targets with non-zero height. Such

parameters can be used for the definition of a qualitative model of the backscattering

information for both X1 and X2. Changes on the ground induce change-dependent varia-

tions on those physical parameters. Therefore, these can be used to model the behaviors

of different kinds of change. Accordingly, Sec. 3.2.2 recalls single-date backscattering be-

havior for some targets, while Sec. 3.2.3 derives the multi-temporal polarimetric behavior

in case of change.

3.2.2 Single date backscattering behavior

In order to model the physical changes in terms of backscattering variation on both co-pol

and cross-pol channel, let us first analyze the sensitivity of the backscattering with re-

spect to the parameters of both the sensor and the target. Among them, we examine the

polarimetric channel and the frequency band as sensor parameters. However, an extended

backscattering analysis is out of the purpose of this work and further details can be found

[208; 209].

Polarimetric channels show different sensitivity to targets with different structure based

on the scattering theory. Among the co-pol channels, the V V channel is more sensitive to

the horizontal elements, while the HH is more sensitive to vertical structures with dihe-

dral elements. The cross-polarimetric channel V H highlights the presence of depolarizing

elements [220].

The selection of the frequency band on the SAR system highlights different scene layers,
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as it affects the value of both the surface penetration depth (together with the dielectric

constant) and roughness directly [218; 209]. Systems with lower frequencies (i.e., P- and

L-band systems) are able to penetrate and detect targets on deeper layers, with high

co-pol scattering, while at higher frequencies (i.e., C- and X-band systems) they sense in-

formation on the shallower layers [29; 110; 50]. The information of the deeper layers may

be seen as cross-polarized signal because of the depolarizing effect of the target internal

structure.

Sensor parameters can be assumed to be stable for different acquisitions, such that

backscattering variations can be defined in terms of the target parameters only. They

include the dielectric constant, the surface roughness, the local incidence angle, the as-

pect angle and the presence of dihedral elements.

The dielectric constant, associated to the bio-physical properties of the target, affects both

the penetration depth and the backscattering intensity. One of the elements impacting on

natural target backscattering is the water content. Several studies illustrated how high

values of moisture content and dielectric constant are associated to large backscattering

values on all the polarimetric channels [164; 155].

Surface roughness is modeled by root-means-square height s (or facets slope statistical

parameter β) and one or two scales, depending on its complexity [164; 106]. For smooth

surfaces (i.e., low s values), scattering models show low values for both co- and cross-

pol values (i.e., specular reflection). In particular, scattering intensities on the two co-pol

channels show similar small values, while the cross-pol intensity tends to zero. Rough sur-

faces (i.e., large s values) with a single roughness scale, such as bare soils, show scattering

based on a general Bragg model, with both co-pol and cross-pol non-null values [106].

Sea surface is typically characterized by two roughness scales, associated to capillary and

gravity waves [47; 232]. Capillary waves have very small roughness scale, thus scattering,

under Kirchoff approximation, presents low cross-pol values and sensible co-pol values.

Gravity waves modulate the slope scale of the capillary waves and increase scattering on

the co-pol channels only. An additional non-Bragg term on both the co-pol channels is

introduced for very rough marine surfaces.

The target acquisition is also characterized by an aspect angle and a local incidence angle.

The aspect angle plays an important role in the analysis of dihedral elements (e.g., built-

up areas [220]). These targets generally show high scattering on co-pol channels, while

cross-pol scattering depends on the target aspect angle and it is minimum for angles close

to zero.

The local incidence angle has an impact on the target geometry in terms of both cell res-

olution and geometrical distortions for non-flat targets. In particular, large shadow and

foreshortening effects are associated to large and small angle values, respectively. From
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a radiometric perspective, under the assumption of lambertian surface, large values are

associated to lower backscattering intensities [218].

The presence of dihedral elements in the sensed resolution cell introduces a deterministic

scattering contribution, dependening on the target aspect angle. Such contribution gener-

ates high backscattering values on all the polarimetric channels (depending on the aspect

angle) and mitigates the effect of the sum of the contributions from the other scattering

elements in the resolution cell. This aspect is exploited in the detection of urban areas

in SAR imagery [150], [167]. This single date backscattering analysis holds for each SAR

image whatever the acquisition time.

3.2.3 Multi-temporal backscattering behavior: change model

Let us now extend the single date analysis to the multi-temporal case. If the scenario

preserves the same characteristics in terms of the illustrated physical parameters (i.e.,

no change occurred), small backscattering variations for both the polarimetric channels,

mainly attributable to the noise effects, are detected (i.e., Xpp
LR, X

pq
LR ' 0). On the other

hand, if the scenario shows a change in one or more physical properties, relevant backscat-

tering variations are detected on one or both the polarimetric channels, based on the

considerations illustrated in the previous subsection. Physical changes generating similar

backscattering variations in the two polarimetric channels are considered as being the

same change class. In the following, variations in the target physical properties are ana-

lyzed and associated to backscattering behaviors in the PCV domain.

Changes in the dielectric constant : changes in the target dielectric constant are typically

associated to a variation of the target water content. A positive variation is associated

to a direction φ = π
4
, corresponding to a backscattering increase on both the polarimetric

channels (i.e., Xpp
LR, X

qq
LR > 0); conversely, a decrease of the water content is associated

to a decrease of backscattering value on both channels, with a corresponding direction

φ = 5π
4

. Positive variations of the water content are seen after rainfall events or water

content variations like the ones due to irrigation. Negative variations happen in presence

of seasonal aging and loss of biomass of the vegetation [151]. Snow is another example of

target that may show significant changes in the dielectric constant due to water content.

However, the effects on backscattering are more complex. The increase of the water con-

tent in snow is associated to both an increase of the dielectric constant and a variation

of the layer penetration depth. This is because of the melting of the dry snow layer, that

high backscattering on both the co- and cross-pol channels. Thus, the wetness increase

of the snow is associated to a backscattering decrease on both the polarimetric channels

(i.e., Xpp
LR, X

pq
LR < 0) [85; 168].

Change in the surface roughness : let us consider variations in the surface roughness (e.g.,
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a bare soil or a water body). In case of soils, where roughness is at centimeter scale (i.e.,

much smaller than the image geometrical resolution), an increase of the roughness pa-

rameter is seen as backscattering increase on both the co-pol and cross-pol channels (i.e.,

Xpp
LR, X

pq
LR > 0). This change is associated to a preferred direction φ = π

4
and may occur

in presence of soil tillage [208]. Opposite variation of the soil roughness show negative

scattering variations (i.e., Xpp
LR, X

pq
LR < 0) and are mapped on a direction φ = 5π

4
. On

the other hand, water surface is composed by capillary waves with very small roughness

scale, modulated by waves with larger scale. This variation affects scattering mainly on

the co-pol channel, with negligible effects on the cross-pol one (i.e., Xpq
LR ' 0). Positive

and negative roughness variations are mapped into corresponding directions φ = 0 (i.e.,

Xpp
LR > 0) and φ = π Xpp

LR < 0 of the polar domain, respectively. These changes may

occur in presence of a variation of the sea swell or an oil spill, which univocally reduces

the surface roughness [179].

Changes in the dihedral elements : they are associated to the change of the dihedral struc-

tures in the resolution cell and show a backscattering variation for both the polarimetric

channels, with preferred directions φ = π
4

or φ = 5π
4

for a dihedral target appearing or

disappearing, respectively. The variation of the cross-pol one is less as the aspect an-

gle decreases and becomes small in presence of targets with negligible aspect angle. As

Xpq
LR = 0, the preferred direction for the two changes tend to φ = 0 and φ = π, respec-

tively. These changes may occur for arrival of large targets on the sea (e.g., ships) [206] or

the growth of large vegetation [107]. Variation of multiple target parameters may occur

for complex changes and depends on collateral conditions.

Example of change in multiple target parameters - a flood event : a flood event may occur

on either barely or largely vegetated soil. In the case of the barely vegetated soil, under

the assumption of smooth water surface, the effect on the backscattering by the increase of

the soil dielectric constant is overtaken by the decrease of the surface roughness. This gen-

erates a backscattering decrease on both the polarimetric channels (i.e., Xpp
LR, X

pq
LR > 0),

with a corresponding preferred direction φ = 5π
4

. On the other hand, in case of largely

vegetated soil, the flooded scene presents some dihedral structures formed by the trees

and the water surface. This results in no relevant backscattering variations on the co-

polarimetric channel between the two acquisitions (i.e., Xpp
LR = 0) and a backscattering

decrease on the cross-pol channels, respectively. The corresponding preferred direction

resulting from the two backscattering variations results in φ = 3π
2

. When the assumption

of smooth water surface is not fulfilled (i.e., rough water surface), the backscattering vari-

ation on the co-pol channel takes into account a further backscattering increase associated

to the increase of the surface roughness with respect to the case of smooth water surface.

Example of change in multiple target parameters - changes in built-up areas : the second
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example of complex changes is associated to the presence is of built-up areas, which are

characterized by dihedral structures with large backscattering. In particular, the con-

struction of built-up areas on a bare soil is characterized by a backscattering increase on

both the polarimetric channels (i.e., Xpp
LR, X

pq
LR > 0), due to the appearance of the dihedral

structures. The two backscattering variations result in a preferred direction φ = π
4
. On

the other hand, the construction on areas with either vegetation or debris (e.g., collapsed

urban areas) is characterized by the same variation on the co-pol channel (i.e., Xpp
LR > 0)

and a stable backscattering on the cross-pol channel (i.e., Xpq
LR = 0), with a preferred

direction in φ = 0. Conversely, destruction of built-up areas, as in presence of seismic

events, is associated to a decrease of the scattering in the co-pol channel (i.e., Xpq
LR < 0).

A relevant decrease on the cross-pol channel is also present when no debris exists on the

post-event scene (i.e., Xpq
LR < 0). The behavior can be explained by the high values of

cross-pol scattering associated to the vegetation, the debris and the oriented structure

[61; 167; 228].

Example of change in multiple target parameters - changes of vegetated areas : the last ex-

ample is represented by deforestation phenomena (e.g., wildfire or clear-cutting on dense

vegetated areas). The effect of such phenomena is strongly dependent on the frequency

band. For higher frequencies (i.e., C- or X-band), the radiation has the capability to pene-

trate the vegetation canopy. The removal of the canopy keeps the trunk vertical structures,

which form dihedral elements with the ground. Such changes result in backscattering in-

crease and decrease on the co-pol and cross-pol channels, respectively (i.e., Xpp
LR > 0,

Xpq
LR < 0). The change is mapped into a preferred direction φ = 7π

4
. If the trunk struc-

ture is cleared as well, the scattering is sensed from the bare soil below the vegetation.

Thus, the co-pol scattering shows no relevant backscattering variation (i.e.,Xpp
LR ' 0),

while the co-pol scattering decreases (i.e.,Xpq
LR < 0) [49; 50]. Such change is associated

to a preferred direction φ = 3π
2

. At lower frequencies (i.e., P- or L-band), the scattering

return is mainly associated to the trunk structure. In this case, the removal of the tree

structure is mapped into a preferred direction φ = 3π
2

, corresponding to backscattering

decrease in the co-pol channel and no relevant variation is sensed on the cross-pol one.

No relevant scattering changes are sensed from the removal of the canopy. Changes due

to the seasonal growth show opposite variations in the canopy and/or the trunk struc-

ture. Based on the aforementioned considerations, they are mapped into directions with

supplementary angles with respect to those expressed for deforestation change.

A representation of the different changes described above in the PCV domain is illustrated

in Fig. 3.1. The figure highlights the PCV capabilities in discriminating changes having

different multi-temporal backscattering behavior on the different elements of the PCVs

and thus how they assume different directions. Based on the considerations expressed
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Figure 3.1: Change behavior in the PCV feature space.

above in terms of the physical target parameters, further changes may be characterized in

terms of backscattering variation and represented in one of the sectors of the PCV feature

space.

3.3 Proposed CD Approach in Dual-Pol SAR images

The model in Sec. 3.2 provides the main properties of the changed and unchanged pixels

in the PCV feature space. No-change decision region can be bounded by a threshold value

Tρ, while each of the change classes ωck can be separated by two thresholds Tk1, Tk2. The

interval defined by Tk1 and Tk2 includes the preferred direction associated to the change

as described in the previous section and illustrated in Fig. 3.1. Nevertheless, in real SAR

data the thresholds should be estimated by taking the noise effect into account and, thus,

the behavior of the distribution of the magnitude and direction random variables in the

PCV feature space. Moreover, without any prior knowledge, the number of change classes

is unknown but typically smaller than the aforementioned 8 possible preferred directions.
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Thus, let the expected number of change classes in a specific case be K, with K ∈ [1, 8].

In this section, we propose an automatic multi-class CD approach based on the model

presented in Sec. 3.2. The approach is based on two steps : i) a binary CD performed

along the magnitude variable, which aims at separating changed from unchanged samples

(i.e., classes ωnc,Ωc); and ii) a multi-class CD performed along the PCV direction variable,

which aims at separating ωck, k = 1...K from each other. Fig. 3.2 shows the block scheme

of the proposed approach.

Figure 3.2: Block diagram of the change detection method.

3.3.1 Binary CD along the magnitude

The binary classification in the first step aims at separating the no-change class ωnc from

the macro-change class Ωc. Several approaches have been presented in the literature to

this end that consider either a single log-ratio feature [146] or spectral change vectors

[145], derived from SAR or multi-spectral images, respectively. Some of them consider

distance-based clustering (e.g., K-Means [234] or Fuzzy C-means [60]). Others, are based

on the estimation of the threshold for class separation (e.g., Bayesian [171; 146; 158], Otsu

[194], Kittler-Illingworth [22]). However, to the best of our knowledge, there is no attempt

to use such approaches on polarimetric SAR data. In order to exploit the properties of

the PCV magnitude and its statistical distribution for better class discrimination, here

we consider the Bayesian approach since it results to be more robust and accurate when

dealing with significantly overlapping classes. It requires an explicit estimation of class
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probability-density functions. The unsupervised EM algorithm is employed to this end.

The magnitude variable carries information about presence/absence of change, thus its

probability density function is expressed as a mixture of two components associated to

ωnc and Ωc.

pρ(ρ) = P (ωnc)pρ(ρ|ωnc) + P (Ωc)pρ(ρ|Ωc) (3.14)

being P (ω), pρ(ρ|ω) the prior probability and the marginal distribution for the class ω,

ω ∈ {ωnc,Ωc}, respectively, with P (ωnc)+P (Ωc) = 1. In order to set a statistical model for

the marginal distribution of the magnitude, we consider the log-ratio features composing

the magnitude. In the literature, empirical statistical models have been proposed mod-

eling the single-polarimetric log-ratio as a mixture of Gaussian or Generalized Gaussian

distributions [22; 171]. The model shows good trade-off between robustness and estima-

tion accuracy. However, our analysis pointed out that the PCV magnitude presents a

tailed distribution which is the result of the root square sum of the log-ratio variables.

Thus, introduce a more flexible and generalized skewed model, widely employed in the

SAR analysis, for the components of the PCV magnitude (i.e., Nakagami [17], Weibull or

Generalized Rayleigh [156]). In this work, we assume the PCV magnitude modeled as a

mixture of two Nakagami distributions, with priors P (ωnc), P (Ωc) and class-conditional

parameters mnc, σnc,mc, σc for the no-change and change classes, respectively. The proba-

bility density function (pdf) of a single Nakagami distribution for the class ω, with general

parameters m,σ, is defined as follows:

p(ρ|ω) =
2mm

Γ(m)sm
ρ2m−1e−mρ

2/s (3.15)

By applying the EM algorithm, prior probabilities and parameters for the marginal dis-

tributions at (q + 1)-th step are derived in order to maximize the current estimation of

the log-likelihood function:

P (q+1)(ω) =

∑MN
i=1 p

(q)(ω|ρi)
MN

(3.16)

s(q+1)(ω) =

∑MN
i=1 p

(q)(ω|ρi)ρ2
i∑MN

z=1 p
(q)(ω|ρi)

(3.17)

MN∑
i=1

p(q)(ω|ρi)
[
1− ρ2

i

s(q)
+ log

(
ρ2
i

s(q)

)
− ψ(m(q)) + log(m(q))

]
= 0 (3.18)

being P (q), s(q),m(q) the prior probability, the shape and the spread parameters for the

class ω at the qth iteration, ω ∈ {ωnc,Ωc} and being ψ(x) = Γ′(x)/Γ(x) the digamma func-

tion. The iterative process stops when either a maximum number of iterations is reached
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or the log-likelihood value reaches the convergence condition (i.e., the log-likelihood varia-

tion between two consecutive steps is below a tolerance value). The EM algorithm presents

a strong sensitivity to the initial conditions and does not guarantee the convergence to

the global minimum. The most popular strategy to increase robustness is the selection of

the initial values by K-means clustering [27]. From the clusters, an initial estimation of

the statistical parameters of the two classes is derived. Bayesian decision rule is finally

applied for assigning each sample to either ωnc or Ωc according to ρ value.

ω = arg max
ω
{P (ω)p(ρ|ω)}, ω ∈ {Ωc, ωnc} (3.19)

The value which makes the two posterior probabilities equal is the magnitude threshold

Tρ:

P (ωnc)p(ρ|ωnc) = P (Ωc)p(ρ|Ωc) (3.20)

3.3.2 Multi-class CD along the direction

The second step of the proposed approach is the classification of the samples in Ωc into

multi-class changes, for the separation of the change classes {ωc1, ..., ωcK}. This is operated

along the direction variable computed over the distribution of changed pixels p(φ|Ωc),

which is estimated from the corresponding data histogram. p(φ|Ωc) is modeled as a

mixture of K components, each associated to a specific change class ωck, with marginal

distributions p(φ|ωck) and prior probabilities P (ωck), k = 1...K,
∑K

k=1 P (ωck) = 1.

p(φ|Ωc) =
K∑
k=1

P (ωck)p(φ|ωck) (3.21)

To the best of our knowledge, a poor effort has been devoted for deriving the statistical

model of a direction feature both in passive and SAR data. In [34], a statistical non-

uniform model has been proposed for the direction feature derived with optical passive

data. The model is limited to the case of two non-zero mean Gaussian random variables.

It shows a periodicity not present in empirical data distribution, due to a dependence on

the random variable in terms of a tangent function, and introduces a large complexity that

makes the unsupervised mixture estimation not attractive. Further the model derived for

optical passive sensor data relies on assumptions that do not hold for PolSAR ones. In

order to have a reliable and flexible model for the PCV direction, we propose to model

the conditional distribution for each change class as a Generalized Gaussian function,

characterized by three parameters: location µk, scale αk and shape βk.

p(φ|ωck) =
βk

2αkΓ
(

1
βk

)e−[ |φ−µk|αk

]βk
(3.22)
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In the multi-class CD, no prior knowledge of K is assumed. Here we estimate its value

by minimizing the Bayesian Information Criterion (BIC) over the discrete set of values

K∗ < 8. BIC is one of the state-of-the-art criteria for estimating the quality of model

fitting to the data. It takes into account both the complexity of the data model (i.e., the

number of free parameters) and the likelihood of the model with respect to the data. By

considering (3.21) and (3.22), BIC minimization is as follows:

K = arg min
K∗≤8

BIC(K∗) = arg min
K∗≤8

(4K∗ − 1) log(card{Ωc})− 2log(L̂(K∗)) (3.23)

where L̂(K∗) is the maximum Log-likelihood obtained by estimating a mixture of K∗

components. For each possible K∗, the estimation of the statistical parameters is con-

ducted by applying the iterative equations of the EM algorithm.

L(q)(K∗) =

card{Ωc}∑
i=1

log

[
K∗∑
k=1

P (q)(ωck)p
(q)(φ|ωck)

]
(3.24)

P (q+1)(ωck) =

∑card{Ωc}
z=1 p(q)(ωck|φz)

card{Ωc}
(3.25)

α
(q+1)
k =

β
(q)
k

∑card{Ωc}
z=1 p(q)(ωck|φz)

∣∣∣φz − µ(q)
k

∣∣∣β(q)
k∑card{Ωc}

z=1 p(q)(ωck|φz)


1/β

(q)
k

(3.26)

card{Ωc}∑
z=1

p(q)(ωck|φz)
β

(q)
k(

α
(q)
k

)β(q+1)
k

∣∣∣φz − µ(q+1)
k

∣∣∣β(q)
k −1

· sign
(
φz − µ(q+1)

k

)
= 0 (3.27)

card{Ωc}∑
z=1

p(q)(ωck|φz)

 1

β
(q+1)
k

+

ψ

(
1

β
(q+1)
k

)
(
β

(q+1)
k

)2 −


∣∣∣φz − µ(q)

k

∣∣∣
α

(q)
k

β
(q+1)
k

log


∣∣∣φz − µ(q)

k

∣∣∣
α

(q)
k


 = 0

(3.28)

For each K∗ value, the estimation process stops when the maximum number of iterations is

reached or convergence condition for the likelihood is satisfied. The set of parameters that

guarantees the minimum BIC according to the aforementioned definition, provides the

best fitting solution and the optimal number of changes K. Starting from the estimated

parameters, multi-class CD map is derived by assigning the class ω∗ck to each considered

sample z based on the Bayesian decision rule:

ω∗ck = arg max
k
{P (ωck)p(φ(z)|ωck)} (3.29)
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From the posterior probabilities, it is possible to estimate the thresholds T φk1, T φk2 for the

class ωck, with k ≤ K. T φK2 and T φ11 are selected as the extrema of the histogram.

T φk1 : P (ωck)p(φ|ωck) = P (ωc(k−1))p(φ|ωc(k−1)) (3.30)

T φk2 : P (ωck)p(φ|ωck) = P (ωc(k+1))p(φ|ωc(k+1)) (3.31)

T φk2 = T φ(k+1)1 (3.32)

As for the magnitude, also for the direction variable other strategies can be used for

threshold estimation like Otsu [194] and Kittler-Illingworth [22]. In real scenarios, some

sectors of the polar domain may not show relevant population. Thus, the thresholds

T φki, k ≤ K, i = 1, 2 will be different from the theoretical values defined in the previous

Section.

3.4 Experimental Results

For the validation of the proposed CD approach, three bi-temporal datasets of dual-pol in-

tensity SAR images have been considered, showing different numbers and kinds of change

classes. Two datasets, acquired by the Sentinel-1 and UAVSAR sensors over the areas

of Chennai (India) and Los Angeles (United States) respectively, show the presence of

two (K = 2) relevant changes in the scene. The third dataset is more complex. It is

acquired by the Sentinel-1 sensor over the area of Oristano (Italy) and is characterized

by the presence of three changes (K = 3). An overview of the considered acquisitions is

reported in Table 3.1.

In order to prove the effectiveness of the PCV information representation, two different

thresholding approaches have been tested for both the PCV magnitude and direction.

The first one applies Bayesian decision rule to class probability density functions esti-

mated by the EM algorithm. The second one employs Otsu thresholding strategy. On all

the datasets, BIC analysis was conducted for estimating the optimal K, by considering

the analysis of a mixture of K∗ generalized Gaussians, with K∗ integer ranging in [1, 8].

Since, at best of our knowledge, no method exists for multi-change detection in PolSAR

data, we compare the results of the proposed framework with: i) a standard binary CD

method based on the Log-likelihood Ratio (LLR) of PolSAR data and on the assumption

of Gamma statistical model for single-time intensity [67]; and ii) an unsupervised decision

strategy applied to the 2-dimensional (2D) space of PCV. PCV class probability density

function is modeled as a mixture of bivariate Gaussian components. Unknown param-

eters of the mixture are estimated with EM algorithm (EM2DGM). A prior knowledge

of the number of classes in the mixture is injected, by assuming K being obtained by
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Table 3.1: Overview of the multi-temporal acquisitions for the experimental results.

Dataset Chennai Los Angeles Sardinia

Sensor Sentinel-1 UAVSAR Sentinel-1

Band C L C

Polarimetric

channels
VV-VH HH-HV VV-VH

Resolution 20× 20m 3× 3m 20× 20m

Acquisitions
Oct. 31, 2015

Nov. 12, 2015

Apr. 23, 2009

May 11, 2015

May 21, 2016

July 20, 2016

the proposed method. This favors the reference method in respect of the proposed one

(that estimated K in an unsupervised way instead. Accuracy assessment for the con-

sidered approaches is performed in terms two popular indices, namely Overall Accuracy

(OA) and Kappa coefficient (Kappa) [130; 86]. The former coefficient provides an overall

measure of the correct classification without taking into account the prior probability of

the classes. The second one takes into account the class priors. In the following, a more

detailed description and the performance of the proposed approach are reported for each

dataset.

3.4.1 Chennai dataset

The Chennai dataset includes two dual-pol SAR GRD-mode images acquired by the

Sentinel-1 SAR sensor. Both images have a spatial resolution of 20× 20 meters and data

on VV co-pol and VH cross-pol channels. They have been acquired over the area of Chen-

nai (India) in October 3, 2015 and November 12, 2015, respectively. During that period,

the area has been hit by a flood which interested the rural areas of the region and, in

minor part, the suburbs of the city. In order to proceed with the analysis, the two SAR

images have been pre-processed, by applying radiometric calibration, co-registration and

noise filtering [122].

A portion of 686×963 pixels has been considered for a quantitative analysis. Figures 3.3a

and 3.3b show the multi-temporal false-color composition of the backscattering for the

VV and VH polarimetric channels, respectively. The multi-temporal false-color composi-

tion is constructed such that: i) unchanged samples (showing stable backscattering values

over time) appear in grey-scale shades, whereas ii) changed samples (that assume differ-

ent backscattering values at the two dates) appear with green and magenta shades when
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backscattering increased or decreased, respectively. A reference map has been generated

starting from ground truth vectorial data from United Nations Institute for Training And

Research (UNITAR) [2]. The reference map represents the changes of the water-bodies

after the flood event (Fig. 3.7a) only. PCV with XV V
LR , X

V H
LR components has been gener-

ated for each pixel. By representing the PCV in the polar coordinate system (Fig. 3.4),

we can see that the flooded pixels tend to cluster in a sector with a preferred direction

φ = 5π
4

, as the presence of a new water body is associated to a sensible decrease of XV V
LR .

Regions where the water body disappeared tend to cluster along a preferred direction

φ = π
4
, in agreement with the model in Sec. 3.2.

The EM estimation of the priors and marginal distributions of the classes ωnc and Ωc

results in the PCV magnitude distribution illustrated in Fig. 3.5. Bayesian thresholding

for separating ωnc and Ωc provides Tρ = 1.3 dB. In order to estimate the optimal number

of change classes, PCV direction distribution has been modeled as a mixture of K Gener-

alized Gaussian distributions. Fig. 3.6a shows the plot of the BIC criterion with respect

to the number of classes. The smallest BIC indicates an optimal value K = 2. The

result is qualitatively confirmed by the trend of the direction pdf. The EM algorithm has

been applied with K = 2 for the estimation of the priors and the marginal distribution

parameters. Thresholds T12 = T21 = −1.2 radians has been estimated with the Bayesian

decision rule. Fig. 3.6b shows the direction normalized histogram and the estimated

class distributions. Fig. 3.7b shows the multi-class CD map. Otsu thresholding led to

thresholds Tρ = 1.74dB for magnitude and T12 = T21 = 2.06 radians for the direction,

respectively, leading to the map in Fig. 3.7c.

Good performance is achieved by the proposed method, with the correct detection of both

the flooded areas around the lake and the strip of land where the water disappeared. A

small amount of misclassification errors is related to false alarms occurring on the change

class ωc2 with preferred direction φ = π
4
. These errors are associated to backscattering

variations located on small urban areas (yellow circle in Fig. 3.7b), probably due to the

rain causing the flood. A large amount of errors (in terms of both false alarms and missed

detections) is associated to the change class ωc1 with preferred direction φ = 5π
4

. False

alarms (orange circle in Fig. 3.7b) are due to soil backscattering variations, which may

be due to temporal variations of the surface roughness parameters, not reported in the

water-body reference map. On the other hand, miss detections for the class ωc2 (green

circle in Fig. 3.7a) may be partially explained by lower level of accuracy of the water-body

boundaries in the pre-event map, which does not show the presence of all the small water

regions.

For this data set, Otsu thresholding led to slightly better performance than Bayesian

one (i.e., OA = 0.9463 and 0.9307 and Kappa = 0.6910 and 0.6668, respectively). This
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(a) (b)

Figure 3.3: Chennai dataset: multi-temporal backscattering false color composition for (a) VV

Channel; (b) VH Channel. R, B: Oct. 2015; G: Nov. 2015. No-change appears in gray shades,

backscattering increase and decrease in green and magenta, respectively.

Figure 3.4: Chennai dataset: bivariate po-

lar histogram (white dashed circle - Tρ,

black dashed line - T12).

Figure 3.5: Chennai dataset: magnitude

mixture model.
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(a) (b)

Figure 3.6: Chennai dataset: (a) BIC analysis with respect K (minimum value is reached for

K = 2); (b) direction histogram and estimated mixture model for K = 2.

Table 3.2: Chennai dataset: confusion matrix, and overall accuracy (OA) for the proposed

approach (Otsu Thresholding).

ω̂nc ω̂c1 ω̂c2

ωnc 574584 14105 1514

ωc1 20291 47816 20

ωc2 1545 26 717

OA 0.9432

Table 3.3: Chennai dataset: performance comparison with state-of-the-art methods.

Multi-class CD Binary CD

Method
Proposed

EM2DGM LLR
Bayesian Otsu

OA 0.9307 0.9432 0.8749 0.9305

Kappa 0.6668 0.6910 0.4907 0.5255

may be explained by the pronounced separation of the modes in the histogram of both

magnitude and direction variables. The confusion matrix of the former experiment is

provided in Table 3.2. The proposed method, with both thresholding options, showed

OA similar to that of LLR approach, whereas, the Kappa improvement is of about 14%.

More important, the proposed approach provides the capability to distinguish among

different kinds of change (see Fig. 3.7d, 3.7c and Fig. 3.7b), whereas LLR does not.

The improvement w.r.t. the EM2DGM is of about 20%, even if an advantage given to
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(a)

(b) (c)

(d) (e)

Figure 3.7: Chennai dataset maps: (a) Reference; (b) Proposed (Bayesian thresholding); (c)

Proposed (Otsu thresholding); (d) LLR; (e) EM2DGM; (ωnc - white, Ωc - black, ωc1 - blue, ωc2

- red).
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the ED2DGM by providing as input the known number of change classes, whereas the

proposed approach estimates it automatically. A comparison between Fig. 3.7e and 3.7a

shows several flooded areas being misclassified, whereas the proposed method (Figs. 3.7b

and 3.7c) does not. Table 3.3 summarizes the results.

3.4.2 Los Angeles dataset

The Los Angeles dataset considers two full-pol SAR images, acquired by UAVSAR air-

borne sensor on the Los Angeles area (United States). The data are full-polarimetric

with a spatial resolution of 0.4× 1.6 meters. For our analysis, intensity information from

the two polarimetric channels HH and HV was considered. The two images have been

acquired on April 23, 2009 and May 11, 2015, respectively. The area has been interested

by urbanization, with the construction of new buildings and the vegetation clearcut for

future settlements. The two PolSAR images have been pre-processed with radiometric cal-

ibration, co-registration and multi-looking for speckle noise mitigation. The multi-looked

images are characterized by a spatial resolution of 3×3 meters. A crop of 559×400 pixels

has been considered. Figures 3.8a and 3.8b show the multi-temporal false-color composi-

tion of the backscattering for the HH and HV polarimetric channels, respectively. Due to

the lack of ancillary data for the proposed scenario, a reference map has been generated

from the Pauli RGB false-color composition of the two images by visual inspection, with

the support of ancillary Landsat 5 / Landsat 7 data. The map has been generated at the

best of our photo-interpretation abilities (Fig. 3.12a).

Multi-temporal comparison has been applied to the polarimetric images to compute the

PCVs. Figure 3.9 shows the bivariate data distribution in the PCV polar coordinate

system. The new built-up areas are characterized by positive values for both the PCV

components. The change locates in a sector of the feature space with preferred direction

φ = π
4

(Sec. 3.2). On the other hand, pixels associated to vegetation reduction clearcut

have negative values for XHV
LR . This corresponds to a sector with preferred direction

φ = 5π
4

in the PCV features space, as expected from the analysis in Sec. 3.2.

Bayesian thresholding of the magnitude resulted in Tρ = 2.4 dB. After binary CD on the

magnitude feature, multi-class CD has been applied to changed pixels only. Fig. 3.11a

shows the plot of BIC with respect to the number of classes, where the smallest BIC value

is associated to K = 2. The EM algorithm has been applied with K = 2 for the estimation

of the priors and marginal distribution parameters. Thresholds T12 = T21 = −0.85 radians

have been estimated with the Bayesian decision rule. Figures 3.11b and 3.12b show the

direction pdf of the change classes and the multi-class CD map. Otsu thresholding led

to thresholds Tρ = 2.76dB for magnitude and T12 = T21 = 2.32 radians for the direction,

respectively, leading to the map in Fig. 3.12c. As for Chennai data set and with
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(a) (b)

Figure 3.8: Los Angeles dataset: multi-temporal backscattering false color composition for (a)

HH Channel; (b) HV Channel. R, B: Apr. 2009; G: May. 2015; No-change appears in gray

shades, backscattering increase and decrease in green and magenta, respectively.

Figure 3.9: Los Angeles dataset: bivariate

polar histogram (white dashed circle - Tρ,

black dashed line T12).

Figure 3.10: Los Angeles dataset: magni-

tude mixture model.
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(a) (b)

Figure 3.11: Los Angeles dataset: (a) BIC analysis with respect K (minimum value is reached

for K = 2); (b) direction histogram and estimated mixture model for K = 2.

Table 3.4: Los Angeles dataset: confusion matrix, and overall accuracy (OA) for the proposed

approach (Otsu thresholding).

ω̂nc ω̂c1 ω̂c2

ωnc 209446 1510 1529

ωc1 570 827 0

ωc2 2344 0 7374

OA 0.9734

Table 3.5: Los Angeles dataset: performance comparison with state-of-the-art methods.

Multi-classe CD Binary CD

Method
Proposed

EM2DGM LLR
Bayesian Otsu

OA 0.9671 0.9734 0.9257 0.9733

Kappa 0.6961 0.7218 0.4546 0.7178

similar motivations, Otsu thresholding led to slightly better performance than Bayesian

one (i.e., OA = 0.9734 and 0.9671 and Kappa = 0.7218 and 0.6961, respectively). The

confusion matrix of the former experiment is provided in Table 3.4. In any case, the pro-

posed approach shows OA improvement of about 4% compared to that of EM2DGM, and

similar performance to that of LLR. However, the LLR final result (see Fig. 3.12d) does

not show any capability to distinguish among different kinds of change. Kappa has an

improvement of more than 24% with respect to EM2DGM, even if an advantage is given
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(a)

(b) (c)

(d) (e)

Figure 3.12: Los Angeles dataset maps: (a) Reference; (b) Proposed (Bayesian thresholding);

(c) Proposed (Otsu thresholding); (d) LLR; (e) EM2DGM; (ωnc - white, Ωc - black, ωc1 - blue,

ωc2 - red).
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to the ED2DGM by providing as input the known number of change classes, whereas the

proposed approach estimates it automatically. A comparison between Fig.3.12b, 3.12c,

3.12e and the reference map in Fig. 3.12a points out that the proposed method better

identifies new built-up areas (red) than the EM2DGM. Table 3.5 summarizes the results.

3.4.3 Sardinia dataset

The Sardinia dataset includes two dual-pol SAR GRD images acquired by the Sentinel-1

SAR sensor, with a spatial resolution of 20 × 20 meters and two polarimetric channels,

namely V V and V H. The two images have size 900 × 700 pixels and have been acquired

on May 21, 2016 and July 20, 2016 over the area of Oristano (Italy). The area has been

interested by: i) A relevant change of the surface roughness of local areas of the sea sur-

face and water bodies, with a decrease of the swell [1]; and ii) Two kinds of change in the

agricultural fields. Based on the proposed scattering model, a class of change includes the

increase of dense vegetation and tillage on bare soils, respectively. The other change class

includes opposite changes, due to the vegetation decrease, associated to seasonal harvest-

ing and small fires. From a backscattering perspective, the change on the sea surface

is modeled as a variation on the co-polarimetric channel only, while the changes on the

vegetation are modeled by backscattering variations on both the channels, as illustrated

in Sec.3.2. This dataset shows a larger complexity compared to the two previous ones,

due to a large size, the larger number of changes and their complexity. The two PolSAR

images have been pre-processed with radiometric calibration, co-registration and filtered.

Fig. 3.13a and 3.13b show the multi-temporal false-color composition of the backscatter-

ing for the VV and VH polarimetric channels, respectively.

A reference map has been generated by photo-interpretation at the best of our abilities

from a pair of Sentinel-2 optical images, acquired on the same region on the May 22, 2016

and July 18, 2016, respectively. A visual inspection was conducted on the co-polarimetric

channel data for tracing water regions with changes in the surface roughness. Fig. 3.17a

shows the reference map.

PCV with XV V
LR , X

V H
LR components has been generated for each pixel. By representing

the PCV in the polar coordinate system (Fig. 3.14) we see that the pixels of vegetation

decrease tend to cluster in a sector with a preferred direction φ = 5π
4

, associated to neg-

ative values for both XV H
LR and XV V

LR . Opposite log-ratio values are expected for pixels

associated to fields growth, with a corresponding preferred direction φ = π
4
. Pixels of

decrease of the sea swell are expected to fall in the sector with preferred direction φ = π,

in agreement with the model in Sec. 3.2.

The proposed multi-class CD approach has been applied to the dataset. Fig. 3.15 shows

the EM estimated magnitude components. Bayesian thresholding of the magnitude re-



56
A Novel Framework for Unsupervised Multi-class Change Detection in Dual-pol Intensity SAR

Images

(a) (b)

Figure 3.13: Sardinia dataset: multi-temporal backscattering false color composition for (a):

HH Channel; (b) HV Channel. R, B: May. 2016; G: Jul. 2016. No-change appears in gray

shades, backscattering increase and decrease in green and magenta, respectively.

sulted in Tρ = 0.71 dB. Multi-class CD has been applied to the set of changed pixels only.

Fig. 3.16a shows the plot of the BIC criterion with respect to the number of classes, with

a minimum of BIC for an optimal value K = 3. The EM algorithm has been applied

with K = 3 for the estimation of the priors and the marginal distribution parameters.

Fig. 3.16b shows the direction pdf and the estimated class distributions. Thresholds

T12 = 2.19 radians, T23 = 2.51 radians have been estimated with the Bayesian decision

rule.

The quantitative performance analysis shows that Bayesian thresholding performs bet-

ter than Otsu in this case (see Tables 3.6 and 3.7). This is because of smaller separation

of the change and no-change classes in the magnitude with respect to the previous ex-

periments. After thresholding, outliers with size of one pixel were removed assuming to

be associated to residual noise in the images. Figs. 3.17b and 3.17c show the final CD

maps for the two thresholding options. The proposed approach for both the thresholding

strategies shows OA values similar to those of LLR (see Fig. 3.17d) and EM2DGM (see

Fig. 3.17e). Kappa has an improvement of about 18% and 2% with respect to LLR and

EM2DGM, respectively. Table 3.7 summarizes the results.

3.5 Conclusion

In this chapter, a novel model for the representation of multi-class changes based in multi-

temporal dual-pol SAR data has been proposed. The method relies on the backscattering

information in two polarimetric channels, namely a co-polarized and a cross-polarized.

The novel concept of PCV feature space has been defined representing a 2-dimensional
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Figure 3.14: Sardinia dataset: bivariate

polar histogram (white dashed circle - Tρ,

black dashed lines - T12, T23).

Figure 3.15: Sardinia dataset: magnitude

mixture model.

(a) (b)

Figure 3.16: Sardinia dataset: (a) BIC analysis with respect K (minimum value is reached for

K = 3); (b) direction histogram and estimated mixture model for K = 3.
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(a)

(b) (c)

(d) (e)

Figure 3.17: Chennai dataset maps: (a) Reference; (b) Proposed (Bayesian thresholding); (c)

Proposed (Otsu thresholding); (d) LLR; (e) EM2DGM; (ωnc - white, Ωc - black, ωc1 - blue, ωc3

- gray, ωc3 - red).
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Table 3.6: Sardinia dataset: confusion matrix, and overall accuracy (OA) for the proposed

approach (Bayesian thresholding).

ω̂nc ω̂c1 ω̂c2 ω̂c3

ωnc 504814 18494 7117 15892

ωc1 20352 33593 993 99

ωc2 551 14 10156 25

ωc3 1285 561 90 15964

OA 0.8961

Table 3.7: Sardinia dataset: performance comparison with state-of-the-art methods.

Multi-class CD Binary CD

Method
Proposed

EM2DGM LLR
Bayesian Otsu

OA 0.8961 0.8714 0.8918 0.9026

Kappa 0.6084 0.5669 0.5849 0.4307

vector with the polarimetric multi-temporal change information in a polar coordinate sys-

tem. The backscattering information in the PCV feature space shows loci for both the

change and no-change classes expressed in terms of polar coordinates. Physical changes

occurring in the scene are mapped in specific sectors in the polar domain according to

their backscattering variations in polarimetric channels. Such mapping is based on a

general analysis of the backscattering sensitivity of target main parameters (i.e., surface

roughness, dielectric constant or presence of dihedral structures). Based on the proposed

model, a 2-step unsupervised multi-class CD approach has been derived for separating the

no-change and the multi-class changes. This is a unique feature of the proposed method,

where state-of-the-art ones perform binary change detection or distinguish among increase

and decrease of backscattering, only.

Experimental results proved the reliability of the proposed model and the effectiveness of

the CD technique on three datasets. The comparison with multi-dimensional clustering

approaches pointed out a better discrimination capability of the no-change class by means

of the problem decomposition along the magnitude and direction variables as well as a

better multi-class CD performance, because of the explicit use of the scattering informa-

tion of the physical target properties for modeling changes.

As future developments we plan to overcome the weaknesses of the method by extending

it to the use in full-polarimetric multitemporal images and strengthening the analysis
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on class statistical distributions. Further, since the intensity of the polarimetric channel

represents only part of the information of second-order data statistics (e.g., covariance

matrix) or polarimetric decomposition features, we plan to study the use of complex

PolSAR information in the multi-temporal analysis for the generation of multi-class CD

maps.



Chapter 4

An Unsupervised Approach to

Change Detection in Built-Up Areas

by Multi-Temporal Full-pol SAR

Images

Information from Polarimetric SAR imagery has been used for detecting built-up targets in

classification problems, whereas it has been poorly exploited for change detection in multi-

temporal images. This contribution proposes a novel unsupervised approach for built-up

targets change detection in multi-temporal Polarimetric SAR images. The approach is

based on the joint use of total power and average scattering mechanism information for

the definition of a novel index that enhances the changes associated to built-up elements.

The detection is performed with Bayesian thresholding on the multi-temporal feature to

identify both new constructions and demolished built-up elements. Experimental results

on multi-temporal UAVSAR images demonstrate that the proposed approach provides high

detection accuracy and effectively separates among different types of changes which is not

the case with standard methods. 1 2

4.1 Introduction

Remote sensing images can be widely employed to analyze urban areas. Possible applica-

tions include the analysis of changes that shows a high importance [112] both for urban

planning [21] and damage assessment [167]. Among the several available imaging sensors,

1Part of this chapter appears in [172]
2This work was carried out under the India-Trento Program for Advanced Research (ITPAR), CUP

E61I18000170001.
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Polarimetric Synthetic Aperture Radar (PolSAR) become highly interesting for Change

Detection (CD) in built-up areas applications. PolSAR is a microwave active system mea-

suring the radiation coherently backscattered from targets under multiple combinations of

transmitted and received polarization [122]. PolSAR imagery can be acquired in all-day

and all-weather conditions and is sensitive to the presence of urban structures. In the

literature, PolSAR information has been largely used for image classification. In particu-

lar, most of the approaches consider either clustering based on both polarimetric features

and statistical distance [72; 84; 201; 48], the use of data statistical models [195; 181; 78]

or shallow/deep neural networks [231; 116].

Several approaches to change detection in single polarimetric images exist in the literature

[36], while a minor effort has been devoted to the exploitation of the multi-temporal polari-

metric information for change detection. Some studies considered hypothesis test based

on Log-likelihood ratio for the multi-temporal data [6; 53; 67]. Others considered change

detectors based on the optimization of power ratio or difference [149; 176]. Others derived

change detectors based on the multi-temporal comparison of features derived from the Co-

variance matrix or its polarimetric decomposition [167; 171; 132; 104; 172; 43; 223].But

all of them deal with the detection of presence/absence of change and do not distinguish

among different types of change.

In PolSAR imagery, scattering from distributed targets is represented in terms of second-

order statistics, considering multilooked information from the complex scattering coeffi-

cients represented in terms of coherency matrix T (or equivalent covariance matrix C).

Different decompositions of the matrix T have been proposed, in order to extract target

features. Some of them are based on different scattering mechanisms, with three (i.e.,

double-bounce, surface and volume scattering) or more contributions[123; 167]. Built-up

elements in urban areas are ideally characterized by a dominant double-bounce contribu-

tion. Nevertheless, the estimation of the parameters is practically affected by the relative

orientation angle between the man-made target and the range direction, which provides

an overestimation of the volume scattering and thus requires a compensation [167]. Other

decompositions are based on the eigenvalues and eigenvectors of T . In [65], eigen-features

are used for defining three parameters insensitive to the target orientation angle, namely

Entropy (H), Anisotropy (A) and average alpha angle (α). H and A characterize the

relative proportion of the three eigenvalues, thus the composition of the scattering contri-

butions and α characterizes the average scattering type associated to the cell. The total

scattering power P can be considered as a complementary information to discriminate

different targets which may present similar polarimetric behavior (e.g., regions with mul-

tiple simultaneous scattering processes) [48].

In this contribution, we aim at defining a novel CD method for built-up areas in PolSAR



Proposed CD approach in Full-pol SAR images 63

Figure 4.1: Block scheme for the proposed approach.

multi-temporal data. The proposed strategy considers the joint use of both polarimetric

α and P from the two single-time PolSAR images for defining a multi-temporal change

index sensitive to multi-temporal variation of both the scattering mechanism and the

overall power. The proposed index shows the capabilities of detecting the changes in

built-up areas by separating them from other types of change which is not the case when

using only α information in dense environments [48] and distinguishing among new con-

structions and destroyed built-up elements. An unsupervised thresholding of the change

index based on the Bayesian decision rule provides the final CD map with two change

classes (i.e., constructed and demolished built-up elements) and a no-change class.

The chapter is structured into four sections. Section 4.2 describes both the proposed

feature space and the automatic CD strategy. Section 4.3 illustrates the dataset and

experimental results. Finally, Section 4.4 draws the conclusions of this contribution and

provides future developments.

4.2 Proposed CD approach in Full-pol SAR images

Let us consider two full-pol images X1, X2 acquired over the same area at times t1, t2, t1 <

t2, respectively. The proposed approach aims at deriving a map of change detection

showing a class of no-change ωnc and two classes of changes in built-up elements ωc1 (i.e.,

demolished building) and ωc2 (i.e., constructed building), respectively. Fig. 4.1 shows the

block scheme for the proposed approach.
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4.2.1 Definition of the change index

In PolSAR imagery, scattering is represented with complex scattering coefficients Spq with

polarizations q and p on the transmitting and the receiving wave [122]. The coefficients are

grouped in form of matrix or vector. In the Pauli basis, kP = 1√
(2)

[SHH + SV V ;SHH − SV V ; 2SHV ].

Natural targets have distributed scatterers and thus a second-order statistics is needed

to model them. For Pauli representation, the Coherency matrix T represents the average

multi-look scattering. T is defined as follows:

T =
1

L

∑
L

kPk
H
P =


T11 T12 T13

T21 T22 T23

T31 T32 T33

 (4.1)

being L the number of looks. Polarimetric information of coherency matrix can be

represented with few features derived from both matrix eigenvalues and eigenvectors,

namely Anisotropy A, Entropy H and average alpha α.

A =
λ2 − λ3

λ2 + λ3

(4.2)

H =
3∑
i=1

λi∑3
i=1 λi

log

(
λi∑3
i=1 λi

)
(4.3)

α =
3∑
i=1

λiαi∑3
i=1 λi

(4.4)

being vi =
[
cosαi, sinαi cos βie

δi , sinαi sin βie
γi
]T
ejφi and λi, i = 1, 2, 3 the eigenvectors

and the corresponding eigenvalues for T , λ1 > λ2 > λ3 ≥ 0. H measures the degree

of scattering randomness ranging from 0 (i.e., a single scattering mechanism is present)

to 1 (i.e., all the scattering mechanisms have equal power). A measures the importance

of the second dominant scattering mechanism in the range 0-1 as well. α characterizes

the average scattering type of the target cell. High values are associated to the double-

bounce scattering mechanism, while low values are associated to the surface scattering.

Intermediate values are associated to the volume scattering [65; 122].

A measure of the total scattered power associated to T is defined by the span P :

P =
3∑
i=1

λi = trace(T ) (4.5)

Built-up areas, which are corner reflector structures, are characterized by a large scatter-

ing power, which is concentrated typically on the T22 and the T33 terms. This corresponds
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to intermediate or high α values. Instead, vegetation and surface elements (e.g., roads

or soils) are characterized by a lower total scattering power, with α assuming low to in-

termediate values, depending on the characteristics of the target and the density of the

scatterers.

Let α(i), P (i) be the average alpha and the total power associated to Xi, i = 1, 2, respec-

tively. The proposed overall change index that accounts for both types of multi-temporal

variations is defined as follows:

∆ =

√
P (2)

P (1)
α(2) −

√
P (1)

P (2)
α(1) =

1√∑3
i=1 λ

(1)
i

∑3
k=1 λ

(2)
k

(
3∑

k=1

λ
(2)
k α

(2)
k −

3∑
i=1

λ
(1)
i α

(1)
i

)
(4.6)

Because of the inclusion of the multi-temporal power information, ∆ is defined as a real

value. For changes preserving the power, but modifying the average scattering mechanism

(i.e., P (1) = P (2), α(1) 6= α(2)), ∆ degenerates in the multi-temporal α difference [104;

172], with positive and negative values associated to the increase and decrease of the α,

respectively. For changes in the total power preserving the average scattering mechanism

(i.e., P (1) 6= P (2), α(1) = α(2)), ∆ degenerates in a scaled version of the square root of the

span ratio, which is proportional to an amplitude ratio [157].

If we focus on the changes in built-up elements, the creation of a built-up element shows

an increase of the overall scattering power P and an increase of α, which are combined in

a large positive value for ∆. On the other side, the demolition of a built-up element shows

a decrease of the overall scattering power P and a decrease of α, which are combined in a

large negative value for ∆. Changes associated to natural elements show small variations

in at least P or α, thus ∆ shows values close to zero.

4.2.2 Automatic Change Detection of built-up areas

An automatic strategy is applied for the detection of the three classes ωnc, ωc1, ωc2, by

considering an unsupervised thresholding of ∆ based on the Bayesian decision rule. Let δ

be the random variable associated to the samples of ∆, with probability density function

p(δ). The analytical derivation of a statistical model for p(δ) based on statistical properties

of the PolSAR data would be a complex task. To the best of our knowledge, some works in

the literature proposed statistical models for square root of SAR intensity ratio in case of

single polarimetric channel (i.e., Nakagami-ratio or Weibull-ratio pdfs [156]), but no model

focused on span for multiple polarimetric channels. Further, no statistical model has been

proposed for the single-date α. Since ∆ (4.6) depends on P and α, a statistical model for

p(δ) cannot be derived (and its derivation is out of the scope of this work). Therefore,
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in this work p(δ) is modeled as a mixture of three Generalized Gaussian distributions,

each associated to one class. The Generalized Gaussian mixture presents a good trade-off

between the model complexity and the data-fitting capabilities.

p(δ) =
∑

P (ωi)
βi

2γiΓ(1/βi)
e
{ δ−µi

γi
}βi

;ωi ∈ {ωnc;ωc1;ωc2} (4.7)

being P (ωi), µi, γi, βi the prior probability, the location, scale and shape parameters for

the class ωi, respectively. The estimation of the unknown parameters is conducted by

applying the EM algorithm. The algorithm iteratively computes the optimal parameter

estimates which maximize the data log-likelihood. In particular, for the (q+1)-th iteration,

the estimates are given by the following equations:

P (q+1)(ωi) =

∑card{∆}
z=1 p(q)(ωi|δz)
card{∆}

(4.8)

γ
(q+1)
i =

β
(q)
i

∑card{∆}
z=1 p(q)(ωi|δz)

∣∣∣δz − µ(q)
i

∣∣∣β(q)
i∑card{∆}

z=1 p(q)(ωi|δz)


1/β

(q)
i

(4.9)

card{∆}∑
z=1

p(q)(ωi|δz)
β

(q)
i(

γ
(q)
i

)β(q+1)
i

∣∣∣δz − µ(q+1)
i

∣∣∣β(q)
i −1

· sign
(
δz − µ(q+1)

i

)
= 0 (4.10)

card{∆}∑
z=1

p(q)(ωi|δz)

 1

β
(q+1)
i

+

ψ

(
1

β
(q+1)
i

)
(
β

(q+1)
i

)2 −


∣∣∣δz − µ(q)

i

∣∣∣
γ

(q)
i

β
(q+1)
i

log


∣∣∣δz − µ(q)

i

∣∣∣
γ

(q)
i


 = 0

(4.11)

The iterative process stops when either values converge or the maximum number of

iterations is reached. Initialization is conducted by K-means clustering and deriving a

Maximum Likelihood Estimation of the parameters for each cluster. At the end, Bayesian

decision rule is applied for detecting the class of each sample of ∆̂α.

ω = arg max
ωi∈{ωnc;ωc1;ωc2}

P (ωi)
βi

2γiΓ(1/βi)
e
{ δ−µi

γi
}βi

(4.12)

4.2.3 CD of built-up areas in large images

Thresholding assumes that classes are statistically represented in the sample set. This

assumption turns out to be seldom satisfied in CD in large input images, where the largest
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portion is typically non-changed. This would affect the accuracy of the threshold selection

and the detection. In order to overcome this problem, a split-based analysis is applied

to the ∆ index [33]. The image is divided into Nspl non-overlapping splits, each with

size Ntr × Ntc. Let ∆s, s = 1, ..., Nspl and σ2
s be the s-th split and the corresponding ∆

variance, respectively. σ2
s provides an indication of the classes balance in the split. Large

values indicate the presence of more than one class, while small values indicate a dominant

class in the split. The set of Nspl variance values are evaluated in order to consider those

splits with largest variance. The analysis provides as output a union of splits ∆̂, defined

as follows:

∆̂ =

{⋃
s

∆s : σ2
s ≥ mσ2 +Bσσ2

}
(4.13)

being mσ2 , σσ2 the mean and standard deviation of the Nspl variance values and B a

scalar coefficient. The sample subset ∆̂ is used for the robust estimation of the mixture

parameters and the Bayesian thresholding.

4.3 Experimental Results

For the validation of the proposed approach, two multi-temporal PolSAR images acquired

by UAVSAR sensor over the city of Los Angeles, California (USA) have been considered.

The two full polarimetric images have been acquired on April 23, 2009 and May 11, 2015,

respectively. The two images have been calibrated, co-registered and multi-looked. The

pre-processed products are characterized by a geometrical resolution of 3 × 3 meters.

The Los Angeles area has been interested by a large urbanization phenomenon, with the

construction of new built-up areas on bare land and the removal of vegetated areas for

possible future settlements.

From the pair of images, the experimental analysis considered two crops: a single-change

scenario, with size 559×400 pixels; and multi-change scenario, with size 400×393 pixels.

Based on the Pauli false color composition for the two single-time acquisitions, a reference

map has been generated for the two crops by visual inspection. Performance has been

assessed in terms of Overall Accuracy (OA) and Kappa Coefficient (Kappa). In order

to prove its effectiveness, the proposed approach has been compared with state-of-the-

art polarimetric CD techniques. In particular, a binary CD method based on the Log-

Likelihood Ratio (LLR) test [67], and a method based on geodesic distance and PCA-

based K-means (PCAK) [180]. Both the methods provide binary CD information, with no

discrimination between the classes ωc1 and ωc2. A further comparison has been performed

with Bayesian thresholding approaches applied to the log-ratio of HH intensity (HHLR-

BT [112]) and α difference (∆α-BT [172]).
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(a) (b) (c)

Figure 4.2: Pauli RGB false-color composite for (a) pre-, and (b) post-event scene; (c) ∆.

(Single-change scenario).

4.3.1 Single-change Scenario

The first scenario is characterized by the construction of two extended built-up areas on

bare land, which is associated to class ωc2. Fig.4.2a and 4.2b show the Pauli False color

composition of both pre- and post-event, respectively. For the two images, eigenvalue-

based polarimetric decomposition has been applied to T and parameters α, P have been

computed. ∆ has been generated via multi-temporal comparison of the single-time P

and α. Fig. 4.2c shows the image for ∆. EM algorithm and Bayesian thresholding were

applied for deriving the CD map. Based on the prior knowledge of the scene, ωc1 has been

neglected in the thresholding problem. Fig. 4.3a shows the final CD map. A comparison

with the reference map (see Fig.4.3b) shows a good accuracy in the detection. A numerical

assessment, conducted via the generation of the confusion matrix (reported in Table 4.1),

results in OA = 0.9776 and Kappa = 0.7400.

Table 4.2 shows an overview of the performance comparison with state of the art

methods, in particular LLR (see Fig.4.3c), GD-PCAK (see Fig. 4.4b), HHLR-BT (see

4.4a) and ∆α-BT (see 4.4c). From the values, the proposed method has same performance

of LLR in terms of OA and slightly lower in terms of Kappa (i.e., 3% of difference).

The two methods show overall better performance than the other methods considered,

especially for Kappa, which show a gap of more than 10%).

4.3.2 Multi-change Scenario

The second dataset presents a more complex scenario with the construction (ωc2 class)

and the demolition (ωc1 class) of built-up areas having variable size. Fig. 4.5a and Fig.

4.5b show the Pauli false color composition associated to pre- and post-event of the multi-
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(a) (b) (c)

Figure 4.3: (a) CD map for the proposed approach; (b) Reference map ; (c) CD map for LLR.

(Single-change scenario, ωnc - white, ωc2 - black)

.

(a) (b) (c)

Figure 4.4: (a) CD map for HHLR-BT; (b) CD map for GD-PCAK; (c) CD map for ∆α-BT.

(Single-change scenario, ωnc - white, ωc2 - black)

.
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Table 4.1: Confusion Matrix for the proposed approach. (Single-change scenario).

ω̂nc ω̂c2

ωc1 211034 1328

ωc2 3673 7565

OA 0.9776

Kappa 0.7400

Table 4.2: Overview of Performance assessment. (Single-change Scenario).

Method OA Kappa

Proposed 0.9776 0.7400

HHLR-BT 0.9602 0.6799

∆α-BT 0.9579 0.6194

LLR 0.9787 0.7774

GD+PCAK 0.9224 0.4812

(a) (b) (c)

Figure 4.5: Pauli RGB false-color composite for (a) pre-, and (b) post-event scene; (c) ∆.

(Multi-change scenario).

change scenario, respectively. ∆ has been computed (see Fig. 4.5c) and EM algorithm

and Bayesian thresholding were applied for estimating the classes and deriving the CD

map (see Fig. 4.6a).

A quantitative performance assessment of the map accuracy has been conducted with

the reference map in Fig. 4.6b, resulting in values OA = 0.9689 and Kappa = 0.6128.

Fig. 4.6c-4.7c show the output map yielded by the comparison methods. Table 4.4 shows
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(a) (b) (c)

Figure 4.6: (a) CD map for the proposed approach; (b) Reference map; (c) CD map for LLR.

(Multi-change scenario, ωnc - white, ωc1 - orange, ωc2 - black).

(a) (b) (c)

Figure 4.7: (a) CD map for HHLR-BT; (b) CD map for GD-PCAK; (c) CD map for ∆α-BT.

(Multi-change scenario, ωnc - white, ωc1 - orange, ωc2 - black).
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an overview of the performance comparison with state of the art methods. The proposed

method shows similar performance in terms of both Kappa (i.e., improvement of 1%) and

OA to that of LLR (see Fig. 4.6c), but it provides discrimination of the change classes

ωc1, ωc2, whereas LLR does not. Besides, the proposed approach shows an improvement

of more than 3% and 15% of Kappa and OA with respect to the other approaches.

A comparison between Fig. 4.7c and Fig. 4.6a shows how the inclusion of the power

information overcomes the issues associated to the definition of α in heterogeneous dense

urban areas.

Table 4.3: Confusion Matrix for the proposed approach. (Multi-change scenario).

ω̂nc ω̂c1 ω̂c2

ωnc 987 119 0

ωc1 1742 148249 2100

ωc2 3 920 3080

OA 0.9689

Kappa 0.6128

Table 4.4: Overview of Performance assessment. (Multi-change scenario).

Method OA Kappa

Proposed 0.9689 0.6128

HHLR-BT 0.9361 0.4609

∆α-BT 0.8682 0.0990

LLR 0.9691 0.6119

GD+PCAK 0.8551 0.1592

4.4 Conclusion

In this work, we proposed a novel method for change detection of built-up areas by means

of multi-temporal PolSAR data. The method is based on the definition on a change index

accounting for both the total power and the Cloude-Pottier α angle from the single-time

images. An unsupervised thresholding strategy based on the Bayesian decision rule is ap-

plied to the proposed index in order to detect constructed and demolished built-up areas

in the multi-temporal scene. Experimental results conducted on two datasets of multi-
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temporal PolSAR images show the effectiveness of the proposed approach with respect

to standard methods in terms of both capability of discriminating opposite changes and

accuracy performance.

Future developments aim at studying the statistical distribution of ∆ and introducing con-

text information in the detection problem. We also aim at testing the proposed approach

on different urban scenarios.
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Chapter 5

Wavelet Temporal Analysis of

Polarimetric Decomposition

Parameters over Alpine Glaciers

The use of PolSAR image time-series introduces a set of multiple observations, with re-

dundant information that can be used for classification and with the possible presence

of smooth and abrupt changes. Significant features for representing the multi-temporal

information can be derived from the use of multiple polarimetric features and wavelet op-

erators. This contributions presents a novel framework for time series of full-pol SAR

images based on the joint use of arithmetical and geometrical wavelet transforms on full-

polarimetric decomposition features. The multi-temporal features are exploited for both

the separation of multi-temporal natural classes and for the analysis of changes with dif-

ferent temporal evolution. Experimental analysis conducted on a multi-temporal dataset

of full-polarimetric SAR images illustrated the effectiveness of the proposed framework for

the separation of multi-temporal classes and for the analysis of seasonal changes.

5.1 Introduction

Among the several imaging sensors, Synthetic Aperture Radar (SAR) systems operating

on spaceborne and airborne platforms, represent an important technology for the Earth

observation. SARs are active imaging systems operating in the microwave spectrum and

measuring the coherent scattering from the targets on the scene. These peculiarities make

the instrument poorly sensible to cloud coverage and illumination conditions and suitable

for the multi-temporal monitoring of the scene. Polarimetric SARs extend the SAR imag-

ing capabilities by considering multiple polarimetric channels (i.e., the polarization of the
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transmitted and/or received radiation is variable). The enhanced information can be used

for better target discrimination [122].

In the last decade, large datasets of multi-temporal SAR and PolSAR images have been

delivered to the scientific community. This led to a large interest in the use of multi-

temporal data for robust classification [45; 114; 160; 20], for the detection of changes

[37; 46] and for the multi-temporal analysis of natural features (e.g., snow monitoring

[159; 188], crop phenology identification [138], soil moisture analysis [118; 166], glacier

displacement [12; 11; 221; 153]). A large part of the literature based on multi-temporal Po-

larimetric SAR data considers the comparison of two SAR images for bi-temporal Change

Detection (CD) [37]. Some studies considered hypothesis tests based on the log-likelihood

ratio [67; 52; 6], others considered the optimization of contrast measures [148; 149] or the

multi-temporal comparison of features derived from polarimetric decompositions in the

literature [167; 61]. On the other hand, the use of a PolSAR image time series has been

devoted for the analysis of temporal patterns for natural features [118; 221] and the ro-

bust image classification for non-changed areas [142]. A minor effort has been put in the

detection of both abrupt and gradual changes from a PolSAR time series [135].

In the SAR image analysis, the wavelet transform is an important tool for separating

different aspects of the SAR information associated to the low and high frequencies. The

wavelet transform has been exploited in the detection of multi-scale changes from multi-

temporal SAR images [32; 113; 54; 70] or in the texture analysis [91; 10]. These approaches

apply the wavelet transform on the spatial domain, mitigating the noise effects on the im-

age and preserving the detail information. If we consider the use of the wavelet transform

along the temporal direction for a multi-temporal pixel set (i.e., the spatial information is

globally kept), a novel pixel-based multi-temporal comparison can be defined, such that: i)

robust multi-temporal image classes can be identified; and ii) the detection of both abrupt

and gradual changes can be performed [12]. Besides, the literature has mainly considered

the application of the standard wavelet to features characterized by both different sta-

tistical distribution and noise phenomena (i.e., additive Gaussian noise for optical data

and Gamma multiplicative noise for SAR intensity data). These differences may affect

the performance of the wavelet decomposition. Thus, an alternative wavelet formulation

under the assumption of multiplicative noise has been derived in [12], but it has been

poorly exploited in the SAR image analysis.

In this chapter, we propose a joint arithmetic and geometrical wavelet framework for the

analysis of multi-temporal full-pol SAR data. The joint framework includes the selection

of wavelet transforms that are relevant for the sparse description of PolSAR decomposition

features. In this framework, multiplicative and additive interacting variables are associ-

ated with geometrical and arithmetic wavelets, respectively. Multi-scale [32] and spline
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strategies [185] are defined based on the wavelet transform. The information inferred in

this framework aims at both i) separating different natural multi-temporal classes; and

ii) the detection of changes and the analysis of their temporal evolution. The proposed

analysis is applied on a multi-temporal PolSAR dataset acquired from Radarsat-2 on the

Argentière glacier in the French Alps, which presents different evolutions between winter

and summer seasons over different parts of the glacier.

This chapter is structured into five sections. Section 5.2 we describe the polarimetric

features and the wavelet strategies considered for the analysis. Section 5.3 describes the

multi-temporal dataset and the experimental setup. Section 5.4 illustrates the experimen-

tal results. Finally, in Section 5.5 we trace the conclusions and the future developments

of this work.

5.2 Proposed multi-temporal framework for Full-pol SAR im-

ages

Let us consider a time-series of N PolSAR images It, t = 1, ..., N . Polarimetric information

of each image is represented with second-order scattering information of Coherency matrix

T .

T =
1

L

∑
L

kPk
H
P =


T11 T12 T13

T21 T22 T23

T31 T32 T33

 (5.1)

being k = [SHH + SV V , SHH − SV V , 2SHV ] /
√

2 the complex scattering vector in the Pauli

basis. Polarimetric decompositions of the coherency matrix T provide a representation of

the information of T in terms of few features, typically based on the eigen-based features

or the composition of contributions from elementary targets [220; 64].

5.2.1 Definition of the polarimetric features

In this work, two polarimetric decompositions are taken into account, namely the Cloude/Pot-

tier [65], which results in the three features Anisotropy A, Entropy H and average alpha α,

and the Yamaguchi4 [159; 220], which results in the four power scattering terms: double

bounce, surface, volume and helix.

A =
λ2 − λ3

λ2 + λ3

(5.2)

H =
3∑
i=1

λi∑3
i=1 λi

log

(
λi∑3
i=1 λi

)
(5.3)
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α =
3∑
i=1

λiαi∑3
i=1 λi

(5.4)

T = fsTsurf + fdTdouble + fhThelix + fvTvolume (5.5)

being {fs, fv, fh, fd}, {Tsurf , Tvolume, Thelix, Tdouble} the power coefficients and the coherency

matrices associated to the surface, volume, helix and double-bounce mechanism, respec-

tively, and being vi =
[
cosαi, sinαi cos βie

δi , sinαi sin βie
γi
]T
ejφi and λi, i = 1, 2, 3 the

eigenvectors and the corresponding eigenvalues for T , λ1 ≥ λ2 ≥ λ3 ≥ 0. H describes

the degree of scattering randomness, with values ranging from 0 (i.e., single dominant

eigenvalue) to 1 (i.e., all eigenvalues with same value). A describes the importance of the

second and third eigenvalues and is defined in the range 0−1. α characterizes the average

scattering type of the target, with high and low values associated to double-bounce and

surface scattering type, respectively (intermediate values are associated to the volume

scattering).

5.2.2 Definition of the geometrical and arithmetical wavelet operators

When considering the pattern analysis along both the spatial and temporal directions, the

wavelet analysis has proved to be an effective tool [144]. In this work, we assume wavelet

analysis focusing along the temporal direction only. Each temporal wavelet approach

yields two sub-bands for each scale level, namely approximation and detail. Classic wavelet

analysis (e.g., arithmetical wavelets) assume an additive Gaussian noise affecting the

image. For the pixel (x, y), the arithmetical wavelet element is defined as follows:

X
(Wab,k)
t (x, y) =

L−1∑
l=0

Wb(l)X
(WaA,k−1)
t−l (x, y) (5.6)

being I
(Wab,k)
t the temporal sequence of the wavelet component b at scale k for the fea-

ture X, computed with arithmetical wavelet, Wb(·) the wavelet filter response and b an

indicator for the approximation (i.e., b = A) and detail component (i.e., b = D), respec-

tively. On the other hand, geometrical wavelets [12] have been designed for data with

multiplicative noise, and they are defined as follows:

X
(Wgb,k)
t (x, y) = exp

[
L−1∑
l=0

Wb(l) log
(
X

(WaA,k−1)
t−l (x, y)

)]

=
L−1∏
l=0

(
X

(WaA,k−1)
t−l (x, y)

)Wb(l)

(5.7)
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being X
(Wgb,k)
t the temporal sequence of the wavelet component b at scale k for the fea-

ture I, computed with geometrical wavelet. Among the several wavelet transforms in the

literature (e.g., Symlet, Daubechies), the Haar-1, with coefficients WA = [1, 1]
√

2 and

WD = [1− 1]
√

2 for the approximation and detail component respectively, has a particu-

lar interest because of its easy representation and properties. Image difference and image

ratio can be represented as the application of the arithmetical and geometrical Haar-1

wavelet along the temporal direction, respectively. In this work, the selection of the use

of arithmetical or geometrical wavelet is based on the statistical similarity between the

feature probability density function (pdf) and the Gaussian or the Gamma distribution.

The similarity is measured with one of the statistical distance measures (e.g., Kullback-

Leibler distance or Hellinger distance [28]). Without loss of generality, let us consider the

case of the arithmetical wavelet for the multi-temporal polarimetric feature It(x, y). A

similar analysis can be derived for the geometrical case by considering the log-scale trans-

form expressed in Eq. 5.7. Based on Wb(l), three decomposition strategies are considered

for the analysis: i) single-scale stationary wavelet transform, using L-size filters; ii) L-size

spline stationary wavelet transform, using (2L − 1)-size filters (SSW); and iii) discrete

wavelet transform using L-size filters (MDW). The first approach considers the direct ap-

plication of the definitions in Eq. 5.6 and 5.7 (see Fig. 5.1). Both the stationary-wavelet

strategies do not apply decimation, so they may work for an arbitrary N . The multi-scale

approach considers decimation step and requires N to be a power of 2. For different values

of N , the temporal series is padded with element replicas, i.e., the final element. Details

for the second and third approaches are given in the following subsections.

5.2.3 L-size Spline Stationary Wavelet transform (SSW)

In this approach, the L coefficients of the wavelet are considered for building a larger filter

with size 2L−1. The coefficients are defined based on the self convolution of the impulsive

response of the filter. For the Haar-1 wavelet, the coefficients result in W spl1
A = 1√

6
[1, 2, 1, ],

W spl1
D = 1√

6
[1,−2, 1, ] for the approximation and the detail component, respectively (see

Fig. 5.2). A single level of scale (i.e., k = 1) is considered for this approach.

X
(SSWa,1)
t = {X(SSWaA,1)

t , X
(SSWaD,1)
t } (5.8)

X
(SSWaA,1)
t = W spl1

A ∗
[
X(t−2), X(t−1)a, Xta

]
=

1√
6

(
X(t−2)a + 2X(t−1)a +Xta

)
(5.9)

X
(SSWaD,1)
t = W spl1

D ∗
[
X(t−2), X(t−1)a, Xta

]
=

1√
6

(
X(t−2)a − 2X(t−1)a +Xta

)
(5.10)

being X
(SSWab)
t the component b obtained by arithmetic SSW transform on the feature X.

One one hand, the approximation term corresponds to a weighted averaging of a set of
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three consecutive terms, with the central pixel having more importance than the others.

On the other hand, the detail term describes a difference of differences computed on

subsequent values, thus it corresponds to a second derivative term, describing the change

velocity.

5.2.4 Multiscale Discrete Wavelet transform with L-size filters (MDW)

In this approach, a multiscale analysis of the sequence is performed, with the iterative

application of the wavelet filters on the approximation termX
(MDWaA,k−1)
t , which generates

X
(MDWa,k)
t .

X
(MDWa,k)
t = {X(MDWaA,k)

t , X
(MDWaD,k)
t } (5.11)

For each feature X, the approach generates an approximation component {X(MDWaA,N )
t

at scale N − 1 and set of detail components X
(MDWaD,0)
t , ..., X

(MDWaD,N )
t }, being N the

maximum scale of the analysis. For Discrete Wavelet transform, the filtering of the signal

is followed by a sub-sampling step by a factor 2 and temporal wavelet sequences are halved

at each scale level (see Fig. 5.3). For a Haar-1 wavelet, wavelet coefficients for the scale

k are defined as follows.

X
(MDWaA,k+1)
t =

1√
2

(
X

(MDWaA,k)
2t−1 +X

(MDWaA,k)
2t

)
(5.12)

X
(MDWaD,k+1)
t =

1√
2

(
X

(MDWaA,k)
2t−1 −X(MDWaA,k)

2t

)
(5.13)

5.3 Data processing

In order to prove the effectiveness of the proposed information representation for a time

series of polarimetric images, a multi-temporal dataset of full-pol images with size 1024×
1024 was considered. The dataset has been acquired by Radarsat-2 mission in the area

of the Argentière glacier (France). It is composed by 7 full-polarimetric images acquired

from January 29 to June 22, 2009, each with a geometrical resolution of 8 meters and

incidence angle of 32◦. The crop scene is a mountainside region, affected by seasonal

changes associated to the variation of the snow content in the glacier area, and some

minor abrupt changes, associated to avalanches.

For a quantitative assessment of the analysis, six local regions of interest were selected

on the multi-temporal stack. Fig. 5.4a, 5.4b show the Pauli false color composite for the

polarimetric images at times t1, t7, respectively and the regions of interest. In particular,

the regions are associated to:
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Figure 5.1: Example of Stationary wavelet based on Haar-1 family.

Figure 5.2: Example of Spline stationary wavelet of 3 elements based on Haar-1 family.

Figure 5.3: Example of multi-scale wavelet analysis based on Haar-1 family (2 levels).
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• R1: area covered by an avalanche, which occurred between images 4 and 6;

• R2: accumulation area on the upper part of the Argentière glacier;

• R3-R4: northern/southern part of the Rognon glacier (heights ∼ 3300, 3600 meters

above sea level, respectively);

• R5-R6: ablation parts of Argentière glacier (∼ 2400 − 2600 meters above sea level,

respectively).

Preliminary processing was conducted on the image set, with the radiometric calibration,

the generation of the coherency matrix T and image despeckling for each image, respec-

tively. The despeckling filter was selected as Refined Lee with size 7× 7 [124; 122].

(a) (b)

Figure 5.4: Pauli false color composition for times t1 (a) and t7 (b); R1 - Cyan; R2 - Magenta;

R3 - Green; R4 - Blue; R5 - Yellow; R6 - Red.

Polarimetric decomposition features have been derived based on the matrix T , namely

H,A, α for the eigen-based decomposition and Ps, Pv, Pv, Pd for the power scattering-based

decomposition, respectively. For a robust estimation, decomposition features were aver-

aged on a local window with size 5× 5, chosen as tradeoff between the scene homogeneity

and the preservation of local edges.

The selection of either Geometrical and arithmetical framework was conducted for each of

the polarimetric feature. Based on the optimal framework, the three strategies SW, SSW

and MDW were tested on the set. In particular, the temporal set of each polarimetric

feature X used in the MDW strategy was padded with image X7.

A quantitative analysis was conducted on the set of regions of interest R1,..R6. A separa-

tion of the different natural multi-temporal classes was performed on the wavelet approx-
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imation component, while the detection of the changes and the analysis of their temporal

evolution was performed on the wavelet detail component. For the analysis of the approx-

imation components, an Overall Class Separation Indicator OCSI for the 6 classes was

measured in order to define the optimal combination of wavelet strategy and polarimetric

features for the class discrimination.

OCSI(w,X) =
6∑

c1=1

6∑
c2 6=c1

∑
t

|µ(c1)
wXt − µ

(c2)
wXt|√(

σ
(c1)
wXt

)2

+
(
σ

(c2)
wXt

)2
(5.14)

being µcwXt, σ
c
wXt the mean and the standard deviation values computed on the region of

interest c of the t-th image of the w − X approximation component, respectively. The

OCSI is a cumulative temporal measure of the distance between the mean of pair of

classes, scaled with the two corresponding standard deviations. The measure is averaged

on all the pairs for the six classes. Best class separation is obtained by selecting the

combination w − X that maximizes the OCSI. In the analysis of the wavelet detail

components, two parameters were defined, namely a dynamicity parameter δ, describing

the total change occurring in the time series, and the change rate RC evaluating the

smoothness degree of the change.

δ(w,X) =
6∑
c=1

∑
t

(
µ

(c)
wXt

σ
(c)
wXt

)
(5.15)

RC(w,X) =
6∑
c=1

maxt

(
µ
(c)
wXt

σ
(c)
wXt

)
∑

t

(
µ
(c)
wXt

σ
(c)
wXt

) (5.16)

δ indicates an absolute measure of the total variation occurred. Large values of δ indi-

cate presence of intense change activity in the time series, while small values tend to be

associated to no-change regions. The change rate RC is defined in the range 0 − 1 and

measures the part of the total change occurring in the time series associated to a single

event. Thus it detects the presence of abrupt changes, occurring for large RC Large values

of δ correspond to pixels with large variability in the period of the time series and vice

versa. RC is defined in the range (0−1). Small and large values are associated to smooth

and abrupt changes, respectively.

5.4 Experimental results

For each feature, the use of either arithmetical or geometrical wavelet has been based

on the prevalence of either additive or multiplicative noise, respectively. On one hand,
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Table 5.1: Kullback-Leibler distance for the empirical distributions of eigenvalue-eigenvector

decomposition features with Gaussian and Gamma ditribution.

Kullback-Leibler distance

Gaussian Gamma

H 0.0380 0.0498

A 0.0108 0.0270

alpha 0.0309 0.0466

power scattering features are expected to be characterized by a dominant multiplicative

noise, thus geometrical wavelet is considered as more suitable for it [12; 11]. On the

other hand, eigen-based features present a complex model. Nonetheless, the features are

related to the ratio of eigenvalues of T , which tend to follow a Gamma distribution [137]

under simplifying assumptions, and their statistical distribution tend to a non-skewed

Gaussian-like distribution. These considerations are confirmed by the KLD values of the

eigen-based features with respect to the Gamma and Gaussian distributions (see Table

5.1). This favors the use of arithmetical wavelet in the analysis.

With the selected type of wavelet transform, both the SSW and MDW strategies have

been analyzed for the two sets of polarimetric features. A single scale level (i.e., k = 1) has

been considered for the MDW, because of the number of polarimetric images in the time

series. A set of features {w − X}, w ∈ {SW, SSW, MDW}, X ∈ {fs, fd, fv, fh, α,H,A}
has been derived from the temporal wavelet analysis with the three strategies. Given the

use of k = 1, the features derived from the MDW correspond to a subset of those derived

with the SW. The approximation and the detail components for the features w−X were

separately analyzed. The two analyses are presented in the following subsections.

5.4.1 Separation of multi-temporal classes

Fig. 5.5a-5.5f, 5.6a-5.6f, 5.7a-5.7h, and 5.8a-5.8h show the initial and the final images

of the approximation component obtained with the temporal SW and SSW strategies

for the two set of polarimetric features (i.e., (t1, t2),(t6, t7) and (t1, t2, t3),(t5, t6, t7) time

sequences for the SW and the SSW, respectively). The SSW-H shows a decrease of en-

tropy along the glacier strip and the area of the avalanche (see Fig. 5.6a, 5.6d). This

variation may be probably determined by a seasonal increase of the wet snow content and

the consequent increase of the surface scattering and the decrease of the other scattering

mechanisms [159]. The accumulation region presents an increase for both the SSW-H and

SSW-α components. Similar trend has been seen for the SSW-fv (see Fig. 5.8c, 5.6d).
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Images from the approximation component of SW-H, SW-α and SW-A, for t1, t2

(a,b,c) and t6, t7 (d,e,f), respectively.

These are probably related to the presence of fresh snow gradually accumulated during

the season, which increase the volume scattering contribution and the two polarimetric

eigen-features.

Moreover, a temporal increase of the image contrast with respect to the rocky moun-

tainside facing the sensor, which shows no relevant changes, is registered by the SSW

component (Fig. 5.6a-5.6f and 5.8a-5.8h). Different temporal trends are seen for R2,R3

and R5. Similar considerations are traced from the analysis of SW-based (and, thus,

the MDW) features. However, compared to the SW, the SSW approximation components

present a larger information stability, because of the different terms in the definition (5.9).

A local analysis has been conducted with the approximation components on the six re-

gions of interest. Fig. 5.9a-5.9d show an example of the time trend on the different classes

for the SW-H, SW-α, SW-fh and SW-fv, respectively. Class separation performance has

been evaluated with OCSI. Table 5.2 reports the values obtained. Best performance are

obtained with the use of SSW strategy and features from the power-based polarimetric

decomposition, in particular with fv and fh.
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: Images from the approximation component of SSW-H, SSW-α and SSW-A, for

t1, t2, t3 (a,b,c) and t5, t6, t7 (d,e,f), respectively.

5.4.2 Change Detection and Evolution Analysis

Fig. 5.10a-5.10f, 5.11a-5.11f, 5.12a-5.12h, and 5.13a-5.13h shows the initial and the final

images of the detail components with the temporal SW and SSW strategy, respectively.

The detail components in the SW represent the change information, while those of the

SSW map the change velocity, as they involve second-order variation. Positive and nega-

tive values in SW are associated to decrease and increase of the feature in the considered

image pair, respectively. Because of the definition in 5.10, positive and negative values

in the SSW are associated to the presence of a local minimum or maximum in the image

triplet, respectively.

The SW components mapping the temporal pair t1, t2 do not show values sensibly

different from zero (Fig. 5.10a-5.10c), while values different from zero are marked in the

components of the pair t6, t7 (Fig. 5.10d-5.10f). This draws the changes as becoming

more sensible with the temporal evolution. The detail components from SW-H and SW-

α present positive and negative values on part of the upper part of the glacier and the

accumulation region, respectively. Compared to the other eigen-based features, the SW-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.7: Images from the approximation component of SW-fs, SW-fd, SW-fv and SW-fh,

for t1, t2 (a,b,c,d) and t6, t7 (e,f,g,h), respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.8: Images from the approximation component of SSW-fs, SSW-fd, SSW-fv and SSW-

fh, for t1, t2, t3 (a,b,c,d) and t5, t6, t7 (e,f,g,h), respectively.

A component presents a larger variability, because of a large sensitivity on the window
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(a) (b)

(c) (d)

Figure 5.9: Temporal trend for the approximation component of: SW-H (a); SW-α (b); SW-fh

(c); SW-fv (d).
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Table 5.2: Performance analysis for overall class separation indicator, for different polarimetric

features and wavelet strategies.

Overall Class

Separation Indicator
SW SSW MDW

H 101.1425 87.7184 67.0577

A 37.3631 30.8456 25.4238

α 115.5167 102.6236 74.0808

Aggregate

(Eigen-based)
84.6741 73.7292 55.5208

fd 24.0888 20.5587 15.1726

fh 114.4109 122.2092 68.6441

fs 30.5785 78.1185 62.2078

fv 284.6874 253.6868 171.4954

Aggregate

(Power-based)
129.4414 118.6433 79.38

size used for the polarimetric decomposition. Poor information is also detected from the

SW-fd (Fig. 5.12b,5.12f) and SW-fh (Fig. 5.12d,5.12h), while sensible value are detected

for the SW-fv (Fig. 5.12c,5.12g).

A local analysis has been conducted with the detail components on the six regions of

interest. Fig. 5.14a-5.14d show an example of the time trend on the different classes for

the SW-H, SW-α, SW-fh and SW-fv, respectively. For a quantitative analysis, δ and

RC have been compared for the different strategies and an overview of the results has

been reported in Table 5.3 and Table 5.4, respectively. Largest values are seen for SW-fh,

SW-fv and SW-α. This indicates a large total change occurred in the helix and volume

scattering. Smaller values are detected for the other combinations of polarimetric features

and wavelet strategies. Looking at the values RC larger values are detected for fh with

both SSW and SW, indicating a more abrupt change in the helix power, compared to the

others feature.

5.5 Conclusion

In this work, we analyzed the sensitivity of features based on the polarimetric decomposi-

tion and the temporal wavelet analysis for class discrimination and change detection. The
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Table 5.3: Performance analysis for δ, for different polarimetric features and wavelet strategies.

Dynamicity SW SSW MDW

H 3.4835 2.7232 2.2891

A 1.1174 0.9527 0.7635

α 4.4582 3.0593 2.7089

Aggregate

(Eigen-based)
3.0197 2.2451 1.9205

fd 2.2224 1.4850 1.2574

fh 8.0742 5.1397 3.8863

fs 2.4793 1.8746 0.7537

fv 7.2983 6.9903 4.7206

Aggregate

(Power-based)
5.0186 3.8724 2.6545

Table 5.4: Performance analysis for RC , for different polarimetric features and wavelet strategies.

Change Rate SW SSW MDW

H 0.5976 0.4709 0.8755

A 0.4974 0.4359 0.7167

α 0.4663 0.4210 0.7601

Aggregate

(Eigen-based)
0.5204 0.4426 0.7841

fd 0.3917 0.5709 0.6901

fh 0.5546 0.6227 0.8994

fs 0.3930 0.3824 0.5540

fv 0.5784 0.4855 0.8752

Aggregate

(Power-based)
0.4794 0.5154 0.7547
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(a) (b) (c)

(d) (e) (f)

Figure 5.10: Images from the detail component of SW-H, SW-α and SW-A, for t1, t2 (a,b,c)

and t6, t7 (d,e,f), respectively.

analysis considered a temporal series of full-polarimetric SAR images. Features derived

from the state-of-the-art polarimetric decompositions and with the application of differ-

ent wavelet strategies (i.e., SW, SSW, MDW) were considered for the analysis. Based

on the characteristics of the single-time polarimetric feature, arithmetical and geomet-

rical wavelet were alternatively selected in the analysis. The experimental analysis was

conducted on a multi-temporal dataset describing the snow seasonal activities on the Ar-

gentière glacier area. Two experiments focused on the use of approximation and detail

components for separation of multi-temporal classes and for detection of changes, respec-

tively. Both the experiments analyzed multiple combinations of wavelet strategies and

polarimetric features. They resulted in a robust performance for the volume and helix

scattering power terms with the SW approach. Future developments consider the combi-

nation of features obtained from the application of different wavelet families (e.g., Symlet,

Daubechies) in the temporal domain and the introduction of possible wavelet analysis in

the spatial domain. They also aims introducing the proposed wavelet-based features in

an unsupervised CD strategy.
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(a) (b) (c)

(d) (e) (f)

Figure 5.11: Images from the detail component of SSW-H, SSW-α and SSW-A, for t1, t2, t3

(a,b,c) and t5, t6, t7 (e,f,g), respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.12: Images from the detail component of SW-fs, SW-fd, SW-fv and SW-fh, for t1, t2

(a,b,c,d) and t6, t7 (e,f,g,h), respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.13: Images from the detail component of SSW-fs, SSW-fd, SSW-fv and SSW-fh, for

t1, t2, t3 (a,b,c,d) and t5, t6, t7 (e,f,g,h), respectively.
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(a) (b)

(c) (d)

Figure 5.14: Temporal trend for the approximation component of: SW-H (a); SW-α (b); SW-fh

(c); SW-fv (d).



Chapter 6

An Unsupervised Approach to

Change Detection in Built-Up Areas

by Multi-Temporal Full-pol SAR

Images

Multi-temporal Synthetic Aperture Radar (SAR) data represent a precious supporting tool

for quantifying changes in urban areas. Some SAR systems have acquisition capabilities

at Very High Resolution (VHR), which allows the analysis at single-building scale. In this

contribution, we aim at proposing a geometrical model for partially destroyed buildings,

based on empirical observations, and derive the corresponding multi-temporal backscatter-

ing signature, by applying the ray-tracing method. We also integrate the model into an

unsupervised automatic approach for the detection of both fully and partially destroyed

buildings. The strategy considers a hierarchical structure of the changes. Experimental

results conducted on two multi-temporal VHR SAR datasets show a large robustness of

the approach and a good accuracy in the detection of the multiple classes of change in

buildings. 1

6.1 Introduction

Remote sensing imagery from Synthetic Aperture Radar (SAR) has proved a relevant role

in multi-temporal analysis for Change Detection (CD), with multiple applications. Some

of them focus on long-time phenomena [59; 66] and require image time series; others focus

on sharp changes [33; 75; 94; 17] with a bi-temporal analysis. These applications may

1Part of this chapter appears in [170].
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assume an evident importance in presence of urban areas and in case of abrupt events,

natural hazards (e.g., flood [98] or earthquake [42]. SAR imagery maps scattering infor-

mation and is affected by both geometrical distortions and speckle noise, which make the

interpretation a complex task. However, SAR shows a low sensitivity to both weather

and sunlight conditions, which makes it suitable for multi-temporal applications where

some of the optical sensors may not perform well [143], as it guarantees acquisitions with

a small temporal baseline.

Let us consider SAR systems acquiring scattering information with no polarimetric con-

tent (i.e., a single polarimetric channel). Among them, SAR systems can be characterized

in terms of the different geometrical resolution. Many sensors present a geometrical res-

olution in the order of decades of meters (i.e., Medium Resolution, MR). However, some

SAR missions, such as the in-operation TerraSAR-X or the forthcoming Cosmo-SkyMed

Second Generation , have been equipped with enhanced imaging capabilities, showing a

resolution down to the meter scale (i.e., Very High Resolution, VHR). Therefore, if the

MR SAR imagery leads the analysis to a city block scale, VHR SAR imagery improves

the analysis capabilities down to the building scale [150; 15; 44].

In the VHR SAR imagery, the scale highlights building structure elements with homoge-

neous regions based on the off-nadir SAR acquisition geometry [105]. However, the fine

resolution increase the heterogeneity in the image, as the reduced number of scatterers in

the resolution cell makes the speckle noise not fully developed [143].

Several works in the literature addressed the problem of CD in urban areas with VHR

SAR data. They include the supervised analysis of backscattering patterns in the post-

event SAR image [14; 99], the joint analysis of VHR SAR and optical data [44; 131; 63],

the use of ancillary information coming from GIS layers with SAR data [9; 94] and the

multi-temporal analysis of VHR SAR data in an unsupervised manner [146; 21; 98; 210;

113; 17; 154; 136]. In the latter case, the data complexity makes the pixel- and region-

based approaches used for MR data not completely reliable for the CD analysis, thus

an analysis based on a higher semantic level was conducted in [177; 146]. This analysis

requires the definition of an object backscattering model for associating a label of changed

buildings to changes in the scattering properties. Several models have been presented in

the literature. Some of the building models aim at preserving the radiometric information,

by means of an accurate backscattering analysis based on both the physical properties of

the surfaces and the scattering propagation [88]. Others are devoted to the preservation

of the geometrical accuracy, by using the ray-tracing method, which is based on optical

rays for scattering propagation [13; 83; 41].

Because of the size of the change, a large interest in the literature has been devoted to the

detection of building changes with size comparable to the typical size of the building [146].
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These are namely the changes from no building to a complete standing building (i.e., new

building), and the change from a complete standing building to no-building (i.e., fully

destroyed building). In spite of the effort for the detection of completely changed build-

ings, a minor effort has been spent in tackling the detection of building changes with size

smaller than the entire building size, mainly considering visual inspection of the operator

with signatures from SAR simulators or geometrical models [119; 170; 15; 217]. These

changes normally occur in presence of damaged buildings keeping part of the structure

intact (i.e., partially damaged buildings). Nevertheless, these changes have the same rele-

vance as the ones associated to entire buildings and, if considered, together may provide

enhanced information for rescue and emergency services.

In this chapter, we aim at proposing a model for multi-temporal backscattering analy-

sis over partially damaged buildings. In particular, the model is based on geometrical

assumptions on the shape of both the building and the damage. A backscattering anal-

ysis based on the ray-tracing method in single time is conducted on the target (i.e.,

the partially destroyed building), by varying the possible geometrical conditions and/or

the acquisition geometry. The multi-temporal backscattering signature of the target is

hence derived by applying one of the standard SAR comparison operators. Compared to

the multi-temporal model for the fully destroyed building, the multi-temporal model for

partially destroyed buildings show a more complex pattern, with multiple homogeneous

regions. Furthermore, the set of regions in the pattern is partially affected by the geo-

metrical parameters of the damage. In order to identify an expected typical behavior for

the multi-temporal model, a sensitivity analysis is conducted by varying the geometrical

parameters and common elements of the multi-temporal backscattering patterns are in-

ferred and evaluated.

We also aim at integrating the novel model for the partially damaged building in an au-

tomatic unsupervised CD strategy for the detection of both fully and partially destroyed

buildings. The strategy exploits a hierarchical rationale, based on the different expected

size of the changes, for separately identifying the fully and partially destroyed buildings.

A map of backscattering changes is derived by comparing the multi-temporal VHR SAR

images and applying Bayesian thresholding. Both the kinds of building changes are indi-

viduated from the backscattering variation by considering the possible candidates, based

on the expected change size. For each candidate, spatial properties of the pattern are

evaluated based on the expected multi-temporal scattering model. These properties are

evaluated through fuzzy membership functions in order to measure the goodness of the

building candidate.

This chapter is structured as follows. Sec. 6.2 presents the single-time scattering behavior

for the building for different conditions (i.e., standing, fully and partially destroyed). In
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Sec.6.3 the single-time patterns are compared for describing the multi-temporal scatter-

ing behavior associated to both the fully- and partially-destroyed building. In Sec. 6.4

the proposed automatic strategy for the detection of the different building classes from

multi-temporal VHR SAR data is described. In 6.5 experimental results are illustrated.

Finally, in 6.6 conclusions and final remarks for future developments are traced.

6.2 Building scattering model in single-time VHR SAR images

In this section, a single-time scattering model is presented for the building under different

damage conditions. We recall models for both standing and fully destroyed buildings

from the literature [83; 146]. Based on the same paradigm, a novel geometrical model

for a partially-destroyed building and corresponding scattering pattern is derived. Let

us consider a flat-roof building with rectangular shape. Let H,W,L be its height and

planar dimensions, respectively. Let θ be the incidence angle of the sensor. For typical

radar imaging missions, θ is a value in [20◦, 55◦]. The building is considered as generally

rotated with respect to the range-azimuth plane, with orientation angle φ defined between

the segment W and the range direction. φ ranges in the interval [−π, π]. The scattering

model is based on some simplifying assumptions about the problem geometry and the

application of the ray-tracing method. The first assumption considers no perturbations

from external elements on the building scattering signature (i.e., isolated building). The

second assumption considers a structure with fixed height along one or both planar dimen-

sions. The ray-tracing method considers building slices along ground range and scattering

propagation with linear trajectories. The scattering terms are grouped into surface scat-

tering and additive multi-bounce contributions, associated to either the surface targets

or the corner reflectors, respectively. The building scattering analysis is conducted by

first assuming the case of φ = 0. The assumption is later removed and the analysis for

the general case φ 6= 0 is conducted. Each scattering analysis separately focuses on the

surface scattering and additive multiple bounce contributions.

6.2.1 Standing Building

Let us assume that the building is aligned to the range direction (i.e., φ = 0). In the

analysis of the backscattering signature, we apply the ray-tracing method and consider

building slices (green rectangles in Fig. 6.1a) along the range direction. Each slice is

characterized by a width W and a height profile h assuming value H on the building. For

φ = 0, LR coincides with the planar dimension in range (i.e., LR = W ) and all the slices

show the same behavior.

Surface scattering: The scattering contributions are considered from different building
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(a) (b)

Figure 6.1: Standing building: (a) acquisition geometry and building slices for φ = 0; (b)

backscattering signature for a single slice, LR ≥ LRT . Scattering terms: a (ground), b (double

bounce), c (wall), d (roof), e (shadow).

elements, namely the ground (a), the vertical wall (c) and the roof (d). The SAR system

senses the target with incidence angle θ and this introduces layover and shadow effects

for the contributions, with terms a+ c+d and e, respectively. Fig. 6.1b gives an example

of the global backscattering signature for the single building slice. Two signatures for the

surface scattering are possible, depending on the value of LR compared to a threshold

LRT [44; 146; 83]. LRT is defined in terms of the building height (H) and the incidence

angle (θ), as follows:

LRT = H cot θ (6.1)

For LR ≥ LRT the layover and the shadow regions are separated by a region of scattering

from the roof d. For L < LRT , a second layover region exists, with value a+ c. Table 6.1

indicates the sequence of surface scattering regions seen from near- to far-range for the

two cases.

Table 6.1: Homogeneous surface-scattering regions for standing building scenario

Case Geometrical condition
Surface scattering contributions

(near- to far-range)

1 LR ≥ LRT a+ c+ d; d; e

2 LR < LRT a+ c+ d; a+ c; e

Multi-bounce contributions: A double-bounce contribution bwg is created by the corner

reflector formed by the standing wall (w) and the ground (g). This contribution is reflected

to the sensor with angle θ [200]. For the sake of simplicity, we assume the effect of the

orientation angle on the multiple bounce contributions negligible [87]. In order to model

the amplitude of the different pattern regions, terms a, c and d are modeled by assuming
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(a) (b)

Figure 6.2: Standing building with φ 6= 0: (a) acquisition geometry and building slices; (b)

example of backscattering pattern for a standing building, with W > H cot θ, φ = π/4, (Ka =

0.2,Kc = Kd = 5).

Lambert law for the radiation, as follows:

s = Ks cos2(θ̂), s ∈ {a, c, d} (6.2)

being θ̂ the angle between the surface normal and the scattering direction (i.e., θ̂ = θ for

a, d and θ̂ = π/2− θ for c terms, respectively). On the other hand, a simple model for bwg
has been considered, by assuming fixed surface albedo for both wall and ground surfaces.

bwg = KaKc cos2 θ sin2 θ (6.3)

Let us now remove the assumption of φ = 0 and consider a general value of φ. For a general

φ value, each slice has width LR and a height profile with value H on the building, and zero

outside. LR depends on the azimuth position, the building size and building orientation.

Figure 6.2a illustrates the acquisition geometry and the slices (green rectangles) for an

oriented building. Slices with LR ≥ LRT present a backscattering signature as described in

Case 1 of Table 6.1. Conversely, those with LR < LRT present a backscattering signature

as described in Case 2 of Table 6.1. Additive double-bounce contribution bwg is introduced

in the scattering signature by the corner reflector on each slice [146]. By considering all

the slices and superimposing surface scattering and multiple-bounce contributions, a two-

dimensional backscattering pattern is derived for the standing building. Fig. 6.2b shows

an example of the two-dimensional backscattering pattern for φ = π/4.

6.2.2 Fully Destroyed Building

For every orientation angle, the fully destroyed building presents a backscattering signa-

ture with surface scattering contributions from the ground (a) and the uncovered bare
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soil (f), with similar values. No multiple-bounce contributions are present. Thus, the

backscattering signature can be considered as almost constant over range and azimuth

[146].

6.2.3 Partially Destroyed Building

Let us assume the same building described in Sec.6.2.1. Different kinds of partial damage

can be defined, each affecting a limited parts of the structure. In this work, the analysis

is focused on the fall of one of the satellite facing facades in near range [170]. Since

the facades in far range are occluded because the geometrical distortions of SAR images,

damages located in the far range need images acquired in complementary acquisition

direction. For the sake of simplicity, the geometrical model is assumed to have constant

height along the direction determined by L. The fallen part of the building is defined

by height H, slope α and range and azimuth dimensions ∆W,L, respectively. The fall

produced a debris with surface slope α with respect to the nadir and range and azimuth

dimensions (H −∆HH) tanα,L, respectively. Moving to far range, the debris is followed

by the undamaged part of the building, with height H and range and azimuth dimensions

W−∆W,L, respectively. Under the simplifying assumption that volume is preserved while

the building is falling down, the three parameters {α,∆HH ,∆W} satisfy the following

equation:

∆W =
(H −∆HH)2

2H
tan(α) (6.4)

Each slice of the building is characterized by a width parameters LR and ∆LR for the

original undamaged building and the damaged part, respectively, and a height profile h.

For φ = 0, LR = W,∆LR = ∆W , while h keeps the same height profile for all the slices

(green rectangles in Fig. 6.3a), namely a ramp rising from 0 to H −∆HH , with constant

slope π/2 − α, on the damaged part and a constant value H on the non-damaged part,

respectively. Each slice show the same scattering behavior.

Surface scattering : Because of the off-nadir acquisition angle θ, the missing layover from

the fallen part shifts the signature to far-range. The scattering contributions are con-

sidered from both building and debris elements, namely ground (a), the vertical part of

the wall (cw), the debris surface (cd) and the roof (d). Fig. 6.3b illustrates an example

of the surface scattering for the single slice of a partially-destroyed building for φ = 0.

The slice signature is characterized by the presence of layover and shadow effects, with

regions a+ cw +d, e respectively. The two regions are separated by two scattering regions

depending on the the value of LR compared to thresholds LRT1, LRT2. LRT1, LRT2, defined

in terms of the incidence angle θ and damage parameters α,∆LR,∆HH , as follows.

LRT1 = ∆LR + ∆HH cot θ (6.5)
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(a)
(b) (c)

Figure 6.3: Partially destroyed building: (a) Acquisition geometry and building slices for φ = 0;

(b) Backscattering signature with surface scattering contributions for a single slice based on the

ray-tracing method, LR ≥ LRT2. Scattering terms: a (ground), cw (wall), cd (debris), d (roof),

e (shadow).

LRT2 = ∆LR +H cot θ − (H −∆HH) tanα (6.6)

For LR ≥ LRT2 the two regions are separated by a layover region a+cd+d and a region of

scattering from the roof d. On the other hand, if L < LRT1, the two regions are separated

by two layover regions with values a+cw and a+cd, respectively. Intermediate cases (i.e.,

LRT1 ≤ LR < LRT2) consider two layover regions with values a + cd + d and a + cd. The

geometrical conditions and the corresponding backscattering regions for a single slice are

summarized in Table 6.2.

Table 6.2: Surface scattering contributions for partially-destroyed building.

Case Geometrical condition
Surface scattering contributions

(near- to far-range)

1 LR ≥ LRT2 a; a+ cw + d; a+ cd + d; d; e

2 LRT1 ≤ LR < LRT2 a; a+ cw + d; a+ cd + d; a+ cd; e

3 LR < LRT1 a; a+ cw + d; a+ cw; a+ cd; e

Multi-bounce contributions: The presence of the debris surface both reduces the double-

bounce region associated to the corner reflector and introduces two possible multi-bounce

contributions, derived according to geometrical considerations [200]. These contributions

may either exist or not depending on the parameters θ, α,H,∆Hh. The first one is the

double bounce bdg (green color in Fig. 6.3c) related to the interaction of the debris (d)

and the ground (g), which is reflected to the sensor with an angle 2α + θ. The second

contribution is the triple bounce bwdg (orange color in Fig. 6.3c) related to the interaction

among the vertical part of the wall, the debris and the ground, which is reflected to the

sensor with an angle 2α−θ. Both angles are assumed in the interval (0;π/2). A negligible
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effect of the orientation angle φ on all the multiple-bounce contributions is assumed. The

possible cases are summarized in Table 6.3. Terms a, cd, cw and d are modeled by assuming

Table 6.3: Multi-bounce contributions for partially-destroyed building.

Case Geometrical condition
Multi-bounce contributions

(near- to far-range)

1 θ ≥ α
Double bounce from vertical wall (θ);

Double bounce from debris (2α+ θ);

2

 θ < α

H tan θ ≥ (H −∆HH) tanα

Double bounce from vertical wall (θ)

Double bounce from debris (2α+ θ);

Triple bounce (2α− θ).

3

 θ < α

H tan θ < (H −∆HH) tanα

Double bounce from debris (2α+ θ);

Triple bounce (2α− θ).

Lambert law for the radiation.

s = Ks cos2(θ̂), s ∈ {a, cd, cw, d} (6.7)

being θ̂ the angle between the surface normal and the incidence direction (i.e., θ̂ = θ for

a, d, θ̂ = π/2− θ for cw and θ̂ = π/2− θ−α). Because of the similar material, debris and

the wall are assumed to have similar dielectric properties and coefficients Kcd , Kcw (i.e.,

Kcd ' Kcw = Kc). On the other hand, the amplitude of the multi-bounce contributions is

modeled by assuming constant surface albedo for the involved surface elements, as follows.

bdg = KaKc cos2(2α + θ) sin2(α + θ) (6.8)

bwdg = KaK
2
c cos2(2α− θ) sin2(α− θ) (6.9)

By considering all the slices and superimposing surface scattering and multiple-bounce

contributions, a two-dimensional scattering pattern is derived for the partially-damaged

building.

Let us now remove the assumption and consider a general angle φ 6= 0. To constrain the

damage to the satellite-facing facade, φ is limited to the interval [−π/2, π/2]. Other values

refer to a building with damages on one of the occluded facades. Without loss of generality,

we focus the analysis for positive φ values. The patterns for the corresponding negative

values can be easily derived by flipping the pattern with respect to the ground range. The

building slices are now characterized by width LR and height profile h, depending on the

azimuth position, the geometrical parameters and the orientation angle. Furthermore, the
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debris on the slices is characterized by a slope angle π/2− β with respect to the vertical

direction that depends on the value of φ.

β = arctan(cotα cosφ) (6.10)

In particular, four kinds of height profile can be associated to h for the general case,

namely profile A, B, C and D. Each of the height profiles can be described together with

its backscattering analysis, derived by applying the ray-tracing:

• profile A (yellow in Fig. 6.4): the slice only includes the debris. h assumes values

rising from 0 to W cot β with constant slope π/2− β. The corresponding backscat-

tering signature is composed by contributions a and cd, respectively. Layover of the

two contributions occurs for β < π/2− θ values.

• profile B (dark green in Fig. 6.4): depending on the value of φ, the profile has two

possible behaviors. For small values of φ (i.e., φ ≤ φ0), the slice includes both the

debris and the undamaged part. h assumes values rising from 0 to H − ∆H with

constant slope π/2 − β associated to the near-range debris and constant value H

on the far-range undamaged part of the building. In this case, the backscattering

signature is characterized by surface scattering and multiple bounce contributions

as described in the analysis for φ = 0, with a surface slope β for the slice.

Conversely, for large values of φ (i.e., φ > φ0), the slice only includes the debris and

height profile assumes values rising from a positive value h0 to h0 + LR cot β with

constant slope π/2 − β being h0 ∈ [0, H − ∆HH − LR cot β]. The corresponding

backscattering signature is similar to that in Table 6.1, with a region of layover

a+ cd+ cw and a region of shadow e. Two possible multi-bounce contributions, with

Figure 6.4: Example of acquisition geometry of partially destroyed building for φ 6= 0 and

building slices. Aspect angle effect generates four profiles, namely A (yellow), B (dark green),

C (red) and D (light green).
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angles θ and 2α+ θ, are associated to the corner reflector of h0 and the debris slope,

respectively. φ0 is derived based on geometrical considerations, as follows.

φ0 = arcsin

[
LA cosφ

(H −∆HH) tanα sinφ

]
(6.11)

• profile C (red in Fig. 6.4): the slice includes both the debris and the undamaged part

and the height profile assumes values rising from h1 to H −∆H with constant slope

π/2−β associated to the near-range debris and a constant value H on the far-range

undamaged part of the building, h1 ∈ [H − ∆HH − LR cot β;H − ∆HH ]. For the

corresponding backscattering signature, same considerations traced above for φ = 0

hold. Two further contributions are associated to the positive value h1, namely a

decrease of the size along range of the regions associated to the cw contribution and

a double bounce region associated to the part of the debris with height h1.

• profile D (light green in Fig. 6.4): the slice includes only the undamaged part.

The backscattering signature is derived based on the considerations for the standing

building slices in Sec. 6.2.1.

By considering all the slices and superimposing surface scattering and multiple-bounce

contributions, a two-dimensional backscattering pattern is derived for the partially-destroyed

building. Fig.6.5 shows an example of two-dimensional backscattering pattern for φ =

π/4, with damage parameters α = π/6,∆HH = H/4.

Figure 6.5: Example of backscattering pattern for a partially destroyed building for φ =

π/4,∆HH = H/4, α = π/6 (Ka = 0.2,Kc = Kd = 5).

6.3 Building scattering model in multi-temporal VHR SAR im-

ages

Based on the single-time scattering models derived in Sec. 6.2, a multi-temporal analysis

for the building damage assessment is conducted by comparing the patterns in pre- and
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post-event. The expected behavior for the multi-temporal pattern can be characterized

by defining peculiar geometrical features on the change regions of the multi-temporal

scattering pattern. Two possible damage situations are considered. The first situation

considers the complete destruction of building, by comparing patterns for standing and

fully destroyed building associated to pre- and post-event, respectively. The second situa-

tion is associated to the partial destruction of the building, with patterns for standing and

partially destroyed building associated to pre- and post-event, respectively. The multi-

temporal comparison highlights presence of areas with scattering increase (ωI), decrease

(ωD) or no change (ωnc) of scattering.

6.3.1 Fully destroyed buildings

For a fully destroyed building, the multi-temporal comparison generates a pattern with

a large increase region RI and multiple adjacent decrease regions (Fig. 6.6a). The in-

crease region is associated to the disappearance of the building shadow in far range. The

decrease regions are associated to the disappearance of the different scattering contribu-

tions associated to the building structure in near range. For sake of simplicity in the

multi-temporal analysis, adjacent decrease regions are grouped into a single region RD.

The opposite situation, describing the appearance of a new building, can be described in

the multi-temporal analysis an increase region in near-range and decrease region in the

far-range, respectively. RD is characterized by area SD and length lD along the azimuth

(a) (b)

Figure 6.6: Multi-temporal pattern for fully destroyed buildings, for (a) φ = 0; (b) φ = π/4.

R,B: pre-event image; G: post-event image. Backscattering increase and decrease are represented

in green and magenta, respectively. Representation of the geometrical features associated to the

pair of regions RI (in green) and RD (in magenta) for the multi-temporal scattering pattern.

direction. Corresponding values SI , lI are defined for the increase region RI . An area



Building scattering model in multi-temporal VHR SAR images 107

measure STOT is then defined for the convex hull of the two regions. Based on these

spatial parameters, four spatial features can be defined for the pair of regions RI , RD,

in order to describe the multi-temporal pattern for the fully destroyed building (see Fig.

6.6b).

• area ratio ra : minimum ratio between the areas SI and SD.

ra = min{ SI
SD

,
SD
SI
} (6.12)

• azimuth length ratio rl : minimum ratio between the lengths lI and lD.

rl = min{ lI
lD
,
lD
lI
} (6.13)

• orientation ζ : clock-wise angle (taken in absolute value) between the range direction

and the line connecting the centroids of the two regions.

• total change ratio rt : ratio between the sum of the areas SD, SI and the convex hull

area STOT .

rt =
SD + SI
STOT

(6.14)

From the literature, we expect that the ratio values tend to one (i.e., ra, rl, rf ' 1), while

orientation tend to zero (ζ ' 0) [146].

6.3.2 Partially destroyed building

For a partially-destroyed building, the multi-temporal pattern presents a sequence of

regions along the range direction more complex than that of fully destroyed building

and depends on both the orientation angle φ and the damage parameters ∆HH , α. A

general characterization of the pattern is thus conducted with a sensitivity analysis, by

considering θ > π/4 and LR > H cot θ. We assume that Kc, Kd are similar and much

larger than Ka (i.e., Kc ' Kd, Ka � Kd). ∆HH , α are the free parameters ranging in

[π/12, π/3] and [H/4, 3H/4], respectively. Very large values for parameters ∆HH , α are

associated to geometries which are not likely to occur in real scenarios and thus excluded.

The orientation angle varies in [0, π/3]. Higher values make the damaged facade tend to

be oriented along the azimuth direction, thus the multi-temporal pattern tend to come

close to profile D, with constant height on the slice.

Fig. 6.7 shows multi-temporal backscattering patterns of the partially damaged building,

derived for two damage options and two different orientation angles. For the sake of

simplicity in the analysis, both adjacent increase and decrease regions are grouped into
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a single region. From near- to far-range, the multi-temporal pattern is composed by a

sequence of regions Rdec1, Rnc1, Rdec3, Rnc2, Rinc, Rdec2, Rinc2 characterizing the damaged

part; and a large no-change region, associated to the part of the building not affected

by the damage. This no-change region is placed in far-range, with geometry dependent

on the building orientation. Most of the change regions tend to be oriented according

to φ (i.e., uniform along azimuth for φ = 0). Conversely, Rinc2 is elongated in the range

direction, with size decreasing for φ tending to zero. Decrease regions Rdec1, Rdec3, Rdec2

are associated to the fall of the debris both reducing the near-range layover region and

widening the far-range region associated to d. No-change regions Rnc1, Rnc2 are associated

to the part of the facade footprint showing no variations in the total scattering. Increase

region Rinc1 is associated to the scattering from the debris cd > cw. Increase region Rinc2,

is due to the reduction of the shadow on building slices of the debris after the fall. For

profile A, the slices have a far-range height W cot β < H smaller than that of the pre-

event.

For large values of ∆HH , the width along ground range for all the decrease and increase

regions tends to be small, while that for the no-change regions tends to be large. Large

∆HH corresponds to small ∆W for (6.4), so that the damage tend to be limited and

the slice tends to behave as the standing building one. Large α corresponds to large

∆W for (6.4). This widen the region with scattering d and makes Rinc1 large. On the

other hand, large α makes slices following profile A with a small height, and thus a small

shadow region. In the multi-temporal pattern, this makes Rinc2 large along the range

direction. Changes in the region sequence can be seen in presence of a strong triple-

bounce contribution in the backscattering pattern of the partially-destroyed building,

generating a local increase of backscattering. Nevertheless, the presence of this term is

dependent on both α and φ, as described above. The multi-temporal patterns in the

sensitivity analysis are used for deriving a multi-temporal backscattering prototype of the

partially-destroyed building. In this work, patterns with similar characteristics have been

considered by assuming the condition α < π/4. A geometrical analysis of the regions

has been conducted for this pattern, by focusing on two significant regions, namely the

decrease region Rdec2, associated to the reduced size of the layover region, and the increase

region Rinc1, associated to the layover with stronger scattering given by cd. Change regions

may be concave. Thus, the convex skull, defined as the largest convex polygon inscribed

in the considered region [216], was selected for both Rdec2, Rinc1.

Let R̃I , R̃D be the convex skull approximation for Rinc1 and Rdec2, respectively. Similarly

to what defined in Sec. 6.3.1, R̃I is characterized by area S̃I , and length l̃I , along the

azimuth direction. Corresponding values S̃D, l̃D are defined for the region R̃D. Let S̃TOT
be the area of the convex hull of the pair R̃I , R̃D. Based on these spatial parameters, four
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(a) (b)

(c) (d)

Figure 6.7: LR Patterns for partially destroyed buildings with different values set for pa-

rameters {α,∆HH , φ}: (a) {π/12, H/4, 0}; (b) {π/12, H/4, π/3}; (c) {π/4, 3H/4, 0}; (d)

{π/4, 3H/4, π/6}. Areas of backscattering decrease and increase are represented in magenta

and green, respectively.
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spatial features are defined for describing the multi-temporal pattern for the partially-

destroyed building:

• area fill ratio r̃a: ratio between the areas S̃I and S̃D.

r̃a =
S̃I

S̃D
(6.15)

• azimuth lengh ratio r̃l: minimum ratio between the lengths l̃I and l̃D.

r̃l = min{ l̃I
l̃D
,
l̃D

l̃I
} (6.16)

• orientation ζ̃: clock-wise angle between the range direction and the line connecting

the centroids of R̃I , R̃D.

• total change ratio r̃t: ratio between the sum of the areas S̃I , S̃D and the convex hull

area S̃TOT .

rA =
S̃I + S̃D

S̃TOT
(6.17)

6.4 Proposed approach for unsupervised building Change De-

tection in VHR SAR images

In this section, an automatic hierarchical strategy for the unsupervised detection of build-

ing changes with different semantic meaning is proposed. Let X1, X2 be the two input

VHR SAR images, with size M ×N , acquired before and after the change event, respec-

tively. The strategy aims at deriving a multi-class CD map with 5 classes {ω0, ω1, ω2, ω3, ω4}.
The classes are described as follows: 1) area with no change in backscattering (ω0); 2)

new building (ω1); 3) fully destroyed building (ω2); 4) partially-destroyed building (ω3);

5) change in backscattering not associated to buildings (ω4). The novelty of the proposed

strategy lies in both integrating the proposed scattering model for partially-destroyed

buildings in an automatic building CD strategy and considering a change hierarchy asso-

ciated to the different spatial scale (see Fig. 6.8) to formulate the CD problem. Classes

are reported as {ω1, ω2} for for the first hierarchical level and {ω0, ω3, ω4} for the second

one. Fig. 6.9 illustrates the general block scheme of the proposed approach. The scheme

namely presents: a processing stage for the multi-temporal comparison and the gener-

ation of a backscattering CD Map; Fully-destroyed building detection (FDBD) on the

first hierarchical level, for identifying classes ω1, ω2; a changed-building mask generation

for removing ω1, ω2 from the analysis at second level; Partially-destroyed building detec-

tion (PDBD) on the first hierarchical level, for identifying classes ω0, ω3, ω4; fusion of the
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Figure 6.8: Hierarchical representation of the Building CD problem.

building CD maps. Each Building detection step includes a step for the selection of the

best building candidates and another step for the analysis of their geometrical features

based on a fuzzy-logic set. The parameters used in the fuzzy set are tuned based on the

model of the building and its robustness to noise and clutter. On both levels, the building

CD performs building candidate selection and a spatial analysis of the candidates.

6.4.1 Multi-temporal comparison and Backscattering CD

Multi-temporal comparison of X1, X2 is conducted by means of the log-ratio operator.

The log-ratio image XLR is defined as follows:

XLR = log
X2

X1

(6.18)

Log-ratio operator is frequently used as a pixel-based index in SAR CD analysis, as it

both mitigates the speckle effect on the multi-temporal information and highlights both

Figure 6.9: Block scheme of the proposed approach.
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the increase and decrease of backscattering, which assume positive and negative values

in XLR, respectively [146; 234; 184; 127; 23]. Despite the large mitigation of the speckle

effect, a residual noise contribution may still impact on the CD analysis. A multi-scale

decomposition step is applied to XLR in order to overcome these issues [32; 146; 5; 3].

The output of the decomposition process is a set of images Xn
LR, n = 0, ..., N − 1. Images

with large n, have high robustness to noise but small level of detail and vice versa. In the

wavelet decomposition, XLR is assumed as X0
LR (i.e., X0

LR = XLR). For this, 2D Discrete

Stationary Wavelet Transform (2D-SWT) is selected as as multi-scale operator, following

[5; 146]. At scale level N − 1, changes on small elements are neglected, while the large

ones are detected as homogeneous change areas. The optimal value N is chosen based

on the minimum building footprint size, in order to preserve the edge information while

mitigating the residual speckle effect.

Let Xopt
LR be the decomposition at the optimal scale level (i.e., Xopt

LR = XN−1
LR ). An unsu-

pervised thresholding is performed on the Xopt
LR, in order to derive a backscattering CD

map with classes ωI , ωD, ωnc. The thresholding considers a split-based analysis [33] in

order to have populations for ωI , ωD comparable to that for ωnc. The analysis divides the

image Xopt
LR into splits with size SR× SA and considers pixel variance as a change content

measure. A subset of splits with largest variance is defined for the threshold selection,

based on a split selection parameter B. SA, SR are chosen based on the average building

size on the scene, while B is tuned based on the application. Small B values correspond

to a larger proportion of the total change information and vice versa.

A Bayesian thresholding is applied on the set of selected splits, by assuming that sam-

ples of the set be modeled as a mixture of three Gaussian distributions. Unknown prior

probabilities and marginal distribution parameters are estimated with EM algorithm [23].

The estimated thresholds are then extended to the whole image and backscattering CD

map Mopt is obtained.

6.4.2 Hierarchical level 1: Fully-destroyed building detection (FDBD)

Starting from Mopt, building change detection is performed on each hierarchical level by

detecting the changed building candidates and then performing spatial analysis on each

of them in order to detect classes. Changed building candidates are generally associated

to areas with large density of changed pixels. The candidate detection is performed via a

set of moving windows applied on the scattering CD map, following the approach in [146].

In order to capture most of the possible orientations for the changed building candidates,

five possible windows Wβ, β = 1, ..., 5 with constant area and different geometry are con-

sidered in the analysis. The spatial analysis of the candidates is conducted by evaluating

the geometry of the change regions (as defined in both Sec. 6.3.1 and Sec. 6.3.2) with a
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fuzzy inference system, in order to detect building classes.

For the first level, the changed building candidates are detected by using a sliding win-

dow with size parameters z1, z2 on Mopt. Scanning from left to right, the total number

of changed pixels inside the window is computed. Fig. 6.10 shows the set of the possible

moving windows applied in the candidates detection. In particular, Wβ includes four rect-

angular windows with size z1×z2 and different orientation angles (i.e., {π/2, π/4, 0,−π/4})
and a square window of size

√
z1z2×

√
z1z2. As the detection at the first hierarchical level

is devoted to completely changed building candidates, the values of z1, z2 are selected

based on the average building footprint size on the site. Let Wβ(i, j), β = 1, ..., 5 be one

Figure 6.10: Set of moving windows used for the candidate detection with dimensions z1, z2.

of the possible moving windows centered on the pixel (i, j), with size parameters z1 × z2.

Let M
(FD)
Wβ(i,j) = Mopt|Mopt ⊂ Wβ(i, j) be the set of pixels of Mopt in Wβ(i, j), indicating the

amount of pixels belonging to ωD or ωI . A candidate index C(FD)(i, j) for the pixel (i, j)

can be defined as the maximum value of the set, indicating the amount of the change

information detected in the set of windows.

C(FD)(i, j) = max
β=1,...,5

card(M
(FD)
Wβ(i,j) ∈ ωD ∧M

(1)
Wβ(i,j) ∈ ωI) (6.19)

where card(·) represents the cardinality of the set. Finally, a binary map of the candidates

C
(1)
bin is derived by thresholding C(FD) with threshold value T

(FD)
C . The set of candidates is

extracted from C
(FD)
bin by considering the connected components of the changed regions and

by applying the flood-fill algorithm with an eight-connected neighborhood [18; 146]. The

threshold is chosen based on the size of the moving window (i.e., T
(FD)
C = tz1z2, 0 < t ≤ 1).

A bounding box is traced for each of the candidates and all possible region pairs with an

increase and a decrease region are considered for a spatial analysis. Without loss of gener-

alization, let us assume that one region of decrease and one region of increase exist inside

the single candidate box. If more regions of increase or decrease exist, spatial analysis is

conducted on each possible pair and the one providing the best candidate score is assumed

as most reliable. The spatial analysis of the region pair is conducted with a fuzzy inference
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(a) (b)

Figure 6.11: Examples of membership function: a) Sigmoid function with s = 10, t = 0.5; and

b) Gaussian function with µ = 0.35, σ2 = 0.332.

system based on the geometrical parameters of the pair [186]. The analysis focus on the

set rl, ra, rf , ζ. As described in Sec. 6.3.1, reliable values of ra, rf , rl are expected to be

close to 1, as there is no sensible prevalence of the values of either RI or RD. On the other

hand, reliable values of ζ are expected to be close to zero [146]. Thus for the evaluation,

Sigmoid membership functions Σl(rl, al, cl),Σa(ra, aa, ca),Σf (rf , af , cf ) and Σζ(|ζ| , aζ , cζ)
are chosen for the features rl, ra, rf and ζ, respectively. Sigmoid membership function

Σ(r, s, t) (Fig.6.11a) is described by parameters s and t associated to the slope and the

center of the function, respectively, as follows:

Σ(r, s, t) =
1

1 + e−s(r−t)
(6.20)

Parameters are set as sa, ta, sf , tf , sl, tl > 0 for the ratio-based membership functions,

while aζ < 0, cζ > 0 for the orientation. For each pair of candidate regions, the aggregate

membership ηFD = ΣlΣaΣζΣf is computed for global evaluation. The candidates with

Σ greater than a membership threshold T
(FD)
η are labeled either ω1, ω2, depending on

whether RD appears in near range and RI in far range or vice versa [146]. The objects

detected as ω1, ω2 are masked out from the map Mopt, resulting in a map M
(mask)
opt .

6.4.3 Hierarchical level 2: Partially-destroyed building detection (PDBD)

The analysis of the PDBD is structured with the same paradigm of the FDBD, because of

the geometrical properties of the multi-temporal model for the partially destroyed build-

ing (Sec. 6.3.2), but it takes into account important modifications due to the different

size and spatial properties of the change regions. For the second hierarchical level, the

changed building candidates are detected from M
(mask)
opt by using a sliding window with size
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parameters z1, z2, scanning from left to right and counting the total number of changed

pixels inside the window. The windows keep the same set of orientation values as in Fig.

6.10. The detection provides a candidate index C(PD) indicating the amount of the change

information in the set of windows. A binary map of the candidates C
(PD)
bin is derived by

thresholding C(PD) with threshold value T
(PD)
C , chosen based on the size of the moving

window (i.e., T
(PD)
C = tz1z2, 0 < t ≤ 1). The set of candidates is extracted from C

(PD)
bin by

considering the connected components, similarly to what done in FDBD.

In order to avoid the detection of a large number of small candidates, window size pa-

rameters are kept similar to those considered in the first hierarchical level, while thresh-

old value is selected smaller. A bounding box is traced for each candidate and a spa-

tial analysis is conducted on region pairs R̃I , R̃D. For the case of partially destroyed

building, the spatial analysis focuses the set r̃l, r̃a, r̃f , ζ̃. For the evaluation, Sigmoid

membership function Σl(r̃l, bl, dl), defined in (6.20), and Gaussian membership functions

γa(r̃a, µa, σa), γf (r̃f , µf , σf ), γζ(ζ̃ , µζ , σζ) are chosen for the features r̃l, r̃a, r̃f and ζ̃, respec-

tively. Gaussian membership function γ(r, µ, σ) (Fig.6.11b) is described by parameters µ

and σ associated to mean and standard deviation of the function, respectively, as follows.

γ(r, µ, σ) = e
−(r−µ)2

2σ2 (6.21)

All the parameters of the four membership functions are set with real positive values. For

each pair, the aggregate membership η(PD) = γaγζγfΣl is computed. The candidates both

presenting a pair of regions with decrease and increase in near and far range, respectively,

and having a value γ greater than a membership threshold T PDη are classified as partially

destroyed buildings (ω3).

6.4.4 CD Map Fusion

An overall building CD map is obtained by combining information from Mopt and the

output maps from both FDBD and PDBD. Regions of no-change in backscattering are

labeled as ω0. Regions of ωI , ωD not associated to any of the building models (i.e.,

ω1, ω2, ω3 classes) are labeled as general change (ω4). Remaining regions of no backscat-

tering variations are labeled as no-change (ω0). The overall building CD map represents

ω ∈ {ω0, ω1, ω2, ω3, ω4}.

6.5 Experimental Results

In order to validate the proposed approach, two datasets of multi-temporal VHR SAR

images with size 1024 × 1024 pixels have been considered. The two datasets describe

two residential areas in the city of L’Aquila (Italy), that has been interested by a strong
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earthquake, which caused the collapse of several buildings and relevant damages to many

others, together with the death of several civilians. The first dataset is a residential

modern area outside the inner city, for which most of the buildings can reasonably assumed

as isolated from the neighbors. The second dataset is near a medieval residential area in

the inner city, in which part of the scene presents buildings that are very close each other.

This aspect makes the building change detection more complex. For both the multi-

temporal datasets, pre-event and post-event VHR SAR images have been acquired by the

Cosmo-SkyMed constellation in Spotlight mode on April 5th, 2009 and September 12th,

2009 respectively. Both images are in HH polarization, have incidence angle θ = 53◦ and a

spatial resolution of 1 meter. Radiometric calibration, geo-referencing and co-registration

were performed.

For the validation, a reference map of the fully and partially destroyed buildings in the

area has been derived based on a post-event damage survey conducted on site. The survey

provided a building damage map with EMS98 scale [202]. Because of the damage grade

and the spatial resolution of the data, the attention was focused on grades 4 (partially

destroyed) and 5 (fully destroyed) of the EMS scale. The analysis has been refined to the

best of our abilities by a visual inspection of an ortho-photo of the crop acquired after the

seismic event and by taking into account the SAR geometry of acquisition. For buildings

with lacking information of the EMS damage, the visual inspection has been the only

factor for the generation of the reference. For the validation of the proposed approach,

detection accuracy has been evaluated at building level, evaluating the correct detections

and mis-classifications for the classes ω1, ω2 and ω3. In the following, a more detailed

description of the scene and the performance of the proposed approach are reported for

the two crops.

6.5.1 Crop 1: Modern Residential Area

The first crop has a size of 1024 × 1024 pixels and represents the southern part of inner

city. Fig.6.12a shows a multi-temporal false color composition of the two SAR images

of Crop 1, where areas of backscattering increase and decrease appear in magenta and

green, respectively. Fig.6.12b shows the post-event ortho-photo, with red an yellow poly-

gons indicating fully and the partially destroyed buildings, respectively. A total of 200

buildings were counted. Among these, 8 buildings were classified as fully destroyed (ω1),

6 as partially destroyed (ω3) and 0 as new (ω2).

The proposed approach computed the log-ratio feature XLR and performed multi-scale

analysis has been conducted on XLR, generating the sequence {X0
LR, ..., X

N−1
LR }. The op-

timal scale level N has been selected considering the average building size and the noise

level of the SAR images. It has been demonstrated that the value N = 4 preserves radar
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(a) (b) (c)

(d) (e) (f)

Figure 6.12: Crop 1: a) Multi-temporal false color composition of SAR images (R,B: September

2009, G: April 2009); b) Optical post-event image; c) Backscattering CD MapMopt, with increase

and decrease represented in magenta and green, respectively; d) Candidate gray-scale map

C(1); e) Candidate gray-scale map C(2); f) Multi-class building CD map overlapped with multi-

temporal false color composition of the SAR images (ω1 (red), ω3 (yellow), ω4 (blue)).
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footprint of buildings with size larger than 8 meters, which is reasonable for the proposed

scenario [146]. The impulse response of the filters in the 2D-SWT have been chosen from

the Daubechies family with order 4. The split-based analysis has been conducted on XN−1
LR

for deriving the backscattering CD map Mopt. The split size has been selected by taking

into account the average size of the building radar footprint along the range and azimuth

directions. This resulted in SR = 120 and SA = 40 pixels, respectively. The selection of

the splits with highest change content has been conducted by selecting B = 3. Previous

works demonstrated how the split-based approach has robust performance with respect

to the split size in range of values [20; 60] and [80; 170] for SA and SR, respectively [146].

On the samples of the split subset, no-change and change classes have been separated by

estimating the statistical unknown parameters with the EM algorithm and applying the

Bayesian thresholding. Fig.6.12c shows the map Mopt, in which backscattering increase

and decrease are represented in green and magenta, respectively.

FDBD has been conducted on the map, starting with the analysis based on the sliding

window for the extraction of the building candidates. FDBD detects the presence of fully

destroyed buildings, thus the window size has been selected comparable to the minimum

building footprint, with values z1 = 40, z2 = 20 respectively [146]. Fig.6.12d shows the

output map generated by the sliding window. Threshold scale value t = 0.2 was selected

in order to limit the outliers in the candidate analysis. This resulted in a total of 52

building candidates. For each of the building candidates, the proposed fuzzy rules have

been applied. Aggregate membership ηFD has been derived and thresholded for detecting

new and fully destroyed buildings. The threshold was selected by considering a limit

case of 0.6 for the membership function of the single rules, resulting in a aggregate value

T
(FD)
η = 0.125 for ηFD. The value is compatible with the considerations asserted in [146].

After the masking of the detected buildings on Mopt, PDBD has been conducted on the

masked map. In order to avoid a large number of small regions, the window size has been

selected with same size of that in FDBD. The threshold for the candidates detection in

this step has been selected smaller than that required for the FDBD (i.e., t = 0.0725).

The analysis yielded a set of 139 candidates. The proposed fuzzy rules have been applied

on the candidates. Aggregate membership ηPD has been derived and thresholded. An

overview of the parameters considered in the analysis is reported in Table 6.4. The maps

obtained with the application of the two fuzzy sets have been fused in the final multi-class

building CD map (see Fig.6.12f).

Table 6.5 reports the quantitative assessment for crop 1. With the proposed approach, 7

out of 8 buildings were correctly labeled as ω1 (see Fig. 6.13a), while 4 out of 6 as ω2.

Both the miss detections correspond to two buildings of classes ω1 and ω3 that are both
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Table 6.4: Parameters used in the experiments: (a) common parameters; (b) FDBD and PDBD

specific parameters.

Parameter Value

N 4

SR 120

SA 40

B 3

z1 40

z2 20

(a)

FDBD PDBD

Parameter Value Parameter Value

t 0.2 t 0.0725

TFDη 0.125 TPDη 0.125

aa 10 µa 3.6

ca 0.3 σa 1.55

al 10 bl 10

cl 0.5 dl 0.15

aζ -10 µζ π/8

cζ π/3 σζ 0.4

af 30 µf 0.45

cf 0.5 σf 0.12

(b)

labeled as ω4. The three miss detections correspond to a fully and partially destroyed

building labeled as general change and a partially destroyed building labeled as no change,

respectively. A total of 5 false alarms was reported for building misclassified as ω3. It is

worth noting that the five false alarms are buildings not following the model of partially

destroyed building, but still characterized dy a damage level EMS4 in the survey [202].

From a qualitative analysis, the miss detection of the fully collapsed building (ω1) may be

probably explained by the influence of the surrounding buildings and vegetation the multi-

temporal building footprint (see 6.13b and 6.13c). Most of the false alarms can be associ-
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Table 6.5: Crop 1: Detection assessment of the proposed approach for L’Aquila dataset.

Building Detection Assessment

Correct Detections

Fully Destroyed (ω1) 7

Partially Destroyed (ω3) 4

Missed Detections

Fully Destroyed

detected as Partially Destroyed (ω3) 0

detected as general change (ω4) 1

detected as no change (ω0) 0

Partially Destroyed

detected as Fully Destroyed (ω1) 0

detected as general change (ω4) 1

detected as no change (ω0) 1

ated to the presence of vegetated areas close to the buildings, creating a multi-temporal

behavior for the scattering not clearly predictable nor considered in the backscattering

model (see Fig.6.13d) [217].

6.5.2 Crop 2: Medieval Residential Area

Fig.6.14a shows the multi-temporal false color composition of the two SAR images for

Crop 2, with green and magenta mapping the backscattering increase and decrease, re-

spectively. Fig. 6.14b shows the corresponding post-event ortho-photo. From the ortho-

photo, 165 buildings were counted. Among these, 3 were classified as fully destroyed, 4

as partially destroyed and 0 as new. The approach considered the generation of the log-

ratio XLR and the use of the wavelet-based multi-scale analysis for generating the robust

multi-temporal feature XN
LR. N = 3 was selected as optimal scale value. Split-based CD

analysis was conducted on XN
LR for generating the backscattering CD map (see 6.14c).

For the FDBD, a sliding window with size z1 = 40, z2 = 20 was selected for the candi-

date detection (see Fig 6.14d). Fig 6.14d shows the output map generated by the sliding

window in the FDBD. The thresholded map provided as set of 85 possible candidates.

The set of fuzzy rules was applied on the building candidates and the aggregate mem-

bership was thresholded. An overview of the parameters selected in the fuzzy analysis is

presented in Table 6.4. With the masking of the elements in ω1, ω2, the PDBD analysis

was conducted. Same parameters were kept for the sliding window. A threshold scale

value t = 0.1 was selected slightly higher in order to have a robust detection in presence
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(a) (b)

(c) (d)

Figure 6.13: Crop 1: Examples for buildings detected by the proposed approach: a) miss (above)

and correct (below) detection for Fully Destroyed building class; b) correct detection for Partially

Destroyed Building class; c) false alarm for Partially Destroyed Building class; d) miss detection

for Partially Destroyed Building class.
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(a) (b) (c)

(d) (e) (f)

Figure 6.14: Crop 2: a) Multi-temporal false color composition of SAR images (R,B: September

2009, G: April 2009); b) Optical post-event image; c) Backscattering CD MapMopt, with increase

and decrease represented in magenta and green, respectively; d) Candidate gray-scale map

C(1); e) Candidate gray-scale map C(2); f) Multi-class building CD map overlapped with multi-

temporal false color composition of the SAR images (ω1 (red), ω2 (green), ω3 (yellow), ω4

(blue)).
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of local vegetated areas (see 6.14b). This provided a set of 141 candidates. The resulting

building candidates have been analyzed with the proposed fuzzy logic set. Thresholding

on the aggregate membership values have has been finally conducted. The final CD map

is reported in Fig. 6.14f.

Table 6.6: Crop 2: Detection assessment of the proposed approach for L’Aquila dataset.

Building Detection Assessment

Correct Detections

Fully Destroyed 2

Partially Destroyed 2

Missed Detections

Fully Destroyed

detected as Partially Destroyed 1

detected as general change 0

detected as no change 0

Partially Destroyed

detected as Fully Destroyed 0

detected as general change 2

detected as no change 0

Table 6.6 reports the performance analysis for Crop 2. The proposed approach presents

the correct detection of 1 fully destroyed building (ω1) and 2 partially destroyed buildings

(ω3), with the 4 miss detection, namely 2 fully destroyed and 2 partially destroyed build-

ings. However, it is worth noting that one of the miss detection associated to ω1 has been

detected as ω3, while both the miss detections in ω3 are labeled as ω4. This may result

important in an emergency scenario where it is important to trigger a building change

event. The proposed approach introduced 6 false alarms in the two hierarchical levels,

namely, 1 associated to ω1, and 2 to ω2 and 3 for ω3, respectively. Their presence can be

explained by the large building density and the strong presence of vegetation in the local

scene, which introduce modifications in the expected building scattering model.

6.6 Conclusion

In this chapter, a novel approach for the building change detection in multi-temporal VHR

SAR has been presented. The approach aims at defining a hierarchical detection of the

changes, based on the spatial scale level. In particular, two level of analysis are considered,

associated to either new, fully destroyed buildings or partially destroyed buildings.
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A multi-temporal scattering model for partially damaged building has been illustrated

in this work for supporting the detection capabilities of the proposed strategy. The

model makes some assumptions about the geometry and the size of the building and its

damaged part. It derives the multi-temporal scattering behavior by comparing the two

single-time scattering patterns, each obtained by applying the ray-tracing method to the

corresponding model. The multi-temporal behavior has been used for defining a novel set

of fuzzy-based geometrical rules for the class of partially-damaged building.

A validation of the proposed approach has been conducted by considering a pair of VHR

SAR images acquired by Cosmo-SkyMed constellation before and after the earthquake

in L’Aquila, 2009. The results highlighted the effectiveness of the detection, with the

detection of damages not associated to fully destroyed buildings, but with a large relevance

in practical applications as damage assessment and emergency response.

Future developments aim at considering further geometries for the partially destroyed

building in the automatic detection strategy. Furthermore, they will study the detection

problem in presence of dense built-up areas, where building footprint is partially affected

by surrounding elements.



Chapter 7

Discussion and future developments

This chapter draws the conclusions for the unsupervised methods for CD in Polarimetric

SAR and VHR SAR imagery that have been presented the thesis and illustrates the future

developments.

7.1 Conclusions

In this thesis, we described the properties of SAR imagery and the scattering information

in terms of more polarimetric channels (PolSAR) or a very high resolution (VHR SAR).

Based on that, we proposed novel strategies for unsupervised CD that discriminate several

change classes (as in the case of PolSAR) or improve the detection of changed buildings in

urban areas (as in the case of VHR SAR). Concerning PolSAR data, methods have been

designed based on the polarimetric scattering properties: i) an unsupervised multi-class

change detection approach based on bi-temporal dual-pol SAR data; ii) an unsupervised

approach for change detection of built-up areas for bi-temporal full-pol SAR imagery;

iii) an approach for change detection and robust classification based on a full-pol SAR

image time-series. Concerning VHR SAR data, we focused on the separation of different

building change classes, performed according to the geometrical properties of the building

multi-temporal scattering. The unsupervised approach detects both fully and partially

destroyed buildings.

In Chapter 3, an unsupervised approach for multi-class CD of bi-temporal dual-pol SAR

images has been presented. The approach generates a multi-dimensional polarimetric

change vector as the comparison of the dual-pol images. The polarimetric scattering

theory allowed to model the behavior of no-change and multiple changes classes in the

PCV polar domain. The proposed representation drives the design of a CD strategy

that automatically estimates the number of classes and separates the no-change and the

multiple change classes. The framework proved to effective in several change detection
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problems with both different number and kinds of change, on images acquired by different

polarimetric sensors. The method accuracy is comparable with the state of the art but

results provide more information on the change class, compared to standard methods in

the literature that tackle binary CD.

In Chapter 4 an unsupervised CD strategy for bi-temporal full-pol SAR data focusing

on built-up elements has been presented. The approach is based on the extraction of

two polarimetric features, namely the overall scattering power and average scattering

mechanism, represented in terms of angle. The single-time features are combined into

a multi-temporal change index describing the changes in built-up areas. Positive and

negative values are associated to constructed and demolished buildings, respectively. The

approach has been validated on two multi-temporal full-pol datasets of urban scenarios

with different complexity, in terms of both the extension and number of changed classes.

The proposed approach has shown good detection performance.

In Chapter 5 an approach for multi-temporal image analysis based on a full-polarimetric

SAR image time series and the use of a framework of wavelet transforms in the time

domain has been proposed. The framework aims both at separating different natural

classes with multi-temporal data and detecting changes in the time series. The analysis is

based on the use of polarimetric features from two incoherent decompositions, based on

power scattering mechanisms and eigenvalues-eigenvectors, respectively; and the use of

the wavelet transform in the time domain. In the wavelet analysis, different approaches

considering either decimation step or not have been considered for the analysis. Together

with their direct application to the image, the wavelet transforms have been used for

multi-scale and spline-based strategies. Experimental results focused on a selected set

of regions for quantitative assessment of performance indicators for class separation and

analysis of changes evolution, based on the wavelet approximation and detail components,

respectively. For all the indicators, helix and volume power scattering have proved to be

effective features.

In Chapter 6, an unsupervised approach for the detection of fully- and partially-destroyed

buildings based on bi-temporal VHR SAR data has been presented. The multi-temporal

scattering model for both fully- and partially-destroyed buildings is defined and integrated

into an automatic detection strategy by means of a fuzzy logic set. Two hierarchical steps

are designed: one for the detection of fully-destroyed buildings, and one for partially-

destroyed ones, which accounts for the different size of the scattering changes. The ap-

proach has been validated on two multi-temporal datasets and proved its effectiveness

in detecting the different building classes. Misclassifications were caused in presence of

strong vegetated areas and dense urban areas, where the proposed scattering model is less

funded.
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The contributions of the different chapters incremented the state of the art for the multi-

temporal analysis of VHR SAR and PolSAR data and opened to possible applications

based on the separation of multiple change classes.

7.2 Future developments

The proposed strategies for CD in PolSAR images provided good accuracy performance.

However, improvements can be achieved by: integrating pixel context information in the

unsupervised strategies to mitigate the presence of misclassifications; a rigorous study of

the statistical model to fit the multi-temporal features proposed in the two approaches and

of definition of thresholding strategies for polarimetric data. Furthermore, the increasing

amount of full-polarimetric SAR data allows for the extension of the proposed multi-

class model to the use of full-polarimetric information, represented in terms of complex

covariance elements or real decomposition features. It also introduces the possibility of

multi-scale analysis and different wavelet filters with on temporal wavelet based on large

temporal series of full-pol SAR images, showing different aspects of the multi-temporal

information. The integration of spatial and temporal wavelet analysis for robust analysis

of polarimetric image time series represent is also one of the future developments.

Concerning the CD strategy for VHR SAR images, improvements can be achieved by:

the integration of polarimetric VHR SAR data, acquired by airborne and forthcoming

spaceborne SAR systems, in the multi-temporal analysis (i.e., in presence of external el-

ements perturbing the expected building footprint); the integration of multi-angle and

multi-modality SAR data for very dense urban areas; the definition of a scattering model

for partially destroyed buildings with different geometries.



128 Discussion and future developments
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• M. Dalla Mura, J.A. Benediktsson, J. Chanussot, L. Bruzzone, �Advances in

Change Detection Techniques for Multitemporal SAR Images�, in Mathematical

Models for Remote Sensing Image Processing, Ed. B. Aiazzi, F. Bovolo, L. Bruzzone,
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7.2.2 International Conferences
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tidate divergence matrices for the analysis of sar image time series. IEEE Transactions on Geoscience and

Remote Sensing, 51(4):1922–1938, 2013.

http:/http://sardegna-clima.it/
http://www.unitar.org/


132 Bibliography
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[153] Michel, Rémi; Avouac, Jean-Philippe, and Taboury, Jean. Measuring near field coseismic displacements

from sar images: Application to the landers earthquake. Geophysical Research Letters, 26(19):3017–3020,

1999.

[154] Miura, Hiroyuki; Midorikawa, Saburoh, and Matsuoka, Masashi. Building damage assessment using high-

resolution satellite sar images of the 2010 haiti earthquake. Earthquake Spectra, 32(1):591–610, 2016.

[155] Moran, M Susan; Alonso, Luis; Moreno, Jose F; Mateo, Maria Pilar Cendrero; De La Cruz, D Fernando,

and Montoro, Amelia. A radarsat-2 quad-polarized time series for monitoring crop and soil conditions in

barrax, spain. IEEE Transactions on Geoscience and Remote Sensing, 50(4):1057–1070, 2012.

[156] Moser, Gabriele and Serpico, Sebastiano B. Generalized minimum-error thresholding for unsupervised

change detection from sar amplitude imagery. IEEE Transactions on Geoscience and Remote Sensing, 44

(10):2972–2982, 2006.

[157] Moser, Gabriele and Serpico, Sebastiano B. Unsupervised change detection from multichannel sar data by

markovian data fusion. IEEE Transactions on Geoscience and Remote Sensing, 47(7):2114–2128, 2009.



142 Bibliography

[158] Moser, Gabriele; Serpico, Sebastiano, and Vernazza, Gianni. Unsupervised change detection from multi-

channel sar images. IEEE Geoscience and Remote Sensing Letters, 4(2):278–282, 2007.

[159] Muhuri, Arnab; Manickam, Surendar, and Bhattacharya, Avik. Scattering mechanism based snow cover

mapping using radarsat-2 c-band polarimetric sar data. IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, 10(7):3213–3224, 2017.

[160] Mullissa, Adugna G; Persello, Claudio, and Tolpekin, Valentyn. Fully convolutional networks for multi-

temporal sar image classification. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sens-

ing Symposium, pages 6635–6638. IEEE, 2018.

[161] Nascimento, Abraão DC; Frery, Alejandro C, and Cintra, Renato J. Detecting changes in fully polarimetric

sar imagery with statistical information theory. arXiv preprint arXiv:1801.08901, 2018.

[162] Nielsen, Allan Aasbjerg; Conradsen, Knut, and Skriver, Henning. Change detection in full and dual polar-

ization, single-and multifrequency sar data. IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing, 8(8):4041–4048, 2015.

[163] Novak, Leslie M. Change detection for multi-polarization multi-pass sar. In Algorithms for Synthetic

Aperture Radar Imagery XII, volume 5808, pages 234–247. International Society for Optics and Photonics,

2005.

[164] Oh, Yisok; Sarabandi, Kamal, and Ulaby, Fawwaz T. Semi-empirical model of the ensemble-averaged

differential mueller matrix for microwave backscattering from bare soil surfaces. IEEE Transactions on

Geoscience and Remote Sensing, 40(6):1348–1355, 2002.

[165] Oliver, Chris and Quegan, Shaun. Understanding synthetic aperture radar images. SciTech Publishing,

2004.

[166] Paloscia, S; Pettinato, S; Santi, E; Notarnicola, C; Pasolli, L, and Reppucci, A. Soil moisture mapping using

sentinel-1 images: Algorithm and preliminary validation. Remote Sensing of Environment, 134:234–248,

2013.

[167] Park, Sang-Eun; Yamaguchi, Yoshio, and Kim, Duk-jin. Polarimetric sar remote sensing of the 2011 tohoku

earthquake using alos/palsar. Remote sensing of Environment, 132:212–220, 2013.

[168] Park, Sang-Eun; Yamaguchi, Yoshio; Singh, Gulab; Yamaguchi, Satoru, and Whitaker, Andrew C. Polari-

metric sar response of snow-covered area observed by multi-temporal alos palsar fully polarimetric mode.

IEEE Transactions on Geoscience and Remote Sensing, 52(1):329–340, 2014.
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