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Sparsity Tour 

Sparsity and inverse problems

Sparsity and PLANCK

Sparsity and Euclid

Sparsity Everywhere
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What is Sparsity?

3

A signal s (n samples) can be represented as sum of weighted elements of a given dictionary  

Ex: Haar wavelet

Sorted index k’

Many small coefficients

Few large
 coefficients

Atoms
coefficients

Dictionary 
(basis, frame)

• Fast calculation of the coefficients 

• Analyze the signal through the statistical properties of the coefficients

• Approximation theory  uses  the sparsity of the coefficients
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Strict Sparsity: k-sparse signals

4



Minimizing the l0 norm









Local DCT

Wavelet transform

Curvelet transform Piecewise smooth, 
edge

Piecewise smooth

Isotropic structures

Stationary textures

Locally oscillatory

Sparsity Model 1: we consider a dictionary 
 which has a fast transform/reconstruction operator:



A Surprising Experiment*

FT
↓

Randomly throw away 
83% of samples

* E.J. Candes, J. Romberg and T. Tao.



A Surprising Result*

Minimum - norm 
conventional linear 

reconstruction

FT

↓

* E.J. Candes, J. Romberg and T. Tao.



A Surprising Result*

FT

↓

Minimum - norm 
conventional linear 

reconstruction

l1 minimization

E.J. Candes 



Compressed  Sensing

* E. Candès and T. Tao, “Near Optimal Signal Recovery From Random Projections: Universal 
Encoding Strategies? “,  IEEE Trans. on Information Theory, 52, pp 5406-5425, 2006.
* D. Donoho, “Compressed Sensing”, IEEE Trans. on Information Theory, 52(4), pp. 1289-1306, April 2006.
* E. Candès, J. Romberg and T. Tao, “Robust Uncertainty Principles: Exact Signal Reconstruction 
from Highly Incomplete Frequency Information”,  IEEE Trans. on Information Theory, 52(2) pp. 489 - 509, Feb. 2006.

“Signals with exactly K components different from zero can be 
recovered perfectly from ~ K log N incoherent measurements”

⇒Application: Compression, tomography, ill posed inverse problem.

A non linear sampling theorem

Reconstruction via non linear processing: 



Reconstruction via non linear processing: 

Compressed Sensing Reconstruction 

Measurements:

In practice,  x is sparse in a given dictionary:

and we need to solve: 

the number of required measurements is : 

The mutual incoherence is defined as  

m ≥ Cµ2
Θ,ΦK log n



Soft Compressed Sensing Definition

Y = ΘX = ΘΦα

power-law

sorted index

|α|

 Mutual coherence: 

Mutual coherence the degree of similarity between the sparsity and measurement systems.

µΘ,Φ = max
i,k

��
�
Θi,Φk,

���

Measurement System

Not 
Random !

Prior: Data Representation System

Reconstruction via non linear processing: min
α

�α�1 s.t. y = ΘΦα



Formally, the sparsest coefficients are obtained by solving the optimization problem:  

(P0)   Minimize                         subject to   

It has been proposed (to relax and) to replace the l0 norm by the l1 norm (Chen, 1995):

(P1) Minimize                         subject to   

It can be seen as a kind of convexification of (P0).
It has been shown (Donoho and Huo, 1999) that for certain dictionary, if there
exists a highly sparse solution to (P0), then it is identical to the solution of (P1).€ 

α 0

€ 

α 1

€ 

s = φα

€ 

s = φα

How to measure sparsity ?

==> Link the sparsity and the sampling through the Compressed Sensing.



INVERSE PROBLEM TOUR  and SPARSE RECOVERY

power-law decay

sorted index

|α|

Measurement System

Not 
Random !

H Φ

•Denoising  
•Deconvolution
•Component Separation
•Inpainting
•Blind Source Separation  
•Minimization algorithms 
•Compressed Sensing  

, and       is sparseα

min
α
�α�p

p subject to �Y −HΦα�2 ≤ �



Denoising using a sparsity model

Denoising using a sparsity prior on the solution:

X is sparse in Φ, i.e. X = Φα where most of α are negligible.

α̃ ∈ arg min
α

1
2
� Y − Φα �2 +t � α �p

p, 0 ≤ p ≤ 1.



α̃(t+1)
= HardThreshµt(α̃

(t)
+ µΦ

T
(Y − Φα̃(t)

)), µ = 1/ �Φ�2 .

==>  Solution via  Iterative Hard Thresholding

p=0

α̃ ∈ arg min
α

1
2 � Y − Φα �2 + t2

2 � α �0

1st iteration solution:

X̃ = Φ HardThresht(Φ
T Y ) = ∆Φ,t(Y )

Exact for Φ orthonormal.



==>  Solution via  iterative Soft Thresholding

p=1

α̃(t+1) = SoftThreshµt(α̃(t) + µΦT (Y − Φα̃(t))), µ ∈ (0, 2/ �Φ�2).

1st iteration solution:

X̃ = Φ SoftThresht(ΦT Y ) = ∆Φ,t(Y )

Exact for Φ orthonormal.



Inverse Problems and Iterative Thresholding Minimizing Algorithm

Iterative thresholding with a varying threshold was proposed in (Starck et al, 2004; Elad et al, 2005) 

for sparse signal decomposition  in order to accelerate the convergence. The idea 
consists in using a different threshold          at each iteration.

For IST:

For IHT:

More Refs: Vonesch et al, 2007; Elad et al 2008; Wright et al., 2008; Nesterov, 2008 and 
Beck-Teboulle, 2009;  Blumensath, 2008; Maleki et Donoho, 2009 ; etc.
 





Compressive Sensing Resources    
http://www.dsp.ece.rice.edu/cs/

More than 200 related papers already!

•Compressive Sensing
•Extensions of Compressive Sensing
•Multi-Sensor and Distributed Compressive Sensing
•Compressive Sensing Recovery Algorithms
•Foundations and Connections
•High-Dimensional Geometry
•Ell-1 Norm Minimization
•Statistical Signal Processing
•Machine Learning
•Bayesian Methods
•Finite Rate of Innovation
•Multi-band Signals
•Data Stream Algorithms
•Compressive Imaging
•Medical Imaging
•Analog-to-Information Conversion
•Biosensing
•Geophysical Data Analysis
•Hyperspectral Imaging
•Compressive Radar
•Astronomy
•Communications

+ software available



● Computational harmonic analysis seeks representations of a signal as linear 
combinations of basis, frame, dictionary, element :

● Fast calculation of the coefficients αk 

● Analyze the signal through the statistical properties of the coefficients

basis, framecoefficients

si =
K�

k=1

αkφk

Data Representation Tour



Representing Barbara

Direct Space Curvelet Space



Time domain

Frequency domain

Any Periodic function can be expressed as linear 
combination of basic trigonometric functions

(Basis functions used are sine and cosine)

 The Great Father Fourier - Fourier 
Transforms



Alfred Haar Wavelet (1909):
The first mention of wavelets appeared in an appendix to the thesis of Haar

- With compact support, vanishes outside of a finite interval 
-Not continuously differentiable 
-Wavelets are functions defined over a finite interval and having 
an average value  of zero.

Haar wavelet



==> What kind of          could be useful?
   . Impulse Function (Haar): Best time resolution
   . Sinusoids (Fourier): Best frequency resolution

==> We want both of the best resolutions

==> Heisenberg, 1930
Uncertainty Principle
There is a lower bound for

 



SFORT TIME FOURIER TRANSFORM (STFT)

Dennis Gabor (1946) Used STF
To analyze only a small section of the signal at a time -- 
a technique called Windowing the Signal.
The Segment of Signal is Assumed Stationary 
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Heisenberg Box



                   Daubechies, 1988 and Mallat, 1989

Daubechies:
     Compactly Supported Orthogonal and Bi-Orthogonal Wavelets

Mallat:
      Theory of Multiresolution Signal Decomposition
        Fast Algorithm for the Computation of Wavelet Transform Coefficients 
using Filter Banks

A Major Breakthrough

Yves Meyer



Candidate analyzing functions for piecewise smooth 
signals

● Windowed fourier transform or Gaborlets :

● Wavelets :





The Orthogonal Wavelet Transform (OWT)

C0

2

2
2

2

C1
C2

W1

W2

H
H

G
G

Reconstruction: 

Transformation

€ 

sl = cJ ,k
k
∑ φJ ,l (k) + ψ j,l

j=1

J

∑
k
∑ (k)w j ,k

  

€ 

c j,l = ˜ h k +2l
k
∑ c j +1,k + ˜ g k +2lw j +1,k = ˜ h ∗ ( c j +1 + ˜ g ∗ ( w j +1

( x = (x1,0, x2,0,x3,K,0, x j ,0,K,xn−1,0,xn )

€ 

c j +1,l = hk−2l
h
∑ c j ,k = (h ∗c j )2l

w j +1,l = gk−2l
h
∑ c j,k = (g ∗c j )2l



H G

G

H

HH

HG

GH

GG

Smooth

Horizontal

Vertical

Diagonal

H G H G





NGC2997 NGC2997  WT
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GH
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Smooth

Horizontal

Vertical

Diagonal

H G H G



Undecimated
  Wavelet 
Transform
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Wavelet Transform in Astronomy



NGC2997



Scale 1 Scale 2   Scale 3 Scale 4 Scale 5

 h h h h h

WT

ISOTROPIC UNDECIMATED WAVELET TRANSFORM



! 

I(k, l) = cJ ,k,l + w j,k,lj=1

J
"

The STARLET Transform 
Isotropic Undecimated Wavelet Transform (a trous algorithm)

                           

! 

" = B3 # spline,  1
2
$(x

2
) =

1
2
"( x

2
) #"(x)

h = [1,4,6,4,1]/16,   g =% - h,    ˜ h = ˜ g =%



Looking for adapted representations

Local DCT

Wavelet transform

Curvelet transform
Piecewise smooth, 
edge

Piecewise smooth

Isotropic structures

Stationary textures

Locally oscillatory



Radio-Interferometry 

 ==> See  (McEwen  et al, 2011; Wenger  et al, 2010; Wiaux et al, 2009; Cornwell et al, 2009; 
Suskimo, 2009; Feng et al, 2011).

Measurement System

  
FOURIER  

{
H



Australian Square Kilometer Array Pathfinder (ASKAP) radio telescope.

   CEA - Irfu  

CS-Radio Astronomy
The Applications of Compressive Sensing to Radio Astronomy: I Deconvolution
Feng Li, Tim J. Cornwell and Frank De hoog,   ArXiv:1106.1711, Volume 528, A31,2011.



   CEA - Irfu  

CS-Radio Astronomy

Hogbom CLEAN MEM residual

==>  McEwen & Wiaux  presentation in the ICIP Astronomy and Cosmology Session.  



Gamma Ray Instruments (Integral) - Acquisition with coded masks

INTEGRAL/IBIS Coded Mask

Measurement System

  CODED 
Mask  

Crab Nebula  Integral Observation
Courtesy I. Caballero, J. Rodriguez (AIM/Saclay)



SVOM (future French-Chinese Gamma-Ray Burst mission)

 

Physical mask pattern 
(46 x 46 pixels of 11.7 mm)

 S
té

ph
an

e 
Sc
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nn

e 
– 

C
EA

  
saclay
irfu

- ECLAIRs  france-chinese satellite ‘SVOM’ (launch in 2014-2015)
  Gamma-ray detection in energy range  4 - 120 keV
  Coded mask imaging (at 460 mm of the detector plane)

ECLAIR could become the first CS-Designed Astronomical Instrument 



Problems related to the WT

" 1) Edges representation:
  if the WT performs better than the FFT to 
  represent edges in an image, it is still not optimal.

"2) There is only a fixed number of directional elements
  independent of scales.

" 3) Limitation of existing scale concepts: 
  there is no highly anisotropic elements. 



Critical Sampling                            Redundant Transforms

               Pyramidal decomposition (Burt and Adelson)
   (bi-) Orthogonal WT                                 Undecimated Wavelet Transform
   Lifting scheme construction                      Isotropic Undecimated Wavelet Transform
   Wavelet Packets                                        Complex Wavelet Transform
    Mirror Basis                                             Steerable Wavelet Transform
                                                                     Dyadic Wavelet Transform
                                                                     Nonlinear Pyramidal decomposition (Median)

 Multiscale Transforms

New Multiscale Construction
Contourlet                                               Ridgelet
Bandelet                                                  Curvelet (Several implementations)
Finite Ridgelet Transform                       Wave Atom
Platelet
(W-)Edgelet                                                  
Adaptive Wavelet          



SNR = 0.1





Undecimated Wavelet Filtering (3 sigma)



Ridgelet Filtering (5sigma)



Continuous Ridgelet Transform

Ridgelet function:

 The function is constant along lines. Transverse to these ridges, it is a wavelet. 

Ridgelet Transform (Candes, 1998):

€ 

Rf a,b,θ( ) = ψa,b,θ∫ x( ) f x( )dx

€ 

ψa,b,θ x( ) = a
1
2ψ

x1 cos(θ) + x2 sin(θ) − b
a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 



The ridgelet coefficients of an object f are given by analysis 

of the Radon transform via:

€ 

Rf (a,b,θ) = Rf (θ,t)ψ( t − b
a∫ )dt



● Ridgelet transform: Radon + 1D Wavelet

d0

  Ridgelet Denoising

θ

d
θ0

image Radon domain

θ0

1D UWT
Rad. Tr.

1.     Rad. Tr.
2.     For each line, apply the same denoising 
     scheme  as before
3.     Rad. Tr.-1

d0



The ridgelet transform is optimal to find only lines of the size of the image.
To detect line segments, a partitioning must be introduced. The image is
decomposed into blocks, and the ridgelet transform is applied on each block.

Image

Partitioning

Ridgelet 
transform

Local Ridgelet Transform



Poisson Noise and Line-Like Sources Restoration 
(MS-VST + Ridgelet)

Max Intensity
background = 0.01
vertical bar = 0.03
inclined bar = 0.04

simulated image of counts restored image 
from the left image of counts

underlying intensity image

 B. Zhang, M.J. Fadili and J.-L. Starck,  "Wavelets, Ridgelets and Curvelets for Poisson Noise Removal" ,ITIP,  2008.



J.-L. Starck, E. Candes, D.L. Donoho  The Curvelet Transform for Image Denoising,  IEEE Transaction on  Image Processing, 11, 6, 2002.

Width = Length^2 The Curvelet Transform (CUR01)



Undecimated Isotropic WT:

€ 

I(k, l) = cJ ,k,l + w j,k,lj=1

J
∑



PARTITIONING



The Fast Curvelet Transform, Candes et al, 2005

  CUR03 - Fast Curvelet Transform using the USFFT
  CUR04 - Fast Curvelet Transform using the Wrapping and 2DFFT



Wavelets and edges

• many wavelet coefficients 
are  needed to account for 
edges  i.e. singularities along 
lines or curves :

• need dictionaries of strongly 
anisotropic atoms  :

 ridgelets, curvelets, contourlets, bandelettes, etc. 



•J.L. Starck, E. Candes, and D.L. Donoho, "The Curvelet Transform for Image Denoising", IEEE Transactions on Image Processing , 11, 6, pp 670 -684, 
2002. 
•J.-L. Starck, M.K. Nguyen and F. Murtagh,  "Wavelets and Curvelets for Image Deconvolution: a Combined Approach",  Signal Processing, 83, 10, pp 
2279-2283, 2003.
•J.-L. Starck, E. Candes, and D.L. Donoho, "Astronomical Image Representation by the Curvelet Tansform" , Astronomy and Astrophysics, 398, 
785--800, 2003.
• J.-L. Starck, F. Murtagh, E. Candes, and D.L. Donoho, "Gray and Color Image Contrast Enhancement by the Curvelet Transform", IEEE Transaction on 
Image Processing, 12, 6, pp 706--717, 2003.



CONTRAST ENHANCEMENT USING THE CURVELET TRANSFORM

Curvelet coefficient

Modified
curvelet 
coefficient

€ 

˜ I = CR yc CT I( )( )

€ 

{
J.-L Starck, F. Murtagh, E. Candes and D.L. Donoho,  “Gray and Color Image Contrast Enhancement by the Curvelet Transform”,

IEEE Transaction on  Image Processing,  12, 6, 2003.

€ 

yc (x,σ ) =
x − cσ
cσ

m
cσ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p

+
2cσ − x
cσ

€ 

yc (x,σ ) =1

€ 

yc (x,σ ) =
m
x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p

€ 

yc (x,σ ) =
m
x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
s

if

if

if

if

€ 

x < cσ

€ 

x < 2cσ

€ 

2cσ ≤ x < m

€ 

x > m



Contrast Enhancement 





comet Tempel 1 on July 4, 2005











INVERSE PROBLEMS

PB 1: find X knowing Y,H and the statistical properties of the noise N
Ex: Astronomical image deconvolution
       Weak lensing

PB 2: find X and H knowing Y and the statistical properties of the noise N 
Ex: Blind deconvolution
       Multichannel Data (PCA, ICA, etc)

Ill posed problem, i.e. not an unique and stable solution ==> Regularization

with some constraints on X

==> Sparsity constraint (i.e.           )



Given a threshold t:
 if P > t, the coefficient could  be due to the noise.
 if P < t, the coefficient cannot be due to the noise,
and a significant coefficient is detected.

Hard Thresholding:

Soft Thresholding: 

€ 

˜ y = WR[δ(WT y)]
€ 

δ(c) = c if c ≥ t
= 0 if c < t

€ 

δ(c) = sgn(c) c − t( )
+

NOISE MODELING
For a positive coefficient:

For a negative coefficient:

€ 

P = Prob(w > w j,x,y )

€ 

P = Prob(w < w j,x,y )

      DENOISING ALGORITHM

•Take the wavelet transform of the data.
•For each wavelet scale j  

•Set to zero all coefficients with an absolute value 
lower than Tj  (Tj is derived from the noise modeling).

•Apply the inverse wavelet transform to the thresholded coefficients.

€ 

}

DENOISING





Threshold estimation: Gaussian case

1. k-sigma:

2. Universal Threshold:

3. False Discovery Rate (FDR): compute the p-values for each 
wavelet coefficient             at scale j and position l using the 
noise level        .  The user parameter        determines the 
number of false detections as a percentage of the number 
of true detections. The FDR fixes the threshold.



CURVELET  FILTERING
NOISE MODELING
For a positive coefficient: P= Prob W …w

For a negative coefficient P= Prob W „ w

Given a threshold t:
 if P > t, the coefficient could  be due to the noise.
 if P < t, the coefficient cannot be due to the noise,
and a significant coefficient is detected.

Hard Thresholding:

 

€ 

˜ y = CR[δ(CT y)]

€ 

δ(c) = c if c ≥ t
= 0 if c < t



  





DECONVOLUTION  SIMULATION

PIXON

LUCY

Wavelet



- E. Pantin, J.-L. Starck, and F. Murtagh,  "Deconvolution and Blind Deconvolution in Astronomy", 
in  Blind image deconvolution: theory and applications, pp 277--317, 2007.

- J.-L. Starck, F. Murtagh, and M. Bertero, "The Starlet Transform in Astronomical Data Processing: 
Application to Source Detection and Image Deconvolution", Springer, Handbook of Mathematical Methods 
in Imaging, in press, 2010.

DECONVOLUTION



A difficult issue

Is there any representation that well represents the following image ? 



PB:  a given transform does not necessary provide a good dictionary for 
all features contained in the data.



Going further

= +

Lines Gaussians

Redundant Representations

Curvelets Wavelets



Morphological Diversity

  

€ 

φ = φ1,K,φL[ ], α = α1,K,αL{ }, s = φα = φkk=1

L
∑ αk

•J.-L. Starck, M. Elad, and D.L. Donoho, Redundant Multiscale Transforms and their Application for Morphological Component Analysis, Advances in Imaging and Electron Physics, 
132, 2004.
•J.-L. Starck, M. Elad, and D.L. Donoho, Image Decomposition Via the Combination of Sparse Representation and a Variational Approach, IEEE Trans. on Image Proces.,  14, 
10,  pp 1570--1582, 2005.

•J.Bobin et al, Morphological Component Analysis: an adaptive thresholding strategy, IEEE Trans. on Image Processing, Vol 16, No 11, pp 2675--2681, 2007.

Sparsity Model 2:  we consider a signal as a sum of K 
components sk,                    ,  each of them being sparse in a 
given dictionary :



Morphological Component Analysis (MCA)

•Redundant Multiscale Transforms and their Application for Morphological Component Analysis, Advances in Imaging and Electron Physics, 132, 2004.
•Image Decomposition Via the Combination of Sparse Representation and a Variational Approach, IEEE Trans. on Image Proces., 14, 10,  pp 1570--1582, 2005.
• Morphological Component Analysis: an adaptive thresholding strategy, IEEE Trans. on Image Processing, Vol 16, No 11, pp 2675--2681, 2007.

New Perspectives

  

€ 

J(s1,K,sL ) = s− skk=1

L
∑

2

2

+ λ Tksk pk=1

L
∑



Morphological Component Analysis (MCA)

  

€ 

J(s1,K,sL ) = s− skk=1

L
∑

2

2

+ λ Tksk pk=1

L
∑

. Initialize all          to zero

.  Iterate j=1,...,Niter
    - Iterate k=1,..,L
            Update the kth part of the current solution by fixing all other parts and minimizing:

    

   - Decrease the threshold 

Which is obtained by a simple hard/soft thresholding of :

€ 

J(sk ) = s− si − ski=1,i≠k

L
∑

2

2

+ λ( j ) Tksk p

€ 

sr = s− sii=1,i≠k

L
∑

€ 

sk

€ 

λ( j )



a) Simulated image (gaussians+lines)       b) Simulated image + noise                     c)  A trous algorithm            

     d)  Curvelet transform                            e) coaddition c+d                                            f) residual = e-b              

€ 

s− (s1 + s2) 2
2

< εsubject to

€ 

MINs1 ,s2
(Ws1 p + Cs2 p )



a) A370 b) a trous

c) Ridgelet + Curvelet Coaddition b+c



Galaxy SBS 0335-052

Curvelet IsotropicWT

Ridgelet



Galaxy SBS 0335-052
10 micron
GEMINI-OSCIR 



Revealing the structure of one of the nearest
infrared dark clouds (Aquila Main: d ~ 260 pc)



 A. Menshchikov, Ph.André.  P. Didelon, et al, “Filamentary structures and compact objects in the Aquila and Polaris clouds observed by Herschel”,  A&A, 518, 
id.L103, 2010.



 

3D Morphological Component Analysis

98

Original (3D shells + Gaussians)

Shells
Gaussians

Dictionary
RidCurvelets + 3D UDWT.

- A . Woiselle, J.L. Starck, M.J. Fadili, "3D Data Denoising and Inpainting with the Fast Curvelet transform", JMIV, 39, 2, pp 121-139, 2011.
- A. Woiselle, J.L. Starck, M.J. Fadili, "3D curvelet transforms and astronomical data restoration", Applied and Computational Harmonic Analysis, Vol. 28, 
No. 2, pp. 171-188, 2010.

A. Woiselle



 

The separation task: decomposition of an image
 
into a texture and a natural (piecewise smooth)
scene part.

Separation of Texture from 
Piecewise Smooth Content

•Image Decomposition Via the Combination of Sparse Representation and a Variational Approach, IEEE Trans. on Image Proces., 14, 10,  pp 1570--1582, 2005





DataTexture Separation using MCA: Curvelet + DCT



Edge 
Detection



Inp               inting

 • M. Elad, J.-L. Starck, D.L. Donoho, P. Querre, “Simultaneous Cartoon and Texture Image Inpainting using Morphological Component Analysis (MCA)", 
ACHA, Vol. 19, pp. 340-358,  2005.
	
•	
 M.J. Fadili, J.-L. Starck and  F. Murtagh, "Inpainting and Zooming using Sparse Representations",  The Computer Journal, 52, 1, pp 64-79, 2009.

Where M is the mask: M(i,j) = 0  ==> missing data
                                    M(i,j) = 1  ==> good data

Iterative Hard Thresholding with a decreasing threshold.

MCAlab available at: http://www.greyc.ensicaen.fr/~jfadili



Period detection in temporal series

COROT: HD170987

Measurement System
Observation Mask

FOURIER

Missing Data

Measurement System



. Initialize all          to zero

. Iterate j=1,...,Niter

    - Iterate k=1,..,L

     - Update the kth part of the current solution by fixing all other parts and
     minimizing: 

Which is obtained by a simple soft thresholding of :

€ 

J(sk ) = M(s− si − sk )i=1,i≠k

L
∑

2

2

+ λ Tksk 1

€ 

sr = M(s− si)i=1,i≠k

L
∑

€ 

sk



arXiv:1003.5178





20%



50%



80%







Original

Mask Inpainted

Dictionary
BeamCurvelets  



Masked (20%) Masked (50%) Masked (80%)

Central slice of the masked CDM data with 20, 50, and 80% missing voxels,
and the inpainted maps. The missing voxels are dark red.



Simulated Cosmic String Map 



!!"#$%&%&'!($)%)*

! 

ˆ D , ˆ " ( ) = argmin
D#C1
A#C2

Y = DA( )

+,-!.$/#%0!1$2/3#%4$53&!6#3(789
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Dictionary Learning







S. Beckouche

Astronomical Image Denoising Using Dictionary Learning, S. Beckouche, J.L. Starck, and J. 
Fadili, A&A, submitted.



Local DCT Wavelet transform Curvelet transform

Sparsity Model 1: we consider a dictionary 
 which has a fast transform/reconstruction operator:

Piecewise smooth

Isotropic structures

Piecewise smooth, 
edge

Stationary textures

Locally oscillatory

Sparsity Model 2:  Morphological Diversity: 

  

€ 

φ = φ1,K,φL[ ], α = α1,K,αL{ }, s = φα = φkk=1

L
∑ αk

Sparsity Model 3:   we adapt/learn the dictionary directly from the data

G. Peyre, M.J. Fadili and J.L. Starck, , "Learning the Morphological Diversity", SIAM Journal of Imaging Science, 3 (3) , pp.646-669, 2010.

Model 3 can be also combined with model 2:



Advantages of model 1 (fixed dictionary) : extremely fast.  

Advantages of model 3 (dictionary learning):  
atoms can be obtained which are well adapted to the data, and which could 
never be obtained with a fixed dictionary.
Drawback of model 3 versus model 1,2:
We pay the price of dictionary learning by being less sensitive to detect very 
faint features.
Complexity: Computation time,  parameters, etc

Advantages of model  2 (union of fixed dictionaries): 
- more flexible to model 1. 
- The coupling of local DCT+curvelet is well adapted to a relatively large 
class of images.



Morpho-Spectral Diversity

Spatial Dictionary with 
Spectral Dictionary

€ 

S = s1,...,sn[ ]Source: Data: 

€ 

X = x1,...,xm[ ] = AS

€ 

xl = ai,l
i=1

n

∑ si
€ 

X = x1,...,xm[ ]



Generalized MCA (GMCA)
•J. Bobin, J.-L. Starck, M.J. Fadili, and Y. Moudden,  "Sparsity, Morphological Diversity and Blind Source 
Separation", IEEE Trans. on Image Processing,  Vol 16, No 11, pp 2662 - 2674, 2007.
•.J. Bobin, J.-L. Starck, M.J. Fadili, and Y. Moudden, "Blind Source Separation: The Sparsity Revolution", 
Advances in Imaging and Electron Physics , Vol 152, pp 221 -- 306, 2008.

We now assume that the sources are linear combinations of morphological components :

GMCA aims at solving the following minimization:

€ 

si = ci,k
k=1

K

∑

€ 

Xl = Ai,l
i=1

n

∑ si = Ai,l
i=1

n

∑ ci,k
k=1

K

∑==>

  

€ 

minA ,c1,1 ,K,c1,K ,...,cn,1 ,...,cn,K
= Xl − Ai,l

i=1

n

∑ ci,k
k=1

K

∑
2

2

l=1

m

∑ + λ Ti,kci,k p
k=1

K

∑
i=1

n

∑

€ 

S = s1,...,sn[ ]

  

€ 

φ = φ1,1,K,φ1,K[ ],..., φn,1,K,φn,K[ ],[ ], α = Sφ t = α1,1,...,α1,K[ ],..., αn,1,...,αn,K[ ][ ]

€ 

α i,k = Ti,kci,ksuch that                      sparse 

Source: Data: 

€ 

X = x1,...,xm[ ] = AS

==> GMCA searches a  sparse solution S  in the dictionary           subject to the constraint that  the 
norm                         is  minimal.

€ 

φ
� X −AS �2



 Sparse Component Separation: the GMCA Method
 

 A and S are estimated alternately and iteratively in two steps : 

1) Estimate S assuming A is fixed (iterative thresholding) :

2) Estimate A assuming S is fixed (a simple least square problem) :

{S} = ArgminS
�

j

λj�sjW�1 + �X−AS�2F,Σ

{A} = ArgminA�X−AS�2F,Σ



BSS experiment : Noiseless case

Original
Sources

2 of 4 Mixtures

Noiseless experiment, 4 random mixtures, 4 sources



GMCA Experiment
•J. Bobin, J.-L. Starck, M.J. Fadili, and Y. Moudden,  "Sparsity, Morphological Diversity and Blind Source Separation", IEEE Trans. on Image 
Processing,  Vol 16, No 11, pp 2662 - 2674, 2007.



Hyperspectral Data

  

€ 

minA ,c1,1 ,K,c1,K ,...,cn,1 ,...,cn,K
= Ml Xl − Ai,l

i=1

n

∑ ci,k
k=1

K

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

2

l=1

m

∑ + λ Ti,kci,k p
k=1

K

∑
i=1

n

∑ + λ W (1D )Ai p
i=1

n

∑

Morphological Component Analysis for Sparse  Multichannel Data: Application to Inpainting, 
Journal of Mathematical Imaging and Vision, submitted.



Omega Camera on Mars Orbiter: 128 x128 x 64 channels

50% missing pixels 

Inpainting hyperspectral data



Original spectrum Masked spectrum

Inpainted spectrum



GMCA-inpainting  

MCA-inpainting on each frame



Inpainting color images

3 color channels

Dictionary
Curvelets + LDCT



Original Masked

Inpainted  




