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What do we denote by “image patches”?

Definition [Oxford dictionary]
patch (noun)

A small area or amount of something

Image patches

Sub-regions of the image

shape: typically rectangular

size: much smaller than image size

→ most common use:
square regions between
5× 5 and 21× 21 pixels

→ tradeoff:
size↗ ⇒ more distinctive/informative

size↘ ⇒ more likely to find similar patches

non-rectangular / deforming shapes:
computationally complexity↗

→ patches capture local context: geometry and texture
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Origins of patch-based image processing

3 success stories of patch-based models at the origin of these methods

Starting points of patch-based methods
model for human vision (primary visual cortex)
Theoretical and experimental works on the primary visual cortex have shed new light on the
importance of patch-level image coding

method to synthetize textures
Examplar-based synthesis method by Efros and Leung [?]

source: [?]

method to denoise images
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Overview of denoising methods

Main approaches
Linear filtering

Anisotropic diffusion [?]

Prior modeling of images and energy minimization (MRF,
TV,...) [?]

Wavelet approaches [?]

(a) Linear filtering

(b) Anisotropic diffusion (c) TV (d) Wavelets
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Overview of denoising methods

Common ideas
Averaging pixels sharing the same information

Where finding them ?

(a) Linear filtering

(b) Anisotropic diffusion (c) Oracle

Oracle : anywhere in the image as soon as the pixels share the same un-noisy value!

→ non-local means
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Selection-based filtering

u(x) "true" value of pixel x
v(x) noisy value (observed) of pixel x
Goal: finding the "best" û(x)

Variance reduction
If X1, ..., XN are N i.i.d samples of mean µ and standard deviation σ, their average has a
standard deviation of σ√

N

local linear filtering
û(x) =

∑
y

w(x, y)v(y)

averaging samples spatially close to the pixel x, w(x, y) = k exp(−dist2(x,y)
2h2

)

improving local linear filtering: taking gray (color) level into account

w(x, y) = k exp(−
dissi(x, y)

2h′2
)

averaging samples radiometrically close to the pixel (if dissi(x, y) is high, w(x, y) is small)
[Yaroslavski 84]
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Variance reduction
If X1, ..., XN are N i.i.d samples of mean µ and standard deviation σ, their average has a
standard deviation of σ

N

local linear filtering
û(x) =

∑
y

w(x, y)v(y)

averaging samples spatially close to the pixel x w(x, y) = k exp(−dist(x,y)
2h2 )

improving local linear filtering: taking gray (color) level into account

w(x, y) = k exp(−
dissi(x, y)

2h′2
)

averaging samples radiometrically close to the pixel (if dissi(x, y) is high, w(x, y) is small)
[Yaroslavski 84]

⇒ If the noise level is high dissi(x, y) is difficult to compute
⇒ Use patches to compute it !
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Non-local means - Principle

Local filter: in each pixel x, average the noisy values v(y) of the pixels y in x neignborhood.

Non-local: All pixels y values are used to do the denoising, with a weight reflecting the color
or radiometric similarity of y with x:

û(x) =
∑
y

w(x, y)

v(y)

weight depends on the dissimilarity between x and y:

w(x, y) =

e−

dissi(x,y)

weight depends on the dissimilarity betwwen patches around x and y

dissi(x, y) =
1

s2
‖V (x)− V (y)‖2 ,

1

s2

∑
δ

(V (x+ δ)− V (y + δ))2

where V is the vector of all the values in the patch and s2 is the size of the patch.
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û(x) =
∑
y

w(x, y)v(y)

weight depends on the dissimilarity between x and y:

w(x, y) = e
−dissi(x,y)

2h2

weight depends on the dissimilarity betwwen patches around x and y

dissi(x, y) =
1

s2
‖V (x)− V (y)‖2 ,

1

s2

∑
δ

(V (x+ δ)− V (y + δ))2

where V is the vector of all the values in the patch and s2 is the size of the patch.

F. Tupin IMA 206 May 2020 8 / 72



Non-local means - Principle

Local filter: in each pixel x, average the noisy values v(y) of the pixels y in x neignborhood.

Non-local: All pixels y values are used to do the denoising, with a weight reflecting the color
or radiometric similarity of y with x:
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Non-local means - Algorithm in practice

3 loops:
1 Go through all the pixels x

2 Compare the patches centered on x and y to compute the weighted mean (in practice the y pixels
are taken in a search window centered on x)

3 The dissimilarity between patches (euclidean distance between the vectors of pixel values) represents
the dissimilarity between all the pixels of the patches taken 2 by 2 (quadratic sum of their differences).
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Non-local means - Map of weights

Map of weights
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Non-local means - Map of weights

Map of weights
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Non-local means - Illustration

Local / non-local
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Non-local means - Illustration

Local / non-local
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Non-local means - Illustration

NL-means denoising
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Denoising

Ill-posed problem: hypotheses have to be done

On the kind of signal to denoise:

Constant / smooth
bounded variation / piecewise constant
sparcity in a wavelet basis.

On the kind of noise:

additive / multiplicative / impulsive...
white / colored

There is no denoising without
hypotheses
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x 10
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Hypotheses of NLmeans:
1 Similar patches have similar central values.

2 There are similar patches in the image (self-similarity = redundancy).

3 The noise is additive Gaussian and white.
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Non-local means - Hypotheses

Main hypotheses
(H1) Redundancy: there are many similar patches in an image

(H2) If the noisy patches are similar, their central values are similar
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Non-local means - Hypotheses

(H1) Redundancy ?
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Non-local means - Hypotheses

(H2) Central values vs patch similarity ?
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Non-local means - limits

1 Low contrasted textures and details

2 Contrasted rare patches
3 Non gaussian noise
4 Time computation
5 Parameter choice

Noisy image (σ = 10)

Restored image

F. Tupin IMA 206 May 2020 20 / 72



Non-local means - limits

1 Low contrasted textures and details
2 Contrasted rare patches

3 Non gaussian noise
4 Time computation
5 Parameter choice

Noisy image (σ = 10)

Restored image

F. Tupin IMA 206 May 2020 20 / 72



Non-local means - limits

1 Low contrasted textures and details
2 Contrasted rare patches
3 Non gaussian noise

4 Time computation
5 Parameter choice

Salt and pepper noise

Restored image
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Bias-Variance decomposition

Case of a white gaussian noiseN (0, σ2).
If u is the original image and v the noisy image (NLu and NLv their non local versions), we have:

E|NLv(x)− u(x)|2 = E|NLv(x)−NLu(x)|2︸ ︷︷ ︸
"variance"

+E|NLu(x)− u(x)|2︸ ︷︷ ︸
"bias"

+ 2E ((NLv −NLu(x))(NLu(x)− u(x)))︸ ︷︷ ︸
≈0

.

Variance term

E|NLv(x)−NLu(x)|2 = E|
∑
y

w(x, y)n(y)|2 = σ
2
∑
y

(w(x, y))
2

Minimal when w(x, y) = 1

card(W )
uniform mean on the whole image (h→ +∞)

Bias term

E|NLu(x)− u(x)|2 = |
∑
y

w(x, y)(u(y)− u(x))|2

Minimal when w(x, y) = 1 for u(x) = u(y) and 0 elsewhere.

Bias / variance compromise
Variance reduction is ensured by a high value of h (tolerant selection) whereas bias limitation needs a small h
(strict selection).
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A toy-example in 1-dimension

offset 0px

Values of the patches

Distance between patches: ‖U(x)− U(x)‖2 = 0
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A toy-example in 1-dimension

offset 1px

Values of the patches

Distance between patches: ‖U(x)− U(x+ 1)‖2 = α2

s
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A toy-example in 1-dimension

offset 2px

Values of the patches

Distance between patches: ‖U(x)− U(x+ 2)‖2 = 2α2

s

F. Tupin IMA 206 May 2020 22 / 72



A toy-example in 1-dimension

offset 3px

Values of the patches

Distance between patches: ‖U(x)− U(x+ 3)‖2 = 3α2

s

F. Tupin IMA 206 May 2020 22 / 72



A toy-example in 1-dimension

offset 4px

Values of the patches

Distance between patches: ‖U(x)− U(x+ 4)‖2 = 4α2

s
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A toy-example in 1-dimension

offset 5px

Values of the patches

Distance between patches: ‖U(x)− U(x+ 5)‖2 = 5α2

s
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Example: periodic texture (step)

Distances to U(x)

Distance between patches: ‖U(x)− U(x+ j)‖2 =
|j|α2

s

for −T
2

+ 1 ≤ j ≤ T
2

, et r = 1
T
α2

h2
.
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Example: periodic texture (step)
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(1− e−r
T
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(T
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Example: periodic texture (step)

NLu(x) =
α

(1− e−r
T
2 )(1 + e−r)

(
1− e−r − 2e−

1
2
(T
2
+1)r cosh rx

)
with r = 2

s
α2

h2 .
Comments:

Even perfectly periodic signals are modified !

Non-linear filter: r depends on α

"checking" : if h→ +∞, NLu(x) ∼ α
2

(uniformy gray image)
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Example: isolated step

In the same way:

NLu(x) = α
1− e−r − 2e−

1
2
(T
2
+1)r cosh rx

(1− e−r)
(

2
∑T

2
j=0 e

−rj − 1 + (N − T − 1)e−r
T
2

) .
with r = 2

s
α2

h2 .
Remarques:

The result depends on the size N of the image / the size W of the search window.

Weights of the background pixel are e−r
T
2 = e

−Tα
2

sh2 . When s is large, they have an
increased influence.
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Example: loss of details

Noisy image
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Example: loss of details

Search window W = 11× 11 Search window W = 61× 61

Details are lost when the search window W is too big.

This effect increases with s.
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Example: influence of parameters

Influence of patch size
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Example: influence of parameters

Influence of patch size
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Parameters and influence
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Comment on bias

Problems
Even the estimation of periodic signals is biased.

The size of the search window W has a strong impact: it should not be too large !...

Weakly contrasted details are erased.

An area is more strongly attenuated if it is "rare" in the image (infuence of the background
pixels).

Diagnostic
A patch size too large makes more similar fine details and background.

A patch size too small keeps noise fluctuations.

Un-matching pixels may have a low weight but it is non zero because of the gaussian kernel.
Their number increases with the search window W .

→ the strength of non-local means is the patch not the non-locality !
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Outline

1 Introduction

2 Non-local means

3 Extended non-local means

4 Dictionaries based approaches

5 CNN and patch-based approaches
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Noise adaptation
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Patch-based denoising – Selection-based filtering

General idea
Goal: estimate the image u from the noisy image v

Choose a pixel i to denoise
Inspect the pixels j around the pixel of interest i
Select the suitable candidates j
Average their values and update the value of i

Repeat for all pixels i

2 key-steps:

Computation of patch similarity

Estimation step
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Patch-based denoising – Selection-based filtering

Key parameters:

Patch size

Search window

Kernel to convert similarity to weight (up to now Gaussian kernel)

Pre-filtering step (preliminary filtering to improve the patch comparison)
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Patch-based denoising: extensions

Improvements of the nl-means method:
Extension to different noise models

Iterative approaches

Automatic setting of parameters

(Patch shapes)

Block of patches
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Noise models and estimation step

We suppose that a noise model is available: p(v|u) is known (white noise here, v noisy value, u
"true" value)

Estimation step

Weighted sample mean

Weighted maximum likelihood estimator (WMLE)

Linear Minimum Mean Square Error estimator (LMMSE) (after wavelet transform and a first
estimation step)

Estimation step: example of Gaussian or Gamma distributed data with WMLE

ûi = arg max
ui

∑
j

wi,j log p(vj |ui)

 =

∑
j wi,jvj∑
j wi,j
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Maximum likelihood estimate
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Noise adaptation
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Weight and patch similarity: how to compare noisy patches?

Buades et al.
Euclidean distance between patches

Additive White Gaussian noise implicit assumption
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Weight and patch similarity: how to compare noisy patches?

Other noise models
Example: signal dependent noise

Bad behavour of the euclidean distance
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Weight and patch similarity: how to compare noisy patches?

Nl-means and AWGN
Left : noisy image

Middle: restored image with oracle-based patch weights (patch comparison is done using the
un-noisy image)

Right: restored image with noisy-based patch weights (patch comparison is done using the
noisy image)
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Weight and patch similarity: how to compare noisy patches?

Nl-means and signal dependent noise
Left : noisy image (multiplicative noise)

Middle: restored image with oracle-based patch weights (patch comparison is done using the
un-noisy image)

Right: restored image with noisy-based patch weights (patch comparison is done using the
noisy image)
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Weight and patch similarity: how to compare noisy patches?

Taking into account the noise distribution
When comparing two patches, all pixel values are compared two by two

So the problem boils down to the comparison of v1 and v2 (noisy values)

Idea: replacing the distance by an hypothesis test :

H0 : u1 = u2 = u12

H1 : u1 6= u2

Performances measured by
False alarm rate: deciding "dissimilar" underH0

Detection rate: deciding "dissimilar" underH1

Likelihood ratio test :

L(v1, v2) =
p(v1, v2|H0, u12)

p(v1, v2|H1, u1, u2)
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Weight and patch similarity: how to compare noisy patches?

Taking into account the noise distribution
To compute the Likelihood Ratio Test, the true values u1 and u2 should be known

Since they are unknown, they are replaced by their maximum likelihood estimates û1 and û2
using the observed values v1 and v2
Generalized Likelihood Ratio Test:

L(v1, v2) =
p(v1, v2|H0, û12)

p(v1, v2|H1, û1, û2)

From pixel similarities to patch similarities and weights
Comnining pixel GLRT to define weights:

L(P1, P2) = ΠkL(v1k, v2k)

Link between weight and dissimilarities :

dissi(P1, P2) = − log(w(P1, P2))

Dissimilarity associated to GLRT :

dissi(P1, P2) = − log(L(P1, P2))

=
∑
k

− log(L(v1k, v2k))
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Weight and patch similarity: how to compare noisy patches?
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Weight and patch similarity: how to compare noisy patches?

Example of AWGN
the noise model is given by

p(v|u) =
1

√
2πσ

exp(−
(v − u)2

2σ2
)

the Maximum Likelihood estimate of u if only v is available is the value û maximizing p(v|u) :
û = argmax− log p(v|u) = v

û12 = argmax− log p(v1|u)p(v2|u) =
1

2
(v1 + v2)

Therefore û1 = v1, û2 = v2 and û12 = 1
2

(v1 + v2)

Generalized Likelihood Ratio Test:

L(v1, v2) =
p(v1, v2|H0, û12)

p(v1, v2|H1, û1, û2)
=
p(v1|û12)p(v2|û12)

p(v1|v1)p(v2|v2)
= exp(−

(v1 − v2)2

4σ2
)

Dissimilarity between pixels:

dissi(v1, v2) =
(v1 − v2)2

4σ2

Euclidean distance between pixel values !...
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Noisy patch comparison

Patch similarity

Example for multiplicative noise (Rayleigh-Nakagami distribution)
Likelihood test of the observed values to be explained by the same reflectivity
(detection approach)
Generalized likelihood ratio test

− log GLR(v1, v2) = 2L log

(√
v1

v2
+

√
v2

v1

)
− 2L log 2
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Noisy patch comparison

Patch similarity

Example for multiplicative noise (Rayleigh-Nakagami distribution)
Likelihood test of the observed values to be explained by the same reflectivity
(detection approach)
Generalized likelihood ratio test

− log GLR(v1, v2) = 2L log

(√
v1

v2
+

√
v2

v1

)
− 2L log 2

Other strategy: information approach
Kullback-Leibler divergence similarity on denoised data for iterative scheme

DKL(u1, u2) = L
(u1 − u2)

2

u2u1

Comparison of the distributions inside the patches (loss of structural
information but increase of robustness)

estimation approach
Sigma-preselection to select the patch samples
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Noisy patch similarity
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Extended non-local means for various noise models
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Iterative approaches

Iterative framework
similarity improvement using the current denoised estimate

Symmetrical

Kullback-Leibler

divergence

Generalized

likelihood ratio

Noisy image

Pre-filtered image

Statistical tests

Noisy + Pre-filtered

Weights with noisy data

Use iterations to refine the weights
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Iterative approaches

Iterative framework
similarity improvement using the current denoised estimate
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Automatic setting of parameters

Many parameters
Search window: rare patch effect, influence of small weights

Patch size: rare patch effect, noise halo

Kernel (shape, discriminative power): more or less selective, bias / variance trade-off

Pre-filtering strength: improvement for high noise level, but blurring effect

antagonist criteria: no best parameter tuning !
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Automatic setting of parameters

Parameter choice should be adapted to the signal content
A good choice for a specific area can be a bad one for another one : combination of results to
select locally the best one

Pre ltered image

Noisy image Weights without prefiltering Result without prefiltering

Weights with prefiltering Result with prefiltering Aggregated NL-SAR result

Figure: (left) Top: non local means result by comparing 7× 7 patches extracted from the noisy image. Bottom:
Same except patches are extracted in a prefiltered image. Two pixels of interest (in red) are focused and their
associated weights in the circle searching window (in green) are displayed. (right) NL-SAR result that is an
aggregation of several non local means results obtained for different prefiltering strengths, patch sizes and
search window sizes.
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Automatic setting of parameters

Parameter choice should be adapted to the signal content
A good choice for a specific area can be a bad one for another one : combination of results to
select locally the best one
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Automatic setting of parameters

Parameter choice should be adapted to the signal content
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Automatic setting of parameters
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Automatic setting of parameters
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Denoising of 3D blocks of patches

Block of patches
Global denoising of the block of patches

Combination of denoised patches

More efficient use of information!
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BM3D (Dabov et al.)

Principle of BM3D
2-steps filtering

Step 1: global 3D filtering of the block (grouping, collaborative filtering, aggregation)

Step 2: block of noisy and current estimate patches and second global filtering of the 3D
noisy block driven by current estimates, followed by aggregation

Figure: figure of Marc Lebrun (IPOL)
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BM3D (Dabov et al.)

Principle of BM3D
2-steps filtering

Step 1: global 3D filtering of the block (grouping, collaborative filtering, aggregation)

Step 2: block of noisy and current estimate patches and second global filtering of the 3D
noisy block driven by current estimates, followed by aggregation
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NLBayes (Lebrun et al.)

Principle of NLBayes (Non Local Bayes)
Main idea: using a model for the patch distribution

Gaussian multivariate pdf with a mean (mean patch) and a covariance matrix

Step1 : these parameters are computed empirically using the block of similar noisy patches
P v and CPv ; an analytic formula gives the expression of the denoised patch (MAP estimate)
called basic estimate

P̂u = P v + (CPv − σ
2I)C−1

Pv
(Pv − P v)

Step 2: improvement of the Gaussian pdf using the block of basic estimate patches and new
estimation

Application to color images
Color space: YUV system separating luminance and chromatic parts (transformation from
RGB to YUV, processing, inverse transform)

Processing of each channel separately (the distance between patches for grouping can
combine the 3 channels
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NLBayes (Lebrun et al.)
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Outline

1 Introduction

2 Non-local means

3 Extended non-local means

4 Dictionaries based approaches

5 CNN and patch-based approaches
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Dictionaries of patches

redundancy / dictionary

Limits of patch-based approaches
Rare patch effect: redundancy not verified
Low contrast situations: not enough similar
samples

Solutions
Use a database with many examples
Create representative atoms of an image
Create a dictionary of models

K-SVD: search the representative patches

FoE (Field of Experts): model and learn the
clique potentials (clique = neighborhood =
patch)

EPLL: create dictionaries of models of
Gaussian distributed patches (GMM:
Gaussian Mixture Models)
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K-SVD

General idea
The method is based on the optimization of a functional

∑
ij ||Dαij − Pvij ||2 combinig the

following elements:

Sparse coding αij of the patches of the image using a patch dictionary D

Improvement (updating) of the dictionary to improve the sparse coding of the image

Reconstruction of the image v using the final dictionary with aggregation

Figure: Examples of dictionaries: on the left DCT dictionary, middle K-SVD dictionary on a set of natural image,
on the right K-SVD update for Barbara image
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K-SVD

General idea
The method is based on the optimization of a functional

∑
ij ||Dαij − Pvij ||2 combinig the

following elements:

Sparse coding αij of the patches of the image using a patch dictionary D

Improvement (updating) of the dictionary to improve the sparse coding of the image

Reconstruction of the image v using the final dictionary with aggregation

Figure: Examples of K-SVD denoising: from left to right original image, noisy image, K-SVD denoising (256
atoms in D)
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EPLL and GMM

General idea
Instead of using a dictionary of fixed atoms, atoms are replaced by Gaussian Mixture Models.

A patch is a sample of a Gaussian multi-variate distribution N (µk,Σk).

Create the dictionary of GMM using a database of natural image (ex 200 components learnt
on 106 patches)

Solve the following optimization problem ||u− v||2 − log(Πip(Pui |ki))

Figure: Each patch comes from one of the GMM.
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EPLL and GMM

General idea
Instead of using a dictionary of fixed atoms, atoms are replaced by Gaussian Mixture Models.

A patch is a sample of a Gaussian multi-variate distribution N (µk,Σk).

Create the dictionary of GMM using a database of natural image (ex 200 components learnt
on 106 patches)

Solve the following optimization problem ||u− v||2 − log(Πip(Pvi |ki))

Figure: Examples of patches drawn from 2 Gaussian models, one encoding a stripe pattern (on the left) and one
encoding a vertical edge (on the right)
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EPLL and GMM

General idea
Instead of using a dictionary of fixed atoms, atoms are replaced by Gaussian Mixture Models.

A patch is a sample of a Gaussian multi-variate distribution N (µk,Σk).

Create the dictionary of GMM using a database of natural image (ex 200 components learnt
on 106 patches)

Solve the following optimization problem ||u− v||2 − log(Πip(Pvi |ki))

Figure: Denoising of an image using GMM: on the left original image,middle noisy image, on the right denoising
with EPLL and 200 GMM.
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EPLL and GMM

General idea
Instead of using a dictionary of fixed atoms, atoms are replaced by Gaussian Mixture Models.

A patch is a sample of a Gaussian multi-variate distribution N (µk,Σk).

Create the dictionary of GMM using a database of natural image (ex 200 components learnt
on 106 patches)

Solve the following optimization problem ||u− v||2 − log(Πip(Pvi |ki))

Figure: Denoising of an image using GMM: on the left original image, on the right the color code represents the
chosen GMM. Similar textures are represented by the same model.

F. Tupin IMA 206 May 2020 66 / 72



Outline

1 Introduction

2 Non-local means

3 Extended non-local means

4 Dictionaries based approaches

5 CNN and patch-based approaches
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CNN and denoising

Convolutive neural networks
Combines non linear steps (such as truncating values below a threshold) and local filtering

Hierarchy of non-linear features
many layers: increases the considered neighborhood (receptive field)

Different strategies
Residual learning: ex DnCNN (restores the noise residual image -easier to train)
Auto-supervised learning: ex Noise2noise (uses only noisy samples to do the training)

Pros and Cons
Very effective to preserve geometric structure and textures
May invent plausible structures (hard to tell artifacts)

Figure: Architecture of DnCNN, Zhang et al.
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Example of CNN / non-local combination (1)

General idea
Training a network using non-local information: increasing the number of channels using image
redundancy, Davy et al.

Principle
1 find the K most similar patches
2 collect the central values of these patches
3 concatenate them to form K additional layers

Key idea: the denoising can be improved when making available values from similar patches
that are quite far apart

Figure: Architecture of Davy et al. network exploiting patch redundancy to create additional channels ["Non-local
video denoising by CNN"].
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Example of CNN / non-local combination (2)

General idea
Iterate CNN and non-local methods to reduce the artifacts created by the CNN.

Principle
1 The noisy and current estimate are combined iteratively: zk = λkz + (1− λk)ŷk−1
2 The current estimate is obtained by a CNN taking the decreasing noise variance into account

followed by a non-local filter with updated threshold

Key idea: correct the drawback of one method by the other

Figure: Algorithm of Cruz et al. : iterative (CNN+NLM) approach [ "Nonlocality-reinforced convolutional neural
networks for image denoising"]. NLF: simple averaging of the k-nearest neighbors with threshold τk, CNNF
trained CNN with decreasing λk.
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Example of CNN / non-local combination (3)

General idea
Introducing a non-local block inside the network to exploit the redundancy in the image or in the
feature maps.

Principle
1 The non local block is trained to generate continuous nearest neighbors versions of the input
2 It is then used as a building brick to define new networks architectures
3 The new architecture is then trained in a usual way

Key idea: introduce redundancy at different feature levels

Figure: Architecture of Pl¨otz et al. : N3 brick and new architecture including N3 component ["Neural Nearest
Neighbors Networks"].
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Practice of non-local approaches)

Python
Library skimage (scikit-image, image processing in python)

from skimage.restoration import denoise_nl_means

https://scikit-image.org/docs/dev/auto_examples/filters/plot_
nonlocal_means.html

Figure: Extract of the web page showing experiments.F. Tupin IMA 206 May 2020 71 / 72
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Practice of non-local approaches)

IPOL
Image Processing On Line (reproducible research, online demo + detailed paper on
implementation tricks)

https://www.ipol.im

Topics : Enhancement and restoration (Denoising

Figure: Extract of the web page showing experiments.
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