

NL-means and patch-based methods

F. Tupin Cours TADI

Acknowledgments: Y. Gousseau, C. Deledalle, V. Duval, C. Aguereberre, G. Tartavel

Introduction

Denoising and models

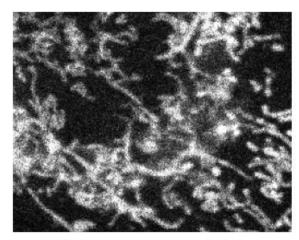
Non-local / patch based approaches

- Principle
- Toy examples
- Limits and solutions

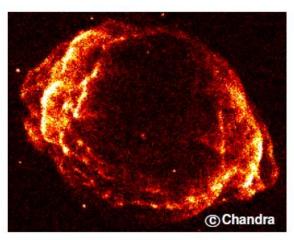
Advanced methods

- Noise adaptation
- Iterative approaches
- Automatic setting of parameters
- Shape of patches

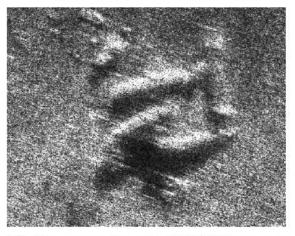
Image denoising



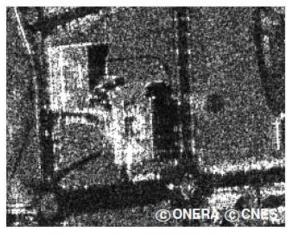
(a) Mitochondrion in microscopy



(b) Supernova in X-ray imagery



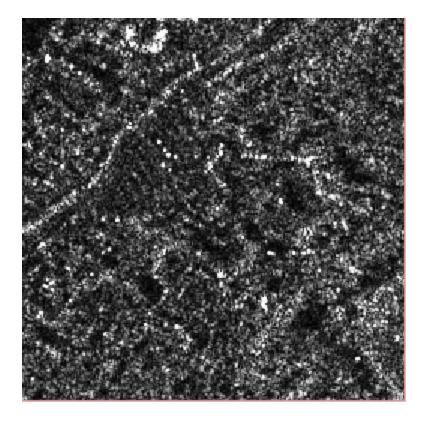
(d) Plane wreckage in SONAR imagery

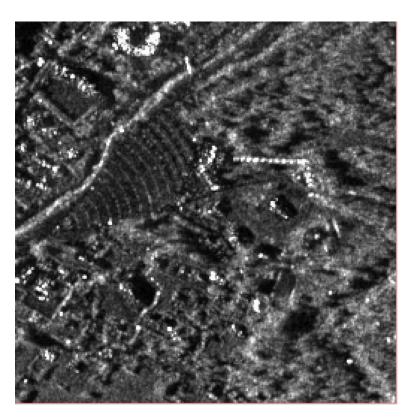


(e) Urban area using SAR imagery

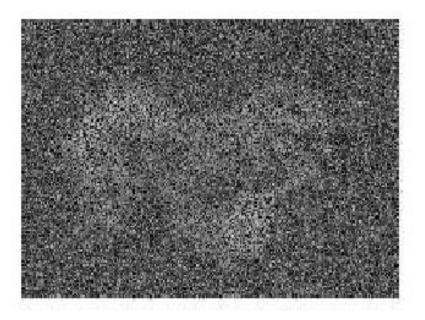
(c) Fetus using ultrasound imagery

(f) Polarimetric SAR imagery





Temporal information





Spatial information

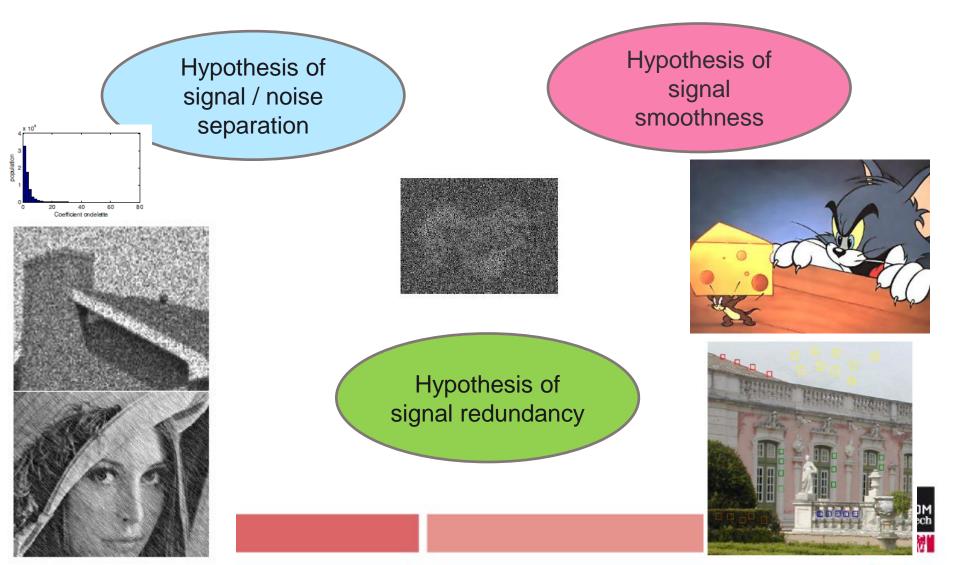
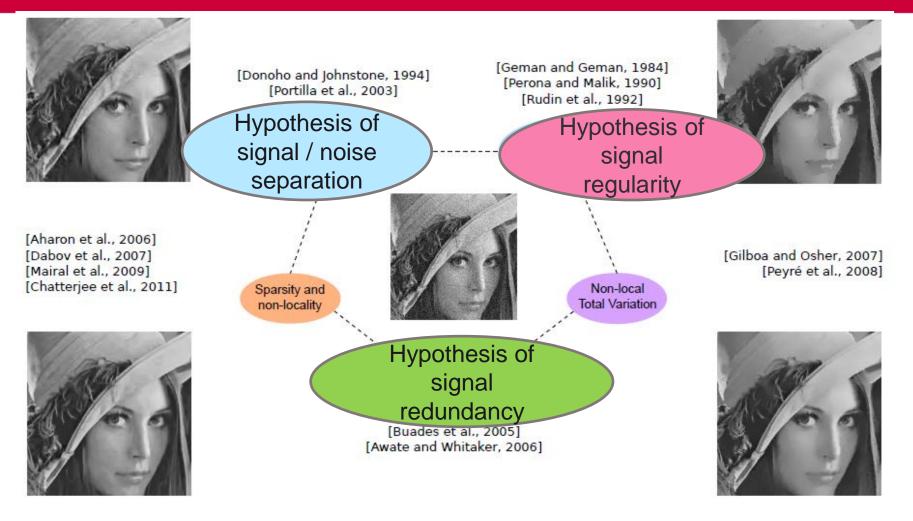
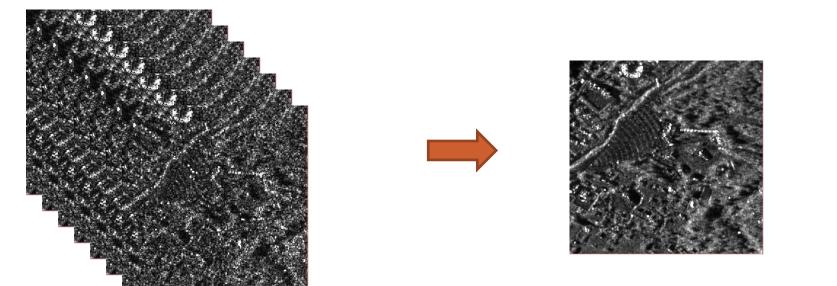


Image models



Patch-based approaches perform best (see review of [Katkovnik et al., 2010])

Denoising and « averaging »



- Average of many noisy values: estimation of the « true » reflectivity
- Image: ...only if the selected values are coming from the same underlying noise-free value...

How can we select them on the image?

Where finding the « good » information?

Locally (linear filtering)

Locally (anisotropic diff.)

Oracle

Introduction

Denoising and models

Non-local / patch based approaches

- Principle
- Toy examples
- Limits and solutions

Advanced methods

- Noise adaptation
- Iterative approaches
- Automatic setting of parameters
- Shape of patches

Selection-based filtering

Non-local approaches:

• Relaxing locality and connexity constraints for pixel selection: selection based on similarity

$$\hat{u}_s = \sum_{t \in \Omega} w(s, t) v_t$$

 u_s searched noise-free value \hat{u}_s estimated noise-free value v_s observed noisy value

Selection-based filtering

Non-local approaches:

 Relaxing locality and connexity constraints for pixel selection: selection based on similarity [Yaroslavsky, 85]

$$\hat{u}_s = \sum_{t \in \Omega} w(s, t) v_t \qquad \qquad w(s, t) = \exp(-\frac{d(v_s, v_t)}{h^2})$$

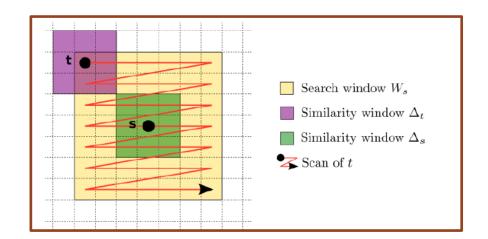
How computing d when having only noisy values ?

Use patches !

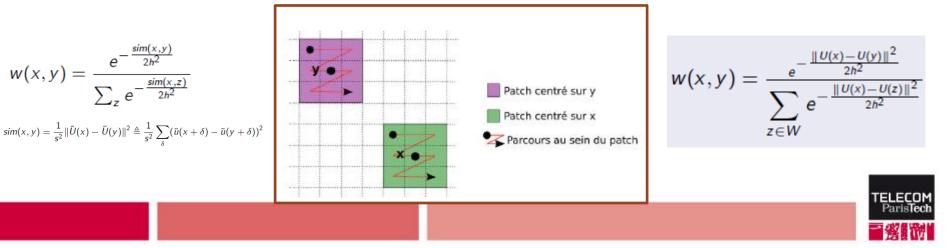
Non-local means [Buades 05]

Algorithm :

$$\hat{u}_s = \sum_{t \in \Omega} w(s, t) v_t$$



• Similarity of pixels = similarity of patches



Selection-based filtering

Non-local approaches: example of weight maps

Selection-based filtering

Non-local approaches: example of weight maps

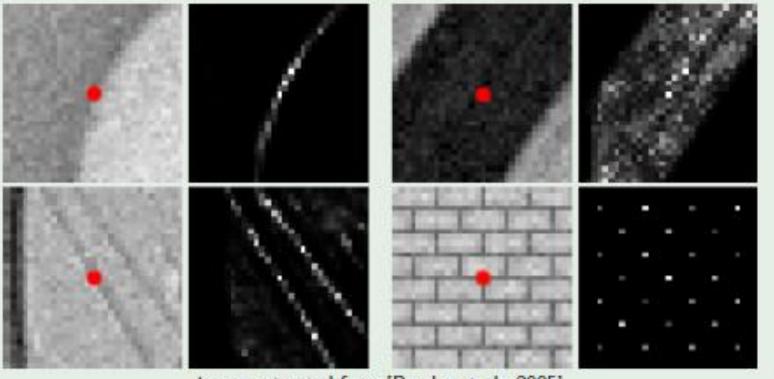
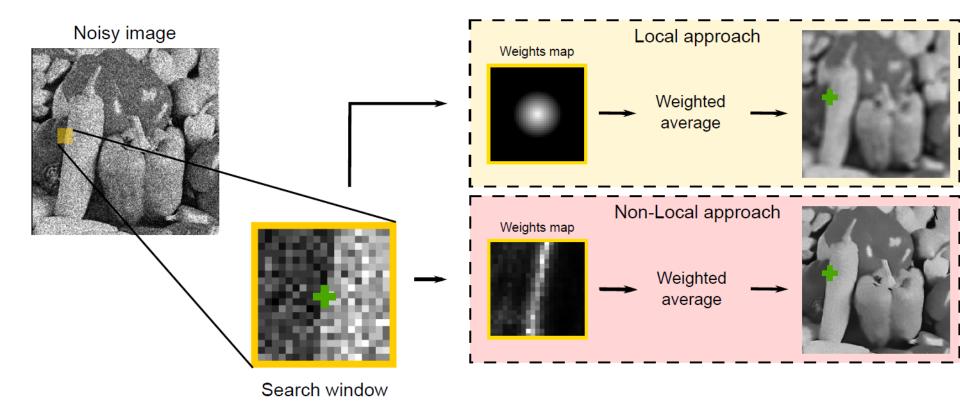
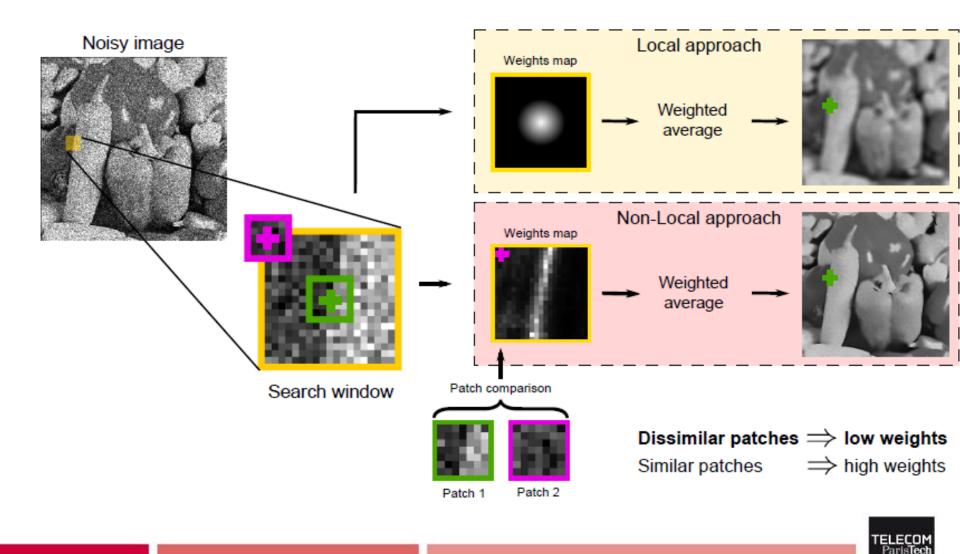


image extracted from [Buades et al., 2005]

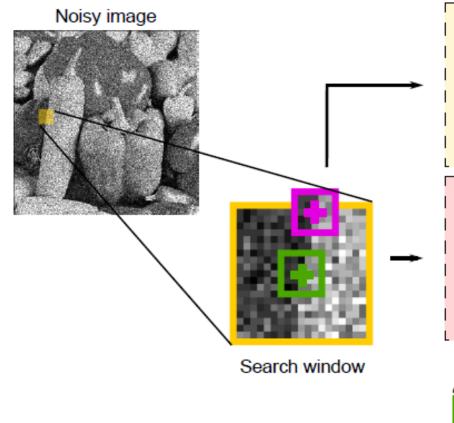
Local / non-local

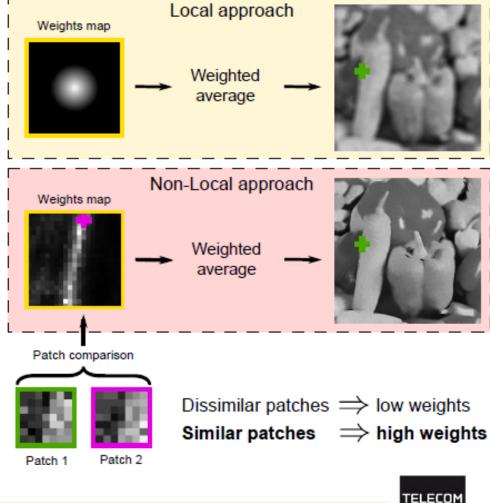


Non-locality and patches



Non-locality and patches





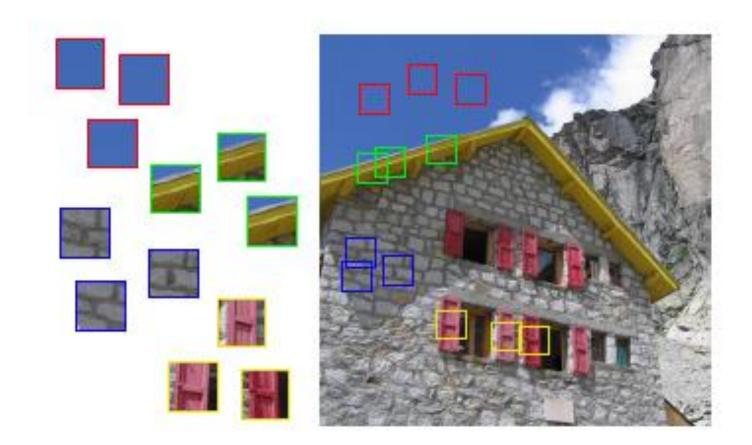
page 17

How to compare noisy patches?

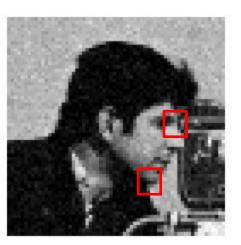
Selection based filtering – H1 redundancy

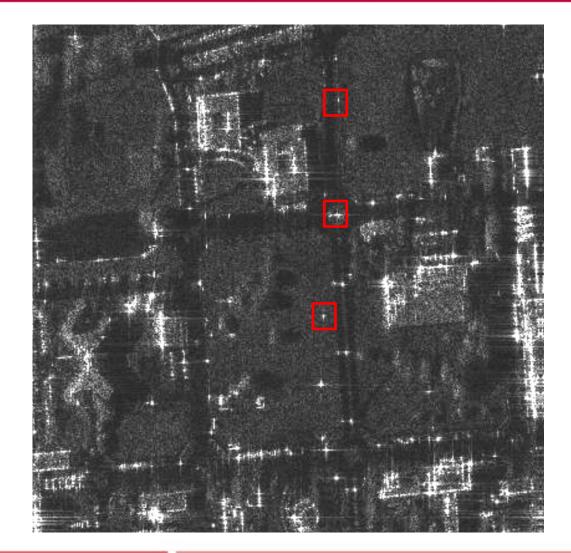
Non-local approaches - patches

H1 : Hypothesis of redundancy of patches in images



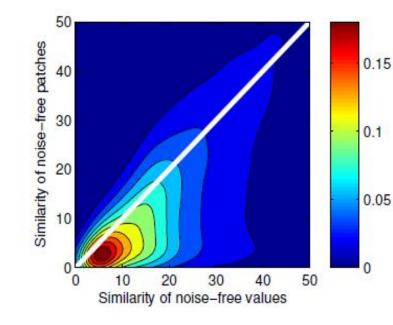
Redundancy of patches ...





Non-local approaches

H2 : similarity between patches \implies similarity of central pixels



Introduction

Denoising and models

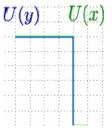
Non-local / patch based approaches

- Principle
- Toy examples
- Limits and solutions

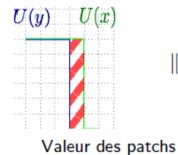
Advanced methods

- Noise adaptation
- Iterative approaches
- Automatic setting of parameters
- Shape of patches

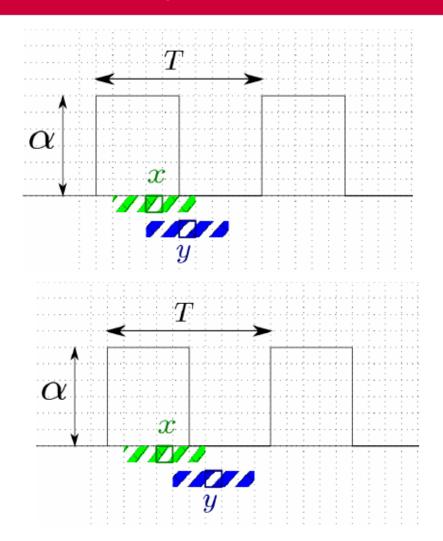


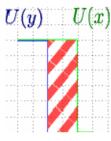


$$\|U(x) - U(x)\|^2 = 0$$

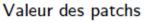


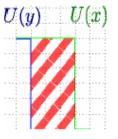
$$||U(x) - U(x+1)||^2 = \frac{\alpha^2}{s}$$





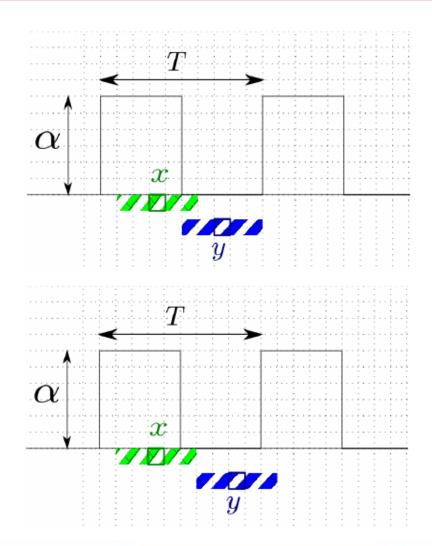
$$||U(x) - U(x+2)||^2 = \frac{2\alpha^2}{s}$$

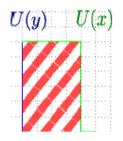




$$|U(x) - U(x+3)||^2 = \frac{3\alpha^2}{s}$$

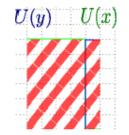
Valeur des patchs





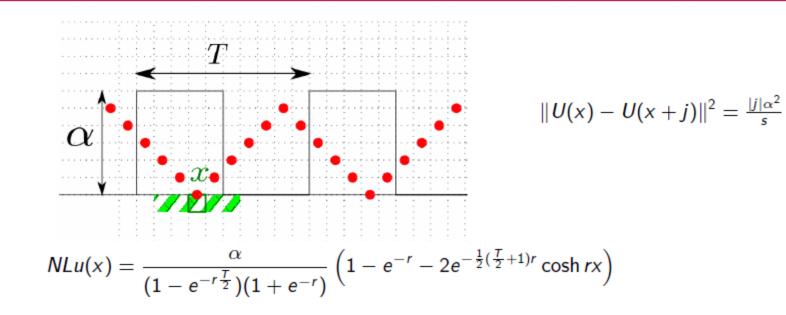
$$||U(x) - U(x+4)||^2 = \frac{4\alpha^2}{s}$$

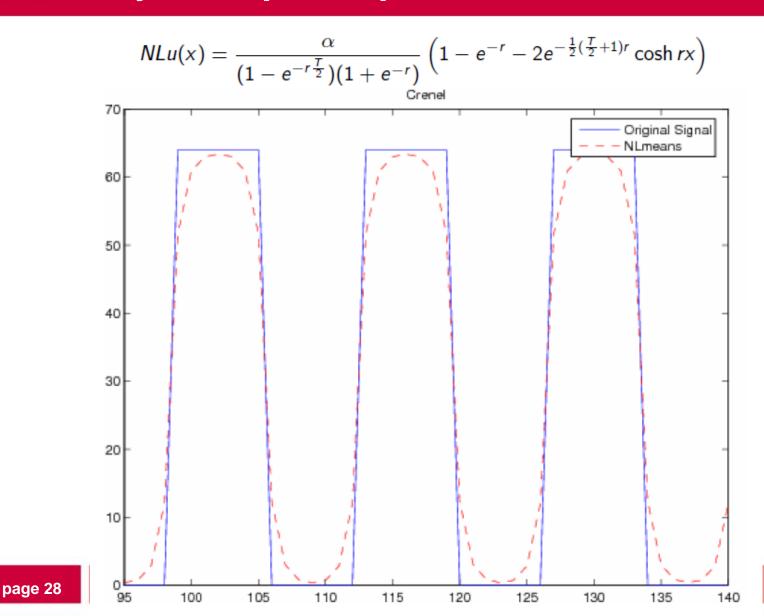
Valeur des patchs



$$||U(x) - U(x+5)||^2 = \frac{5\alpha^2}{s}$$

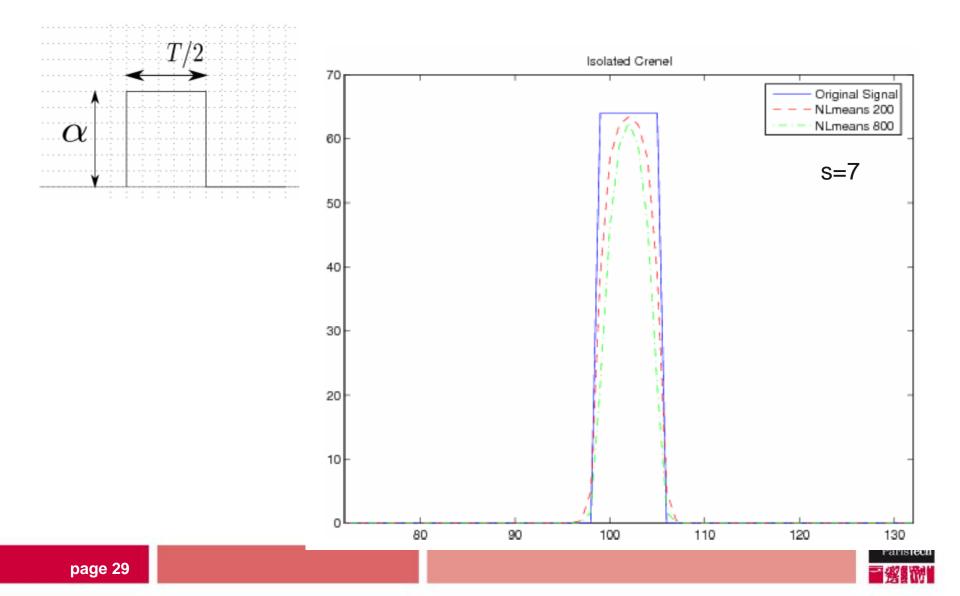
Valeur des patchs



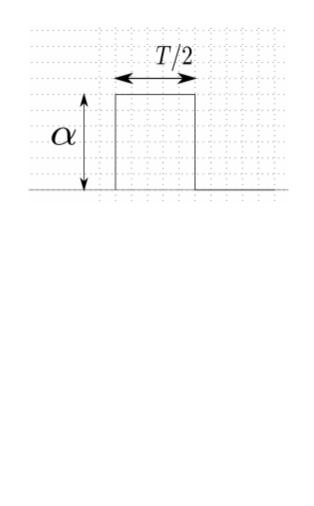


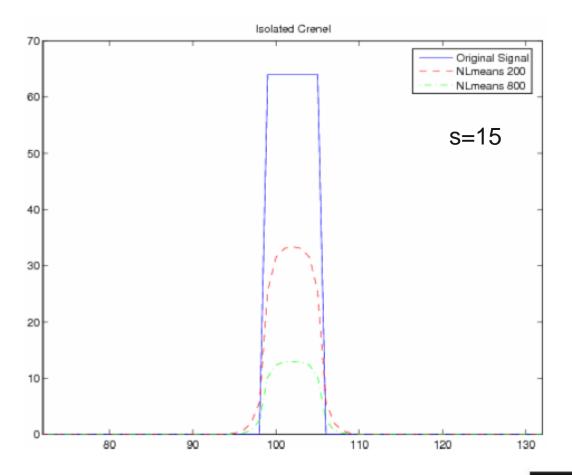
TELECOM ParisTech

Isolated crenel



Isolated crenel





Introduction

Denoising and models

Non-local / patch based approaches

- Principle
- Toy examples
- Limits and solutions
- Advanced methods
 - Iterative approaches
 - Automatic setting of parameters

Limits and solutions

Limits:

- Loss of weakly contrasted structures
- « rare patch effect »: noise halo

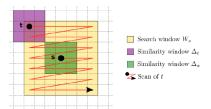
Influence of NL-means parameters:

- Search window W
- Patch size s
- Kernel function (h parameter)

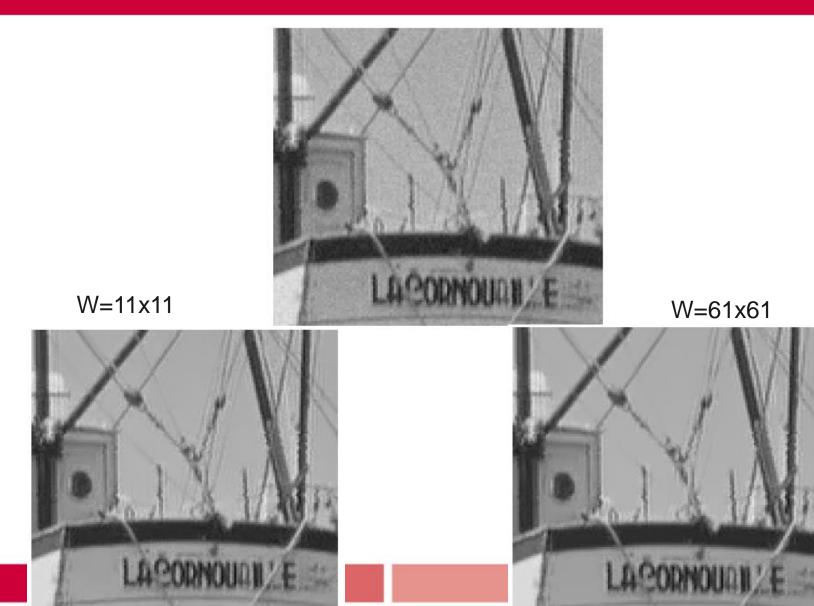
Solution:

Local adaptation of h

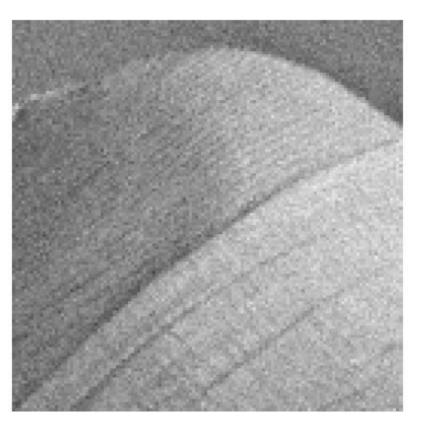
Bias / variance trade-off

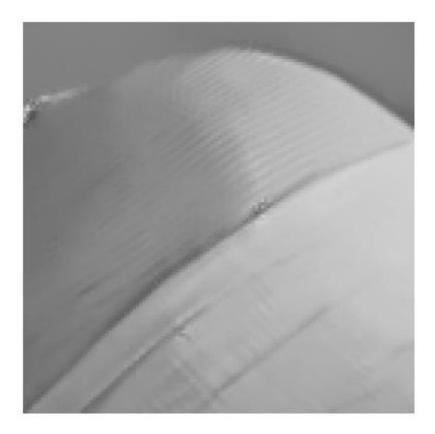


Influence of W: loss of details



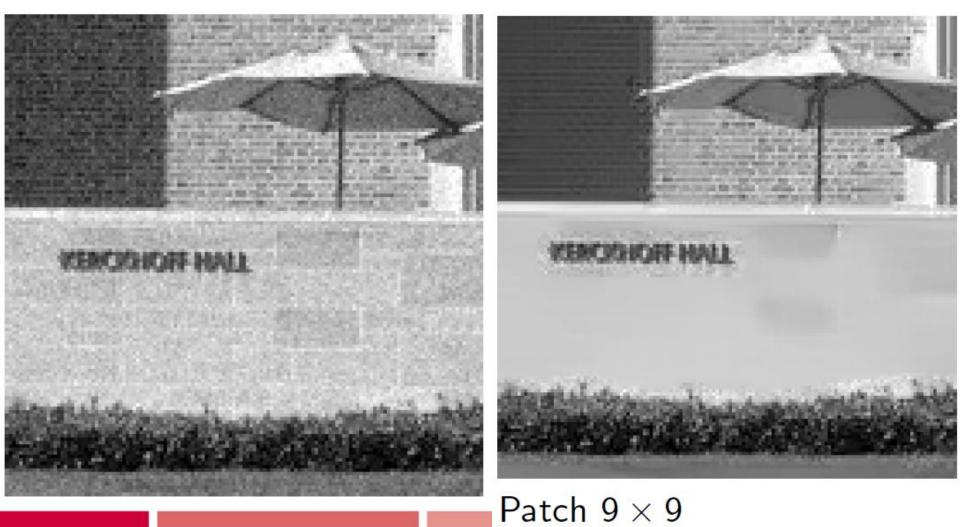
Influence of W: loss of details



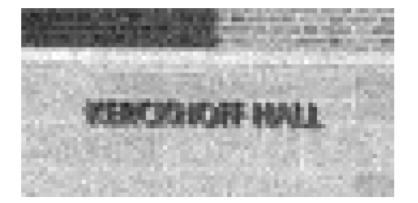


Influence of patch size: « rare patch effect »

Influence of patch size: « rare patch effect »

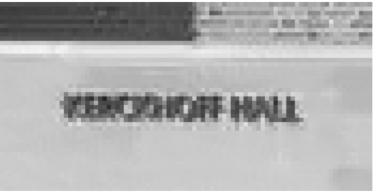


Influence of patch size



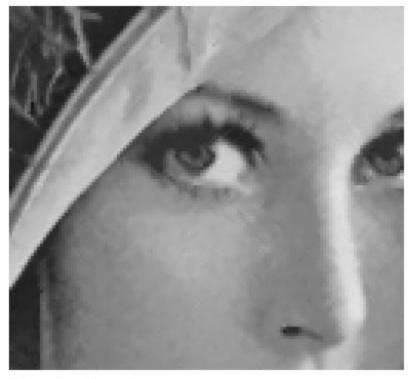


Patch 9×9

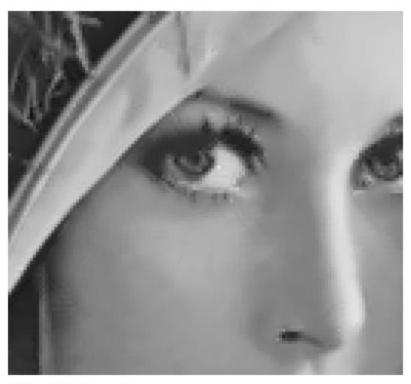


Patch 5×5

Influence of patch size



Patch 3×3

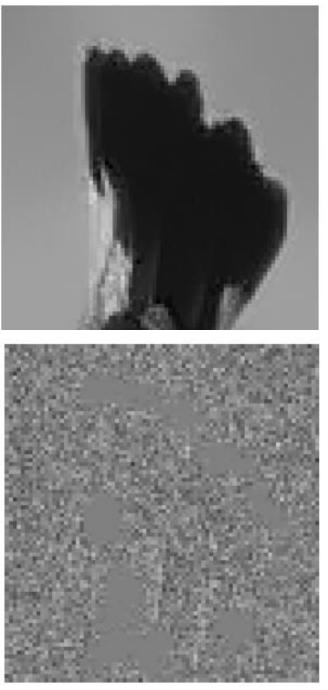


Patch 5×5

Influence of h

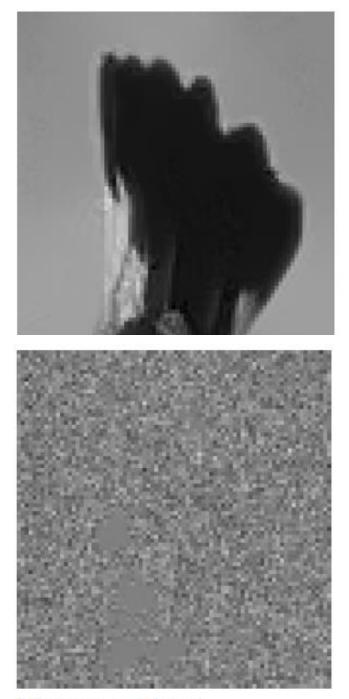
NLmeans, h global

NLmeans, h local

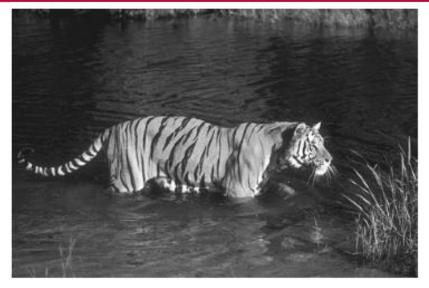


NLmeans, h global

р



NLmeans, h local

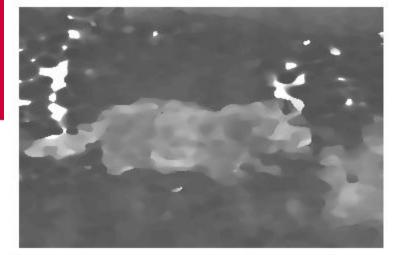


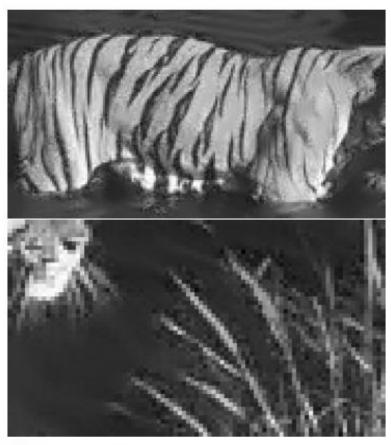
NLmeans, h global (PSNR 31.71 dB)

$$PSNR(\hat{u}, u) = 10 \log_{10} \frac{255^2}{\frac{1}{N} \|\hat{u} - u\|_2^2}$$

NLmeans, h local (PSNR 32.33 dB)

h adaptation





NLmeans, *h* global

NLmeans, h local

Introduction

Denoising and models

Non-local / patch based approaches

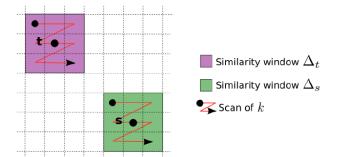
- Principle
- Toy examples
- Limits and solutions

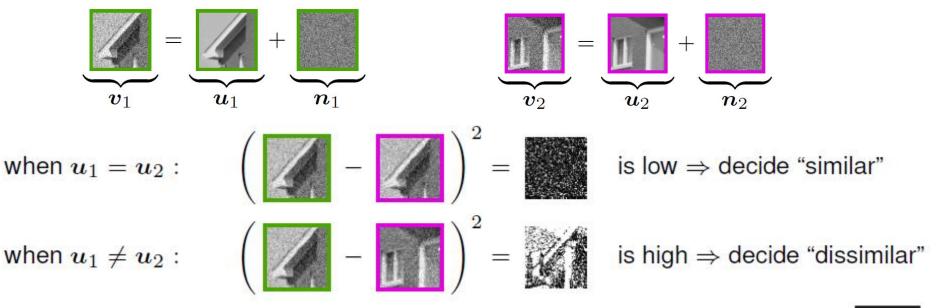
Advanced methods

- Noise adaptation
- Iterative approaches
- Automatic setting of parameters
- Shape of patches

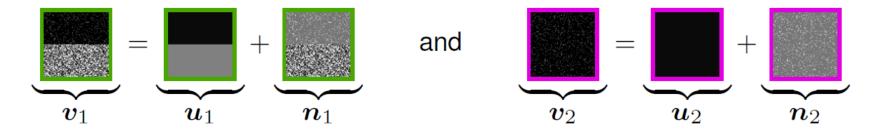
Buades et al. (2005)

- Euclidean distance between patches
- Implicit assumption of AWGN

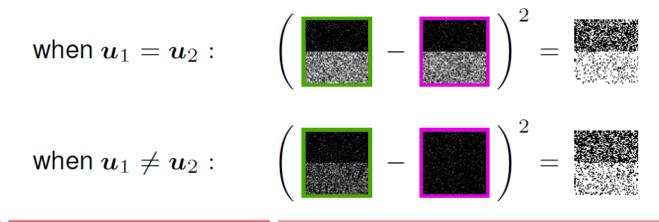




Example of signal dependant-noise:



Limits of the euclidean distance:

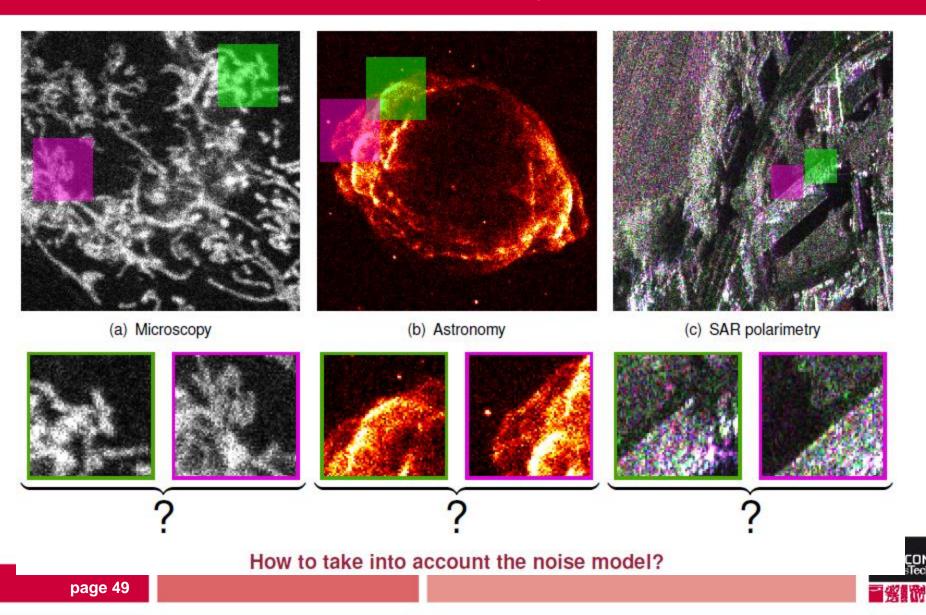


Noisy image (gaussian noise)

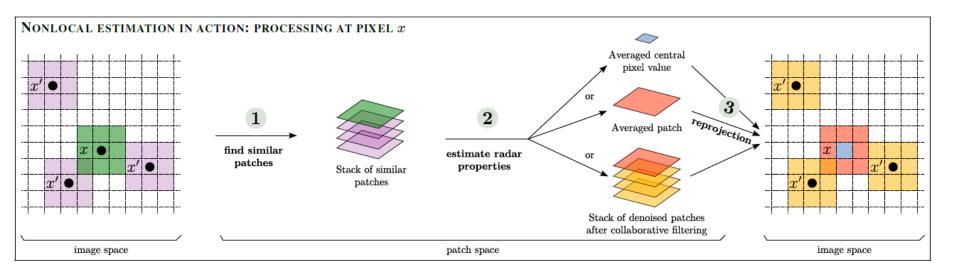
Denoised (« oracle » Driven by noise-free Image content) Denoised (driven by noisy Image content)

Noisy image (Poisson noise Signal dependent noise) Denoised (« oracle » driven by noise-free Image content) Denoised (driven by noisy Image content)

Noise distribution has to be taken into account



Steps of non-local denoising



A probabilistic framework

Principle: adaptation of the NL-means to any kind of (known) noise distribution

• Estimation step:

Weighted average is replaced by weighted maximum likelihood estimation

$$\hat{u}(x) = \arg\max_{t} \sum_{x'} w(x, x') \log p(v(x')|t)$$

• Detection of similar patches:

Weight definition is defined in a detection framework by *hypothesis testing*

Similarity definition

Similarity is defined by an hypothesis test:

 $\begin{aligned} \mathcal{H}_0 : \boldsymbol{u}_1 &= \boldsymbol{u}_2 \equiv \boldsymbol{u}_{12} & \text{(null hypothesis)} \\ \mathcal{H}_1 : \boldsymbol{u}_1 &\neq \boldsymbol{u}_2 & \text{(alternative hypothesis)} \end{aligned}$

Performance measured by:

 $P_{FA} = \mathbb{P}(\text{decide "dissimilar"} \mid \boldsymbol{u}_{12}, \mathcal{H}_0) \qquad (\text{false-alarm rate})$ $P_D = \mathbb{P}(\text{decide "dissimilar"} \mid \boldsymbol{u}_1, \boldsymbol{u}_2, \mathcal{H}_1) \qquad (\text{detection rate})$

The likelihood ratio test maximizes PD

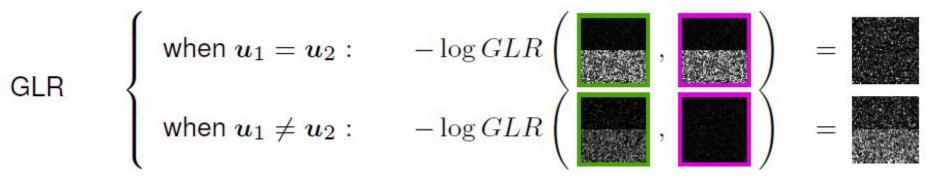
$$L(\boldsymbol{v}_1, \boldsymbol{v}_2) = \frac{p(\boldsymbol{v}_1, \boldsymbol{v}_2 \mid \boldsymbol{u}_{12}, \mathcal{H}_0)}{p(\boldsymbol{v}_1, \boldsymbol{v}_2 \mid \boldsymbol{u}_1, \boldsymbol{u}_2, \mathcal{H}_1)}$$

Similarity definition

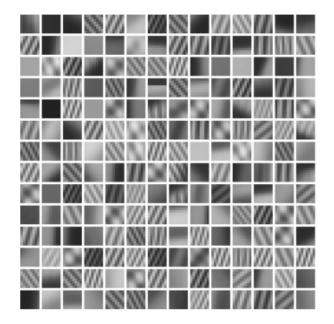
Unknown values are replaced by ML estimates (GLR):

$$\begin{aligned} \sup_{t} p(v_1, v_2 \mid u_{12} = t, \mathcal{H}_0) \\ \sup_{t_1, t_2} p(v_1, v_2 \mid u_1 = t_1, u_2 = t_2, \mathcal{H}_1) \\ \frac{p(v_1 \mid u_1 = \hat{t}_{12}) p(v_2 \mid u_2 = \hat{t}_{12})}{p(v_1 \mid u_1 = \hat{t}_1) p(v_2 \mid u_2 = \hat{t}_2)} \end{aligned}$$

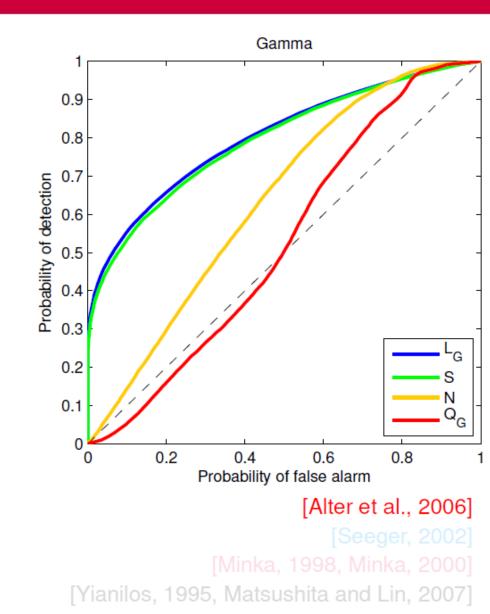
Study of this criterion



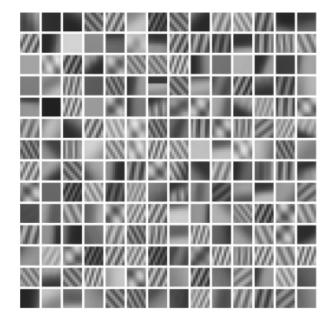
Evaluation of similarity criterion



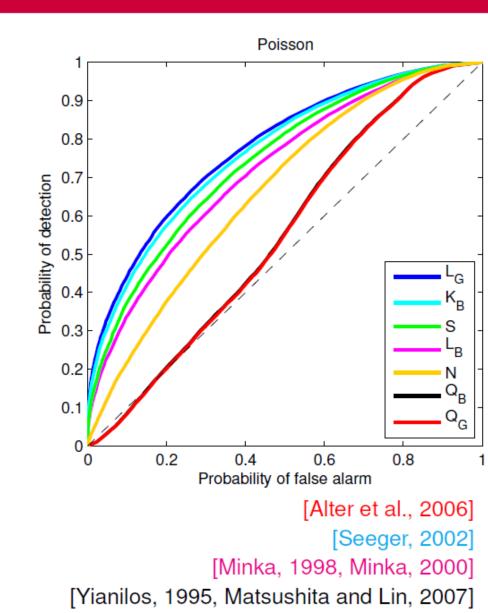
- Generalized likelihood ratio
- Variance stabilization
- Euclidean distance
- Maximum joint likelihood
- Mutual information kernel
- Bayesian likelihood ratio
- Bayesian joint likelihood



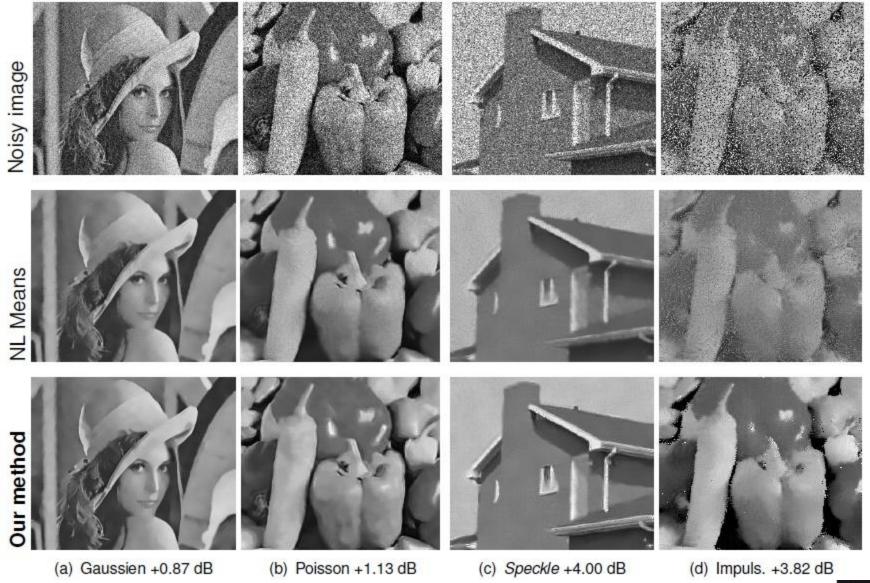
Evaluation of similarity criterion



- Generalized likelihood ratio
- Variance stabilization
- Euclidean distance
- Maximum joint likelihood
- Mutual information kernel
- Bayesian likelihood ratio
- Bayesian joint likelihood



- AND SE COLD LI



Introduction

Denoising and models

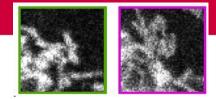
Non-local / patch based approaches

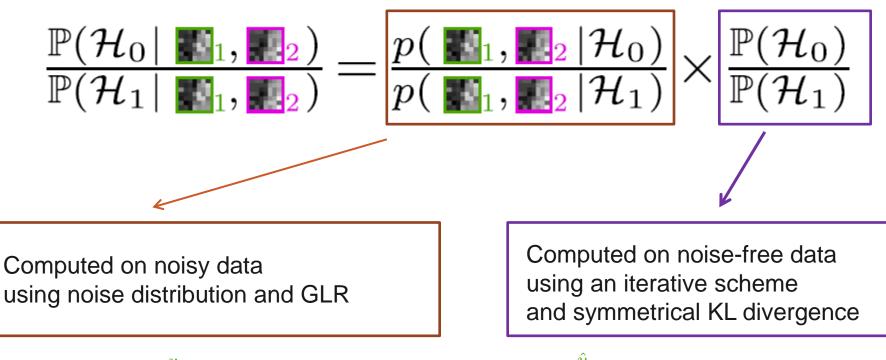
- Principle
- Toy examples
- Limits and solutions

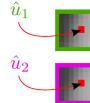
Advanced methods

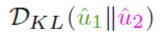
- Noise adaptation
- Iterative approaches
- Automatic setting of parameters
- Shape of patches

Iterative version approaches Similarity definition - refinement

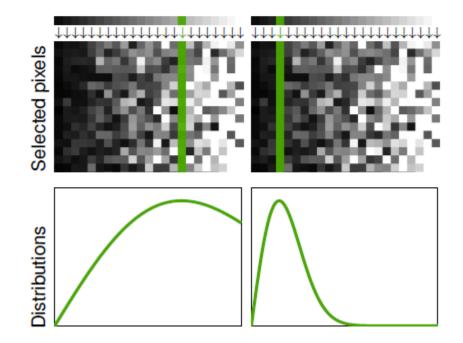




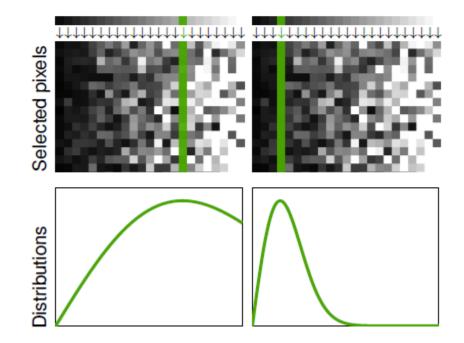




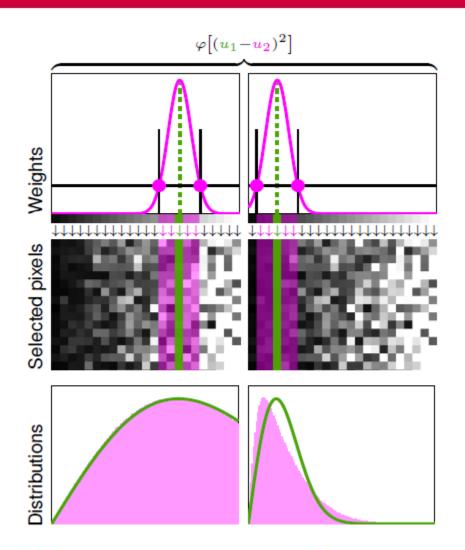
Iterative version- Weight refinement



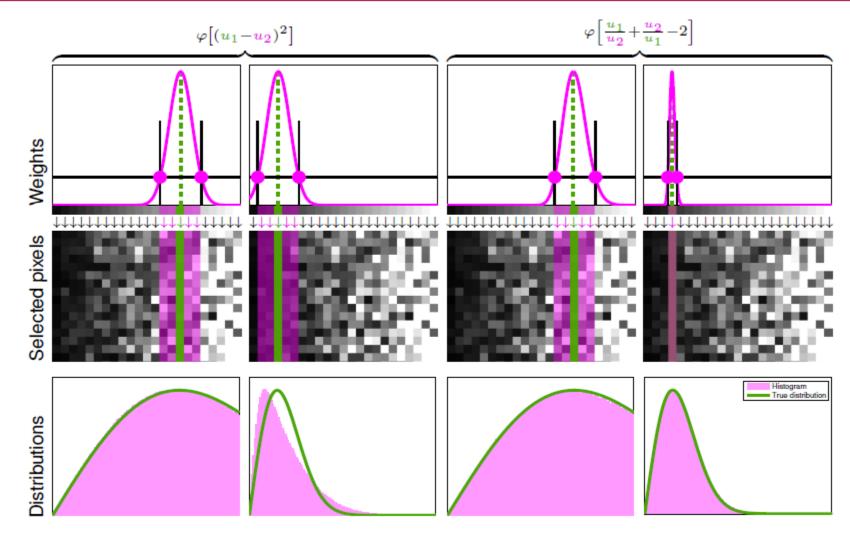
Iterative version- Weight refinement



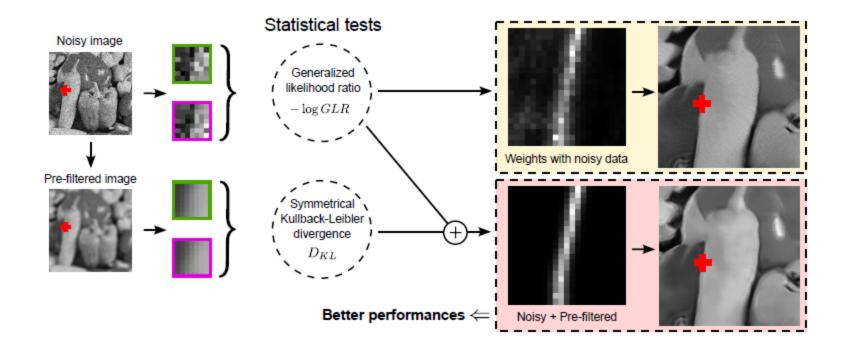
Iterative version - Weight refinement



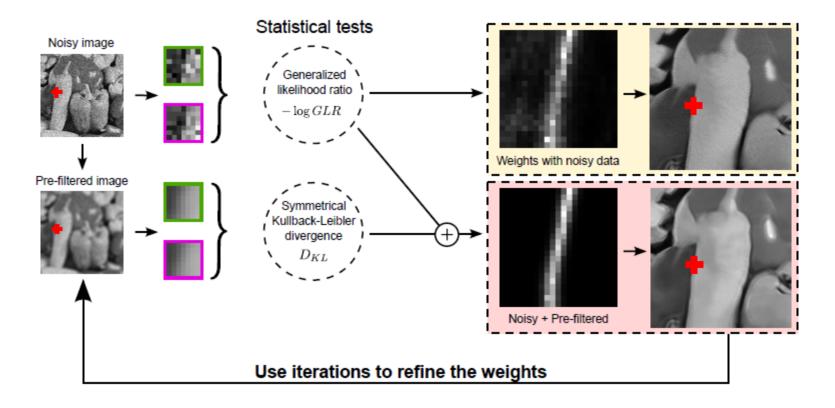
Iterative verion - Weight refinement



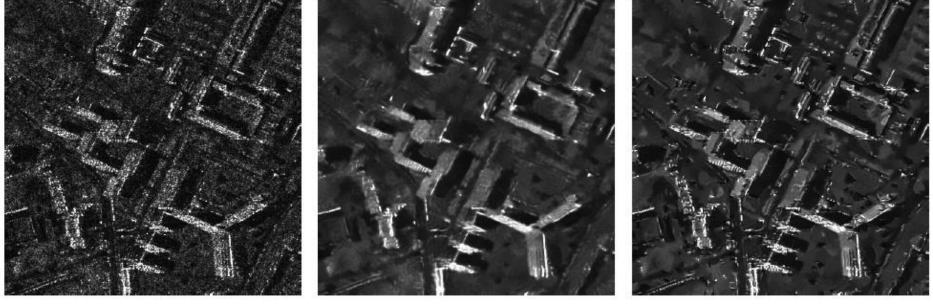
Iterative verion - Global scheme



Iterative version - Global scheme



Limits: number of parameters (W, p, number of iterations)



(b) A

(c) \hat{R}^1

(d) \hat{R}^i

Introduction

Denoising and models

Non-local / patch based approaches

- Principle
- Toy examples
- Limits and solutions

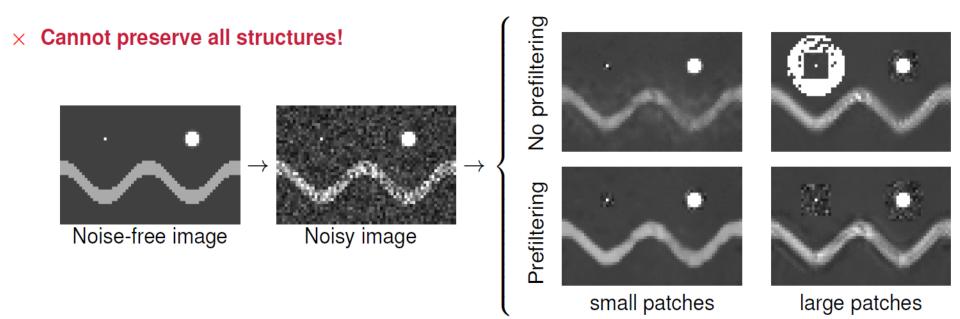
Advanced methods

- Noise adaptation
- Iterative approaches
- Automatic setting of parameters
- Shape of patches

Spatially adaptive aggregation

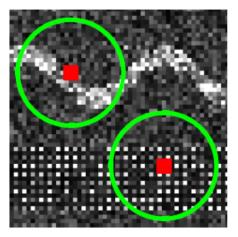
Many parameters:

- Search window size (rare patch, influence of small weights)
- Patch size (rare patch effect, noise halo)
- Number of iterations / pre-filtering strength (bias / variance)
- Antagonist criteria: no best global tuning
 - Quality of the estimation / amount of filtering

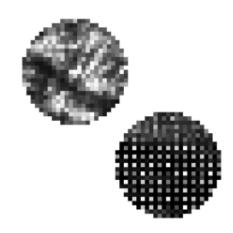


Influence of pre-filtering

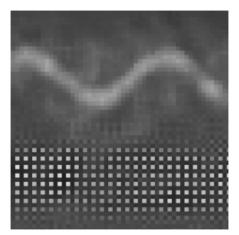
Noisy image



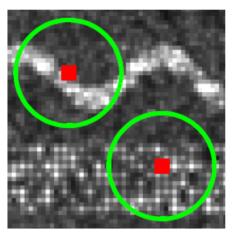
Weights without prefiltering



Result without prefiletring

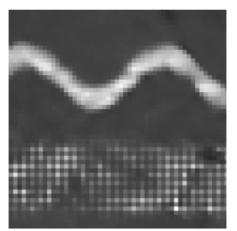


Prefiletred image



Weights with prefiltering

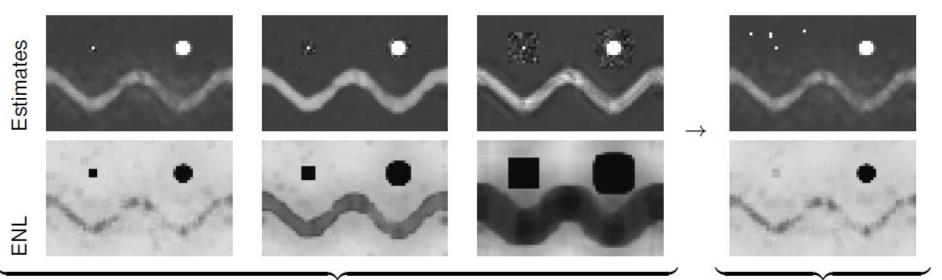
Result with prefiletring



Spatially adaptative aggregation

Aggregation:

- Compute several estimates with different parameters
- Select the estimate with the best smoothing $\hat{L}^{NL}(x) = \frac{(\sum_{x'} w(x, x'))^2}{\sum_{x'} w(x, x')^2}$



A small sample of estimates obtained with different parameters

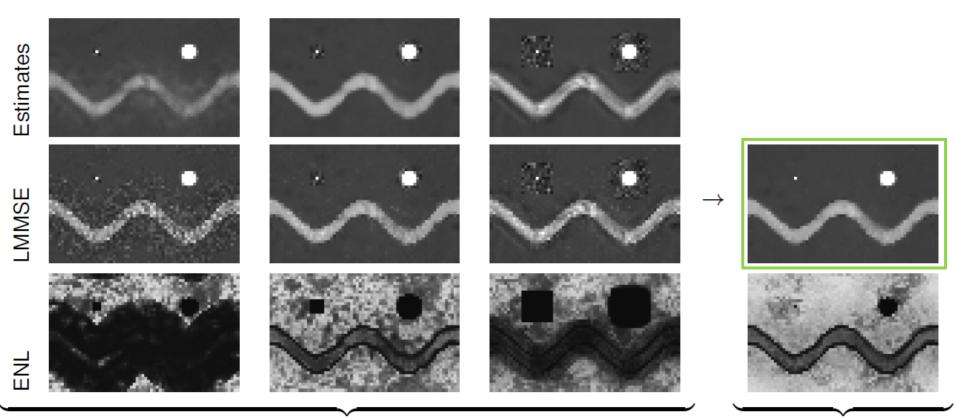
Local selection

Strong blurring: only takes into account estimation variance but not the bias

Spatially adaptive aggregation

Before aggregation:

- Apply bias reduction for each estimation
- Select the bias reduced estimate with the best smoothing

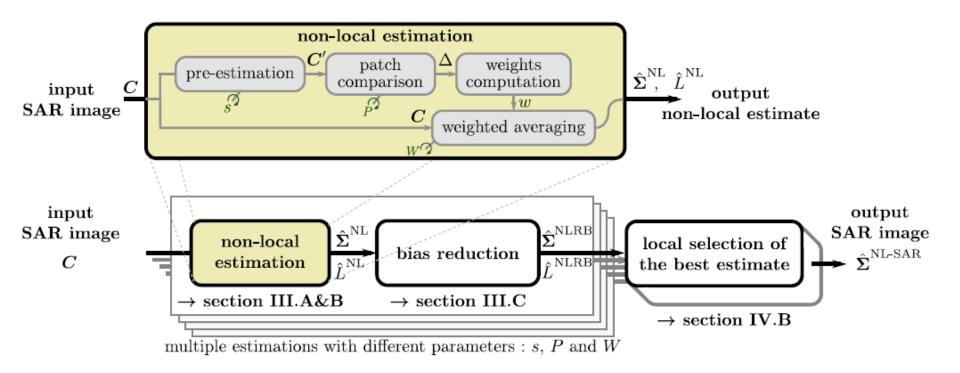


A small sample of estimates obtained with different parameters

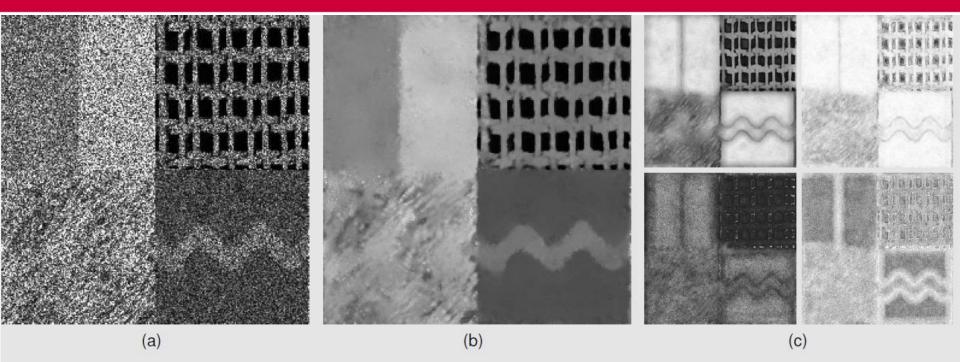
Local selection

Spatially adaptive aggregation

General scheme:



Example of spatially adaptive aggregation



- (a) Noisy image.
- (b) Result of the adaptive approach.
- (c) From left to right, top to bottom:

- smoothing strength
- search window sizes
- the patch size
- prefiltering strength

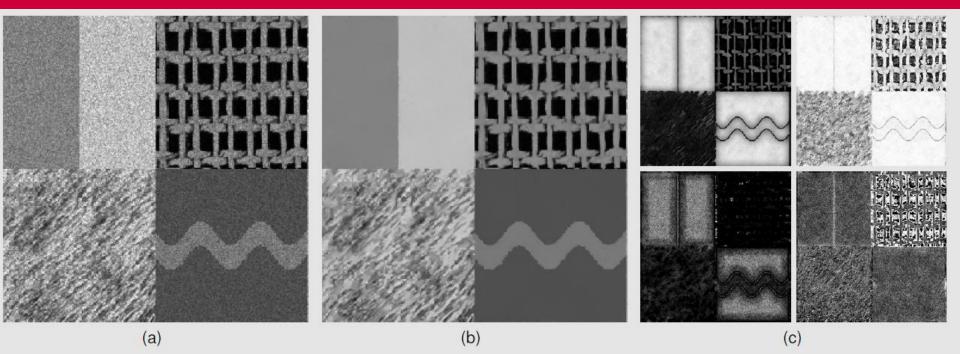
- (range: $[0, 20 \times 20]$),
- (range: $[0, 20 \times 20]$),
- (range: $[3 \times 3, 11 \times 11]$),
 - (range: [1, 3]).

ELECC

NL-SAR: A unified non-local framework for resolution preserving (Pol)(In)SAR, Deledalle, Denis, Tupin,

Reigber, Jäger, Pre-print HAL

Example of spatially adaptive aggregation



- (a) Noisy image.
- (b) Result of the adaptive approach.
- (c) From left to right, top to bottom:

- smoothing strength
- search window sizes
- the patch size
- prefiltering strength
- (range: $[0, 20 \times 20]$), (range: $[0, 20 \times 20]$), (range: $[3 \times 3, 11 \times 11]$), (range: [1, 3]).

FLEC

NL-SAR: A unified non-local framework for resolution preserving (Pol)(In)SAR, Deledalle, Denis, Tupin,

Reigber, Jäger, Pre-printHAL

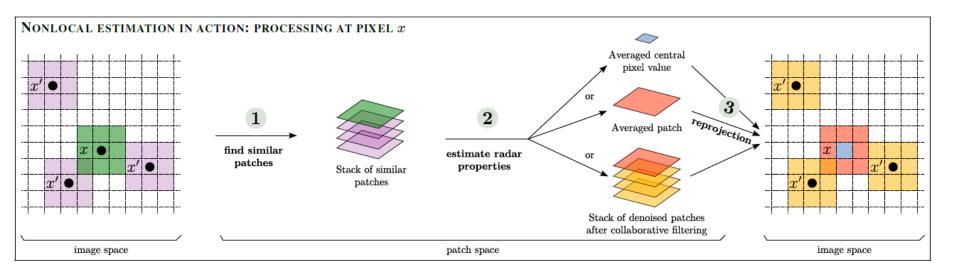
Kernel choice

- Gaussian is limited (no clear cut)
- Trapezoïdal kernels

Patch shape

- Adapted shape
- Choose the best estimate... by aggregation!

Steps of non-local denoising



Variations on non-local approaches

BM3D

 Instead of denoising one pixel: denoise the whole stack of similar patches

NL-Bayes

 Introduce a prior on the denoised patches (instaed of a ML estimate compute a MAP estimate)

Patch dictionnaries

- K-SVD
- Epitomes
- FoE

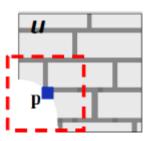
Patch-based applications

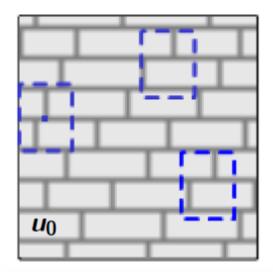
Some applications in image processing

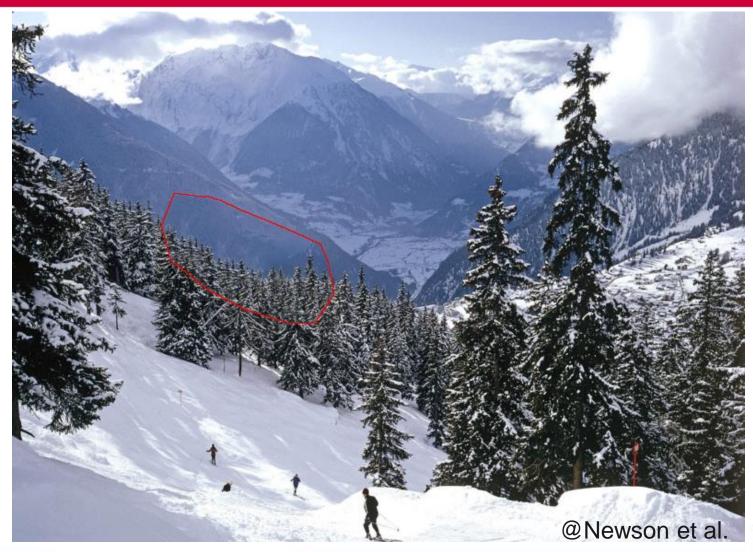
- Inpainting (image and video)
- HDR (High Dynamic Range)
- Texture synthesis

Principle:

- Start by the boundary pixels of the region to fill
- Select a patch around the pixels
- Search for similar patch in the known image
- Fill the central pixel with the central value







Video inpainting

Principle

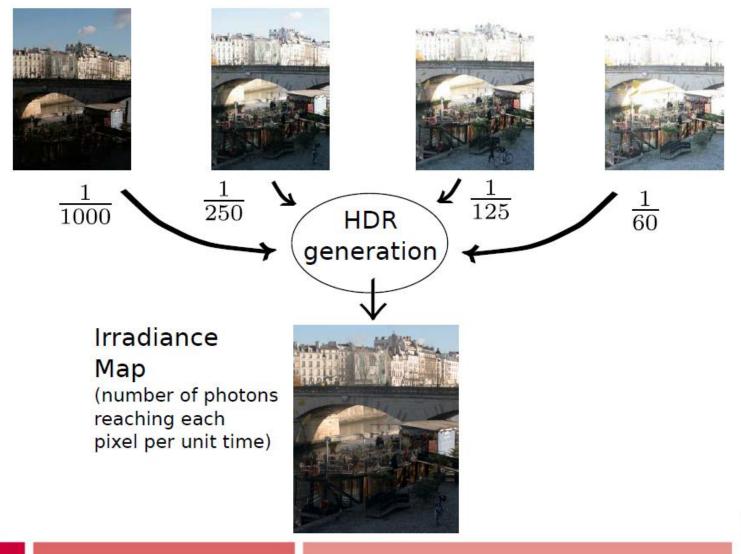
- Use space + time patches to fill gaps
- Multi-resolution framework
- Estimation of the dominant motion in the video

High Dynamic Range Imaging

Loss of details in dark areas

Loss of details in bright areas

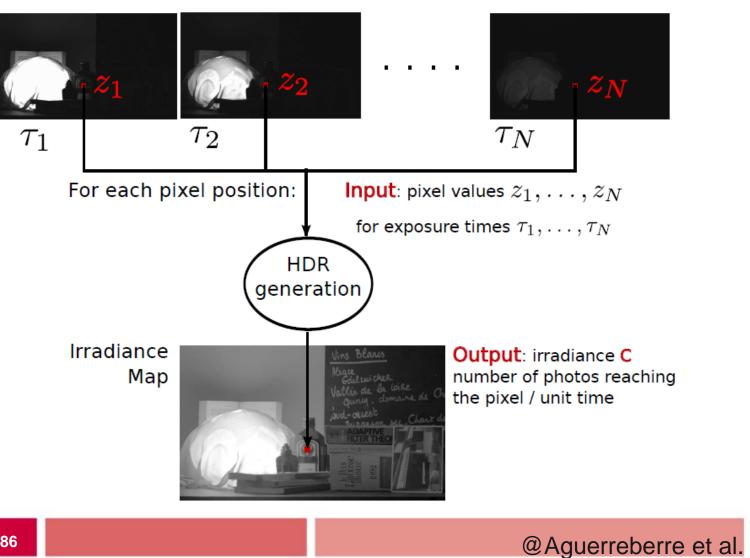
Patch-based HDR (High Dynamic Range)



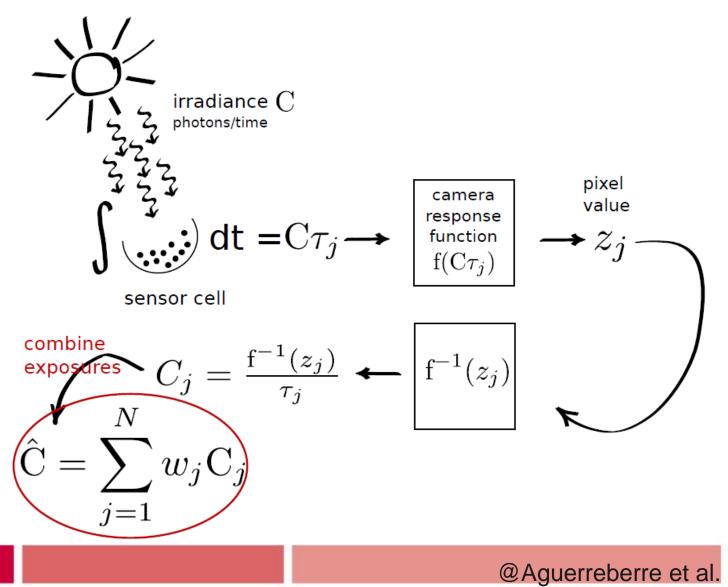
@Aguerreberre et al.

HDR principle – static case

Co-registered input images

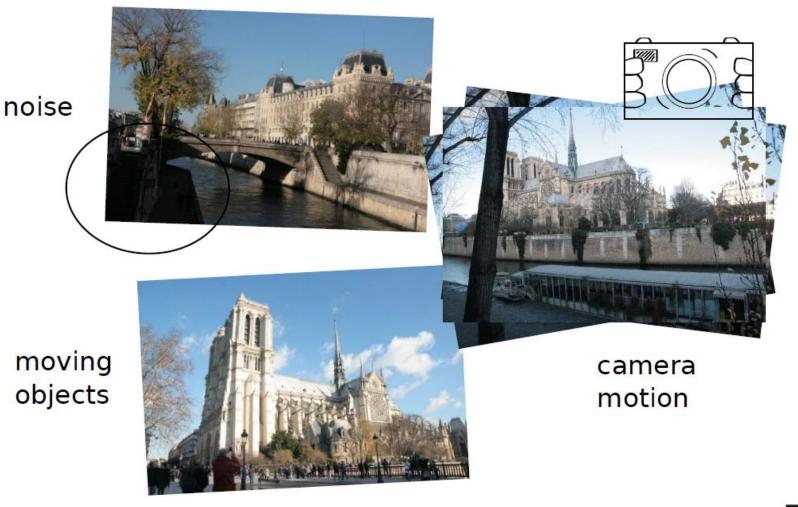


HDR principle – static case



ELECO

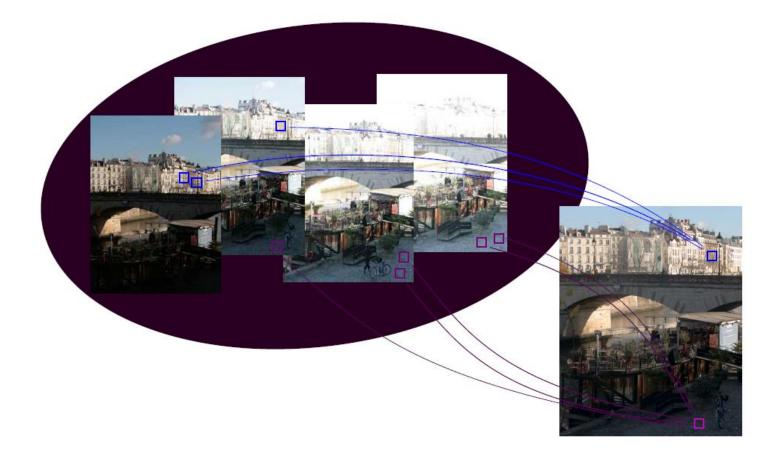
HDR – dynamic case



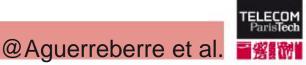
page 88

@Aguerreberre et al.

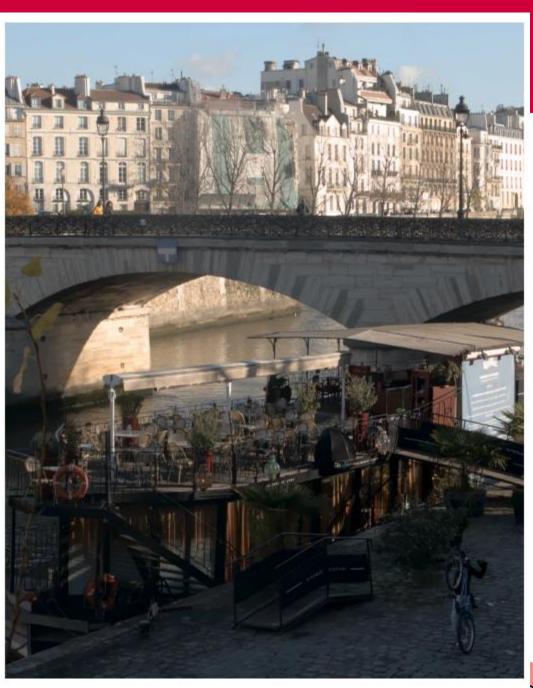
Patch-based HDR



C. Aguerrebere, J. Delon, Y. Gousseau, and P. Musé. Simultaneous HDR image reconstruction and denoising for dynamic scenes. International Conference on Computational Photography (ICCP) 2013.



@Aguerreberre et al.



erigueneberre et al.

Input images

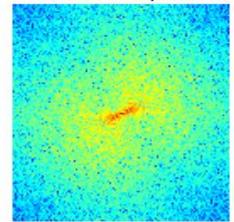
Texture synthesis

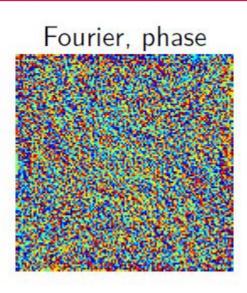
@Tartavel et al.

Texture synthesis

Image

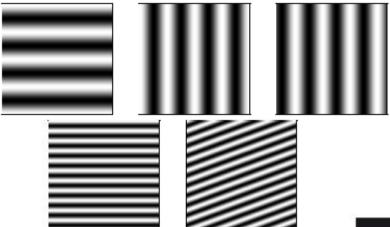
Fourier, amplitude





Fourier coefficients \Leftrightarrow oscillations

- Distance to center: frequency
- Location: orientation
- Phase: position (translation)

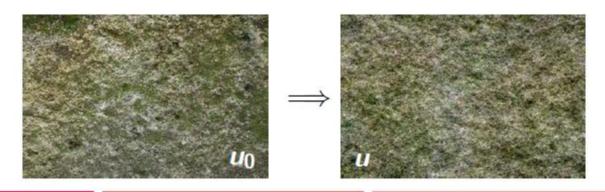


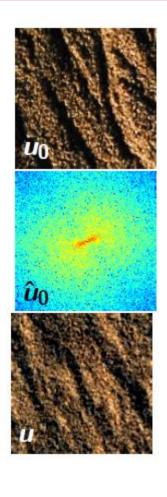
Texture synthesis algorithm:

- Start from an image u_0
- **2** Compute its Fourier transform \hat{u}_0
- Generate random phases:

$$\hat{u}(p,q) = \hat{u}_0(p,q) \cdot e^{i\theta(p,q)}$$

• Compute inverse Fourier transform u from \hat{u}





Texture synthesis – random phase



@Tartavel et al.

Textures synthesis – random phase

Samples

Tiles from roof 1

RPN

Tiles from roof 1 emulated by RPN

Tiles from roof 2 emulated by RPN

@Tartavel et al.

Tiles from roof 2

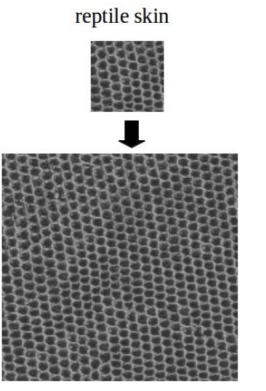
A macro-texture: tiles at short range

Textures synthesis – random phase

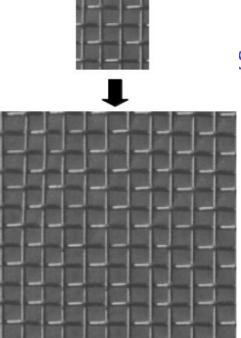
Synthesis

@Tartavel et al.

Patch-based synhesis

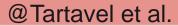


aluminum wire



Synthesis algorithm of *Efros & Leunge*

- Synthesize pixels one by one
- To generate a pixel *p*:
 - get the patch around it.
 - 2 find a similar patch in u_0
 - G copy the value of its center pixel



Synthesis with spectrum and patches

Ideas

- Synthesis from an image *u*₀
- Mix Fourier and patches
- Variational approach

Variational approach

We define a "similarity" function

$$E_0(u) = \underbrace{S(u, u_0)}_{\text{spectrum}} + \underbrace{P(u, u_0)}_{\text{patches}} + \underbrace{H(u, u_0)}_{\text{histogram}}$$

• We minimize E_0 using the gradient descent algorithm \rightarrow local minima are synthesis!

@Tartavel et al.

Examples

@Tartavel et al.

@Tartavel et al.

Patch-based approach for image processing

- Very powerful and « weak » models
- General formulation
- Wide range of applications beyond denoising
- Spatial and temporal adaptation (video)

Limits

- Additive gaussian noise
- Many parameters

Acknowledgments / References

PhD students :

 C. Deledalle, V. Duval, C. Aguerrebere, A. Newson, G. Tartavel

Publications :

- Video inpainting of complex scenes, A. Newson et al., SIAM 2014
- Simultaneous HDR reconstruction and denoising of dynamic scenes, C. Aguerrebere et al., ICCP 2013
- A probabilistic patch based approach, C. Deledalle et al., IEEE IP 2009
- Variational texture synthesis with sparcity and spectrum constraints, G. Tartavel et al., 2015

