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Image denoising  
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Can we denoise ? 
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Temporal information 



Can we denoise ? 

page 4 

Spatial information 



Image models   
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Image models   
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Hypothesis of 
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separation 

Hypothesis of 

signal 

regularity 

Hypothesis of 

signal 

redundancy 



Denoising and « averaging »  

 

 

 

 

 

 

 Average of many noisy values: estimation of the 

« true » reflectivity 

 …only if the selected values are coming from the 

same underlying noise-free value… 

           How can we select them on the image? 
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Selection based filtering  

 Where finding the « good » information?  
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Locally (linear filtering) Locally (anisotropic diff.) Oracle 
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 Selection-based filtering  

 Non-local approaches:  

• Relaxing locality and connexity constraints for pixel 

selection: selection based on similarity  

 

 

 

 



 Selection-based filtering  

 Non-local approaches:  

• Relaxing locality and connexity constraints for pixel 

selection: selection based on similarity [Yaroslavsky, 85] 

 

 

 

 
How computing d when having only noisy values ?  

Use patches ! 



 Non-local means [Buades 05]  

 Algorithm : 

 

 

 

 

 

• Similarity of pixels = similarity of patches  

 

 

 

 



 Selection-based filtering  

 Non-local approaches: example of weight maps  

 

 



 Selection-based filtering  

 Non-local approaches: example of weight maps  

 

 



Local / non-local 
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Non-locality and patches 
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Non-locality and patches 
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Non-local means  
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Selection based filtering – H1 redundancy  
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Non-local approaches - patches 
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H1 : Hypothesis of redundancy of patches in images  



Redundancy of patches … 
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Non-local approaches 
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H2 : similarity between patches        similarity of central pixels 
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Toy examples – periodic texture 
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Toy examples – periodic texture 
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Toy examples – periodic texture 
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Toy examples – periodic texture 
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Toy examples – periodic texture 
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Isolated crenel  
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s=7 



Isolated crenel  
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s=15 
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Limits and solutions  

 Limits: 

• Loss of weakly contrasted structures  

• « rare patch effect »: noise halo 

 Influence of NL-means parameters: 

• Search window W 

• Patch size s 

• Kernel function (h parameter) 

 Solution: 

• Local adaptation of h 
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Bias / variance trade-off 



Influence of W: loss of details 

 

page 33 

W=11x11 W=61x61 



Influence of W: loss of details 
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Influence of patch size: « rare patch effect » 



Influence of patch size: « rare patch effect » 
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Influence of patch size 
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Influence of patch size 
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Results  
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Influence of h 
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h adaptation  
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How to compare noisy patches ? 

 Buades et al. (2005) 

• Euclidean distance between patches 

• Implicit assumption of AWGN 
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How to compare noisy patches ? 

 Example of signal dependant-noise: 

 

 

 

 

• Limits of the euclidean distance: 
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How to compare noisy patches ? 
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Noisy image  

(gaussian noise) 

Denoised (« oracle » 

Driven by noise-free  

Image content) 

Denoised  

(driven by noisy  

Image content) 



How to compare noisy patches ? 
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Noisy image  

(Poisson noise 

Signal dependent noise) 

Denoised (« oracle » 

driven by noise-free  

Image content) 

Denoised  

(driven by noisy  

Image content) 

Noise distribution has to be taken into account 



How to compare noisy patches ? 
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Steps of non-local denoising 
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A probabilistic framework 

 Principle: adaptation of the NL-means to any kind 

of (known) noise distribution  

• Estimation step: 

Weighted average is replaced by weighted maximum 

likelihood estimation 

 

 

 

• Detection of similar patches: 

Weight definition is defined in a detection framework 

by hypothesis testing  
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Similarity definition 

 Similarity is defined by an hypothesis test: 

 

 

 Performance measured by: 

 

 

 The likelihood ratio test maximizes PD  
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Similarity definition 

 Unknown values are replaced by ML estimates (GLR): 

 

 

 

 

 Study of this criterion 

 

 

 

page 53 



Evaluation of similarity criterion  
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Evaluation of similarity criterion  

 

page 55 



 

page 56 



page 57 

 Introduction  

• Denoising and models  

 Non-local / patch based approaches 

• Principle 

• Toy examples 

• Limits and solutions  

 Advanced methods  

• Noise adaptation 

• Iterative approaches   

• Automatic setting of  parameters 

• Shape of  patches  

 

 

 

 

 

 

 



Iterative version approaches 

Similarity definition - refinement   
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Computed on noisy data  

using noise distribution and GLR 

Computed on noise-free data 

using an iterative scheme 

and symmetrical KL divergence 

 



 Iterative version- Weight refinement 
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 Iterative version- Weight refinement 
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 Iterative version - Weight refinement 
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 Iterative verion - Weight refinement 
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 Iterative verion - Global scheme 
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 Iterative version - Global scheme 
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Limits: number of parameters (W, p, number of iterations) 



Iterative version  



page 66 

 Introduction  

• Denoising and models  

 Non-local / patch based approaches 

• Principle 

• Toy examples 

• Limits and solutions  

 Advanced methods  

• Noise adaptation 

• Iterative approaches   

• Automatic setting of  parameters 

• Shape of  patches  

 

 

 

 

 

 

 



Spatially adaptive aggregation 

 Many parameters: 

• Search window size (rare patch, influence of small weights) 

• Patch size (rare patch effect, noise halo) 

• Number of iterations  / pre-filtering strength (bias / variance) 

 Antagonist criteria: no best global tuning  

• Quality of the estimation / amount of filtering 
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Influence of pre-filtering 
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 Spatially adaptative aggregation 

 Aggregation: 

• Compute several estimates with different parameters 

• Select the estimate with the best smoothing  
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Strong blurring: only takes into account estimation variance but not the bias  



 Spatially adaptive aggregation 

 Before aggregation: 

• Apply bias reduction for each estimation 

• Select the bias reduced estimate with the best smoothing  
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Spatially adaptive aggregation 

 General scheme: 
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Example of spatially adaptive aggregation 
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NL-SAR: A unified non-local framework for resolution preserving (Pol)(In)SAR, Deledalle, Denis, Tupin,  

Reigber, Jäger, Pre-print HAL 

 



Example of spatially adaptive aggregation 
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NL-SAR: A unified non-local framework for resolution preserving (Pol)(In)SAR, Deledalle, Denis, Tupin,  

Reigber, Jäger, Pre-printHAL 



Issues 

 Kernel choice 

• Gaussian is limited (no clear  cut) 

• Trapezoïdal kernels  

 

 

 Patch shape 

• Adapted shape  

• Choose the best estimate… by aggregation! 

page 74 



Steps of non-local denoising 
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Variations  on non-local approaches  

 BM3D 

• Instead of  denoising one pixel: denoise the whole  

stack of  similar patches  

 

 NL-Bayes 

• Introduce a prior on the  denoised patches (instaed 

of  a ML estimate compute a MAP estimate) 

 

 Patch dictionnaries  

• K-SVD 

• Epitomes 

• FoE 
page 76 



Patch-based applications  

 Some applications in image processing 

• Inpainting (image and video) 

• HDR (High Dynamic Range) 

• Texture synthesis 
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Patch-based inpainting 

 Principle: 

• Start by the boundary pixels of the region to fill  

• Select a patch around the pixels 

• Search for  similar patch in the known image 

• Fill the central pixel with the central value   
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Patch-based inpainting 
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@Newson et al.  



Patch-based inpainting 
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@Newson et al.  



Patch-based inpainting 
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@Newson et al.  



Video inpainting  

 Principle 

• Use space + time patches to fill gaps  

• Multi-resolution framework 

• Estimation of the dominant motion in the  video 
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High Dynamic Range Imaging 
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HDR  
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Loss of details in dark areas 

Loss of details in bright areas 



Patch-based HDR (High Dynamic Range) 
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HDR principle – static case 
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HDR principle – static case 
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HDR – dynamic case 
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Patch-based HDR 
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HDR 
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@C. Aguerreberre et al.  

@Aguerreberre et al.  



HDR 
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@C. Aguerreberre et al.  
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Texture synthesis  
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Texture synthesis  
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Texture synthesis – random phase  
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Textures synthesis – random phase 



Textures synthesis – random phase 
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Patch-based synhesis  
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Synthesis  with spectrum and patches  
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Examples  
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Examples  
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Conclusion 

 Patch-based approach for image 
processing 

• Very powerful and « weak » models  

• General formulation 

• Wide range of applications beyond 
denoising 

• Spatial and temporal adaptation (video) 

 

 Limits  

• Additive gaussian noise 

• Many parameters 
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