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Variable Length Coding Over an Unknown Channel
Aslan Tchamkerten and İ. Emre Telatar, Member, IEEE

Abstract—Burnashev in 1976 gave an exact expression for the
reliability function of a discrete memoryless channel (DMC) with
noiseless feedback. A coding scheme that achieves this exponent
needs, in general, to know the statistics of the channel. Suppose now
that the coding scheme is designed knowing only that the channel
belongs to a family of DMCs. Is there a coding scheme with
noiseless feedback that achieves Burnashev’s exponent uniformly
over at a nontrivial rate? We answer the question in the af-
firmative for two families of channels (binary symmetric, and Z).
For these families we show that, for any given fraction, there is a
feedback coding strategy such that for any member of the family:
i) guarantees this fraction of its capacity as rate, and ii) guaran-
tees the corresponding Burnashev’s exponent. Therefore, for these
families, in terms of delay and error probability, the knowledge of
the channel becomes asymptotically irrelevant in feedback code de-
sign: there are blind schemes that perform as well as the best coding
scheme designed with the foreknowledge of the channel under use.
However, a converse result shows that, in general, even for families
that consist of only two channels, such blind schemes do not exist.

Index Terms—Burnashev’s exponent, error exponent, feedback,
universal channel coding, variable-length coding.

I. INTRODUCTION

WE consider communication over a stationary discrete
memoryless channel (DMC) with causal, perfect feed-

back. The presence of feedback allows the encoder to let
the transmitted symbol at time to depend upon the
received symbols as well as the message .
More subtly perhaps, the feedback allows the decoding time
to depend on the received sequence. Consider, for example,
communication with feedback over a binary erasure channel of
a 1-bit message ([10, Problem 2.10] and [7]). The
encoder, by sending until a nonerasure occurs, can
ensure error-free communication, with a random decoding time

at which the decoder declares .
It is easy to see that the expected decoding time is
where is the erasure probability. One also observes that
this strategy, when used to transmit a succession of bits, will
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achieve a long-term-average rate of bits/channel
use. Note that this is indeed the capacity of the binary erasure
channel, and the above strategy achieves it, with perfect reli-
ability, without the knowledge of the channel parameter . It
would be appropriate to call this universal strategy “optimal for
the class of binary erasure channels.” 1

If optimal feedback strategy for a class of channels were de-
fined only in terms of achieving capacity, then it is not diffi-
cult to see that such strategies exist—e.g., first train to estimate
the channel and then transmit for the estimated channel—for a
very broad class of channels. If, however, the optimality crite-
rion were to include a finer notion of reliability in terms of the
decoding delay and error probability, then the existence of such
strategies is far from clear.

In considering feedback communication over a known
channel, Burnashev [2] gave an exact expression for the re-
liability function—the exponential rate of decay of the error
probability with respect to the expected decoding time. In the
following, we will refer to this function as the “Burnashev
exponent.” 2

We choose to include the notion of reliability in our optimality
criterion by asking a strategy, when used on a member of a class
of channels, to “attain the Burnashev exponent” for this member.
Note, however, that there is an ambiguity in this requirement:
the rate that is achieved by a strategy depends, in general, on
the member, and it is thus necessary to specify for what rate we
evaluate the Burnashev exponent. Furthermore, a strategy that
transmits above capacity for all channels in the class, would
trivially achieve the Burnashev’s exponent at this rate (as the
exponent equals zero); to admit such a strategy as universal is
clearly undesirable. We thus see that universality needs to be
defined with some care.

In this paper, we define a suitable optimality criterion and
show that, for two nontrivial classes of channels (binary sym-
metric and Z), there are strategies that are universal in this sense.
Loosely speaking, for these families, it is possible to both attain
the Burnashev’s exponent and have a certain control on the rate.
The control on the rate is in the form of guaranteeing that the
rate stays above (or below3) a certain fraction of the channel

1Notice that without feedback, the communication task at hand would be that
of communication over a compound channel [1]; a strategy could hope at best
to transmit at the capacity of the worst channel in the class.

2In particular, even though feedback does not increase the capacity of a mem-
oryless channel (Shannon [17] and Csiszàr [3]), it does, in general, increase
the reliability function. That the feedback strategies need not commit to a fixed
block length turns out to be critical for this gain in reliability: Dobrushin [5]
shows that for symmetric channels the error exponent attainable by block feed-
back strategies cannot exceed the sphere packing exponent.

3In certain cases, it might be more desirable to achieve a low error probability
rather than a high communication rate. Therefore, one may want to communi-
cate at a rate that does not exceed a certain limit while attaining a low error
probability.
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capacity. Such strategies, in terms of rate and reliability, thus
do asymptotically as well as the best coding schemes tuned for
the channel under use. Therefore, in terms of achievable rates
and error exponent, the knowledge of the channel becomes ir-
relevant: no penalty occurs because of the channel uncertainty.
However, families of channels for which universally optimal
feedback strategies exist are rather specific. More precisely, we
provide a converse result that shows that, even for certain simple
families of channels that contain only two channels, no univer-
sally optimal coding strategy may exists.

The rest of the paper is organized as follows. In Section II,
we first review a few important definitions on variable length
coding schemes.

In Section III, we exhibit optimal coding strategies for the
sets of binary symmetric and Z channels in a sequence of steps.
In Section III-A, we exhibit a decoder that performs without
knowing the statistics of the channel under use for an arbitrary
class of DMCs, i.e., a universal decoder. For the average error
probability over the ensemble of codes randomly generated ac-
cording to a distribution (i.e., each symbol of each code-
word is chosen independently according to ), this decoder,
when operating at a rate , achieves an error exponent equal to

, where is the current channel and is the
mutual information between the input and the output induced
by the joint distribution . For each
of the two classes of binary symmetric and Z channels, one can
find a (universal) encoder that, combined with the above uni-
versal decoder, yields a coding strategy that achieves the error
exponent for every channel. In Section III-B, we
append a second coding phase to the above universal coding
strategy. The addition of this second phase augments the error
exponent and makes it possible to attain Burnashev’s exponent
for the binary symmetric and the Z families.

In Section III-C, we set, in a general framework, the problem
of finding universally optimal coding strategies for a given set
of channels. We then show that for general families of channels
optimal coding strategies do not necessarily exist.

In Section IV, we prove our results. In Section IV-A, we prove
the claims related to Section III-A whereas Section IV-B con-
cerns the claims of Sections III-B and III-C.

We conclude this section with notational conventions. With a
slight abuse of notation, when we refer to some channel it is
intended to be a DMC with transition probability matrix . The
Z channel is the binary-input binary-output channel given by

and , for some . Random vari-
ables are denoted by capital letters, e.g., , and their samples
by lower case letters, e.g., . The notation stands for the
expectation of . Given a sequence we
define its empirical distribution as

where if and if . Given two
sequences and , the joint empirical distribution is denoted
by , i.e.,

II. PRELIMINARIES

Let be a stationary DMC with input alphabet , output
alphabet , and with causal instantaneous noiseless feedback.

Definition 1 (Codebook (or Encoder)): Given a message set
of size , a codebook (or encoder) is a sequence of

functions

(1)

The symbol to be sent at time is given by .
A codeword for message is the sequence of functions

.

Definition 2 (Random Codebook): A random codebook is a
set of randomly and independently generated codewords, such
that each codeword is replaced by a sequence of
random variables

drawn independently according to some probability distribution
defined over .

A perhaps more natural definition of a random code-
book might be a codebook where the elements in the set

are replaced by samples drawn independently
according to some probability distribution defined over .
With this definition, for a given message, the th symbol to be
sent depends on the received symbols . In Definition 2, the

th symbol to be sent is the same, regardless of . In other
words, the random codebook as defined in Definition 2 ignores
feedback. However, one can easily check that our results related
to random codebooks (in particular, Proposition 1) hold with
both definitions.

Definition 3 (Decoder): Given a message set of size
, a decoder is a sequence of functions

(2)

together with a stopping time relative to the received symbols
.4 The decoded message is .

Definition 4 (Coding Scheme and Sequence of Coding
Schemes): Given a message set of size , a coding
scheme is a tuple . A sequence of coding schemes
indexed by the number of messages is denoted by .

Example 1: In the language of the definitions intro-
duced, the coding scheme in the Introduction for the bi-
nary erasure channel can be described by

, if and
if , and .

4An integer-valued random variable T is called a stopping time with respect
to a sequence of random variables Y ; Y ; . . . if, for all n � 1, conditioned on
Y ; . . . ; Y , the event fT = ng is independent of Y ; Y ; . . .
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Definition 5 (Rate): Given a message set of size and
a coding scheme , the transmission rate is5

nats per channel use (3)

where denotes the expected decision time (over uniformly
chosen messages) when the channel is used, i.e.,

message is sent (4)

Indeed, by the law of large numbers, when a large number of
messages are sent using a coding scheme , the average rate
approaches .

The asymptotic rate for a sequence of coding schemes
and a given channel is

(5)

whenever the limit exists. Notice that we use the same “ ”
for two different quantities and . No confusion
should occur since, while both functions have the same range,
they are defined over different domains.

Definition 6 (Error Probability and Average Error Proba-
bility): Given a message set of size and a coding scheme
, the average (over uniformly chosen messages) error proba-

bility is defined as

message is sent

(6)
where the subscript refers to the channel over which com-
munication is carried. Alternatively we will use the notation

instead of to emphasize the coding
scheme under consideration.

Given a decoder and a codebook randomly gen-
erated according to some distribution ,6 the average error
probability (over uniformly chosen messages) is denoted by

.

In general, given a message set of finite size, finding a coding
scheme that minimizes the error probability for a certain coding
delay is an open question. For this reason, we shall instead con-
sider the behavior of the error probability when the message set
size tends to infinity.

Definition 7 (Error Exponent): Given a channel and a se-
quence of coding schemes

such that as , the error exponent is

(7)

5We use “ln” for the logarithm to the base e.
6See Definition 2 of a random codebook.

Fig. 1. For a given DMC Q with perfect feedback, the maximum achievable
error exponent is given by E (R;Q). The slope of E (R;Q) is always equal
or steeper than �1.

Remarkably, the exponential behavior of the error probability
as a function of the expected decoding time of the best coding
schemes is known.

Theorem (Burnashev [2]): Let be a DMC with input and
output alphabets and , and with capacity . Let be
any constant in . For any such that

(8)

where

(9)
and where denotes the Kullback–Leibler
distance between the output distributions induced by the
input symbols and . Moreover, there exists an such that

and .
The typical shape of is given in Fig. 1. In the sequel, the

function will be referred to as the Burnashev’s exponent.

III. RESULTS

A. A Universal Coding Scheme

Suppose we use some random codebook to
communicate through a channel that is revealed neither to the
transmitter nor to the receiver. The transmitter starts sending

for some until a decision is
made by the receiver. What is a good time to decode? Since
the code has been generated according to , we may hope to
achieve rates up to over the channel , and aim for a
rate with . But, since is unknown, we cannot
use directly in our decoding rule. However, one would
expect that the empirical distribution of the sent codeword and
the received sequence would be close to , and that among all
codewords the sent one would have the largest empirical mutual
information with the received sequence. Hence, a reasonable
candidate for the decoding instant is the first time for which

. Accordingly, consider
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Fig. 2. This figure illustrates the first phase of one transmission cycle with
M = 3. Each trace represents a sequence of empirical mutual informations
fI(P̂ )g , m = 1; 2; 3. As soon as a trace exceeds the threshold
curve , the decoder declares the corresponding message.

the following universal decoding time defined
as:

with (10)

where is some fixed constant. At time , the receiver
declares the message for which the empirical mutual in-
formation exceeds the threshold that defines (see Fig. 2).
If multiple messages have empirical mutual informations that
exceed this threshold, the receiver picks the one with the
smallest index. Through feedback this decision is also known
to the transmitter. This universal decoder, which we denote by

, is an extension of the well-known maximum
mutual information (MMI) decoder [12], [4]. The difference
between and the MMI decoder stands in that
the MMI decoder is used in combination with fixed length
codebooks, whereas chooses the moment to
decode according to the stopping time defined in (10). Another
variation of the MMI decoder with variable length decision
time was previously introduced by Shulman [18, Ch. 3]. The
related results will be discussed after Proposition 2.

Proposition 1: Let be a DMC with input alphabet and
let be a probability distribution over . Let and let
denote the decoding error event at time . Then we get (11) at
the bottom of the page, where

and where denotes the expected decoding time
averaged over the ensemble of codebooks randomly generated
according to .

From Proposition 1 we deduce that, if the transmitter and
the receiver share a common source of randomness that gener-
ates independent and identically distributed (i.i.d.) samples ac-
cording to some distribution , the error exponent
is achievable at a rate without the transmitter
and the receiver knowing the underlying channel.

Remark: One of the parameters in Proposition 1 is the input
distribution , and this might be considered as a weakness of the
proposition. A question that naturally arises is the choice of this
distribution when different channels in the class have different
capacity achieving distributions. We don’t have an answer to this
question, but, for any set of binary input channels, setting
to be the Bernoulli 1/2 distribution yields
for any element in , where denotes the capacity of
the channel (see [14] and [18, Chapter 5]).

The next proposition shows that for some classes of channels
the error exponent is universally achievable with
one single sequence of (nonrandom) codebooks. In other words,
in certain cases, the error exponent is universally
achievable without the transmitter and the receiver sharing a
common source of randomness. The universal coding strategy
obtained still requires only 1-bit feedback.

We denote by and the set of BSCs and Z channels,
respectively, with crossover probability .

Let be a probability distribution over and a channel
with input and output alphabets and such that .
Let denote the set of joint distributions on . For any

and any integer define

(12)

We use the notation to denote .

Proposition 2: Let and let

(13)

For any and any probability distribution over ,
there exists a sequence of codebooks such that, for
every

satisfies

and

(14)

The same result holds for the family with .

Remark: The decoder
differs from only in that the decoding time of

is bounded by . In
particular, if no sequence of empirical mutual informations ex-
ceeds the threshold that defines by time
the decoder declares an error

(11)
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whereas does not. An intuitive meaning of
is provided in the remark that follows the proof

of Proposition 1.
In [18] a result similar to Proposition 2 is given.

Theorem (3.1, Shulman [18]): Let be any set of DMCs de-
fined over the same input alphabet . For any probability dis-
tribution over , there exists a sequence of coding schemes

such that

I. for any and large enough, for
all ;

II. the asymptotic rate equals for all .

The preceding theorem has a more general setting than Propo-
sition 2. The theorem says that even though the channel is almost
completely unknown to both the transmitter and the receiver
(only the input alphabet needs to be revealed), it is possible to
reliably communicate, in the sense that the error probability can
be made uniformly arbitrarily small. In Proposition 2, we re-
stricted ourselves to smaller families of channels while having
a refined expression for the error probability. Also notice that in
Shulman’s case, the rate is governed by the input distribution
whereas in our case the asymptotic rate is set by both and the
parameter in the definition of . Finally, it should be
emphasized that the universal coding schemes in [18, Theorem
3.1] exploit also only 1-bit of feedback.

In the next subsection, we provide a means for boosting the
error exponent obtained in Proposition 2.

B. Boosting Error Exponents

We describe a two-phase coding scheme where the first
phase is carried out by the universal coding scheme mentioned
in Proposition 2 with decision time
(see (14)). In certain cases, the addition of a properly chosen
second phase boosts the error exponent from
to Burnashev’s exponent. From now on and without loss of
generality, we assume that message is sent.

At time , the receiver labels
as “most probable” the message for which the empir-
ical mutual information exceeds the threshold that defines

. If multiple messages have empirical
mutual informations that exceed this threshold at time ,
the receiver picks the one with the smallest index. Through
feedback this decision is also known to the transmitter.

The second phase consists in performing a hypothesis test to
let the decoder decide if the message labeled “most probable”
is the sent message or not. Namely, let and be code-
words for two additional messages “Ack” and “Nack,” respec-
tively. If , the transmitter acknowledges the choice of the
receiver by sending . If , the transmitter denies the
receiver’s decision by sending . If the receiver decodes the
sent codeword as “Ack,” the transmission of the message is com-
plete (either correctly or incorrectly), and the transmitter starts
re-emitting a new message. Otherwise, if the decoder decides
on “Nack,” we begin afresh and message is retransmitted (see
Fig. 3).7

7The idea of a two-phase transmission procedure characterized by first
choosing a “most probable” message and then accepting or rejecting this choice
was previously studied, e.g., in [16], [2]. Our scheme differs from the previous
works mainly because it is independent of the channel under use.

Fig. 3. The graph illustrates a two-phase transmission procedure. The vertices
indicate what the transmitter sends. The edges indicate the receiver’s decision.
In particular, codeword x(1) is correctly transmitted only if: message 1 is
declared as the “most probable” codeword and x(A) is correctly decoded.

The results of this subsection are obtained by studying two-
phase coding strategies. Theorems 1 and 2 below are to be com-
pared with Proposition 2.

Theorem 1: Let . For any there exist
two sequences of coding schemes and such that, for every

with

(15)

and

with

(16)

Further, there exists such that, for every

with

(17)

Theorem 2: For any and , there exists a
sequence of coding schemes such that, for every

(18)

Note the difference between Theorems 1 and 2. For
and it is possible to achieve Burnashev’s exponent but, for

, the constant allows only to bound the rate (either from
above or from below), while for channels it allows an exact
control on the rate.

We may ask if the same result for more general families of
channels as for and holds, i.e., to achieve Burnashev’s
exponent universally while having a certain control on the rate.
An answer will be provided in the next section.

C. Optimal Feedback Strategies

We first provide a general setting for the problem of com-
munication with feedback over an unknown channel. Then we
introduce an optimality criterion for feedback strategies with re-
spect to a family of channels. This criterion essentially asks for
attaining Burnashev’s error exponent, and, at the same time, it
asks for having a certain control over the communication rate.
In light of Theorems 1 and 2, we shall conclude that, for the bi-
nary symmetric and the channels families, optimal feedback
strategies exist. Second, by extending a results from [19], we
show that, in general, optimal feedback strategies do not exists.
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The following definition introduces a main concept of this
paper. We quantify the set of error exponents that can simulta-
neously be achieved over a given family of channels.

Definition 8 (Universally Attainable Error Exponent): Let
be a set of DMCs. Let be a nonnegative function defined
over . Let be a function such that for
every and , and such that

for every and with .8 The function
is a universally attainable error exponent over for

rates in the range if, for any and any
, there exists a sequence of coding schemes such

that the following two conditions hold:9

I.

and (19)

II. for every with

(20)

Condition I of Definition 8 requires that, for a given channel
and for any , there exists a sequence of coding

schemes yielding a rate at least equal to and a corresponding
error exponent at least equal to . By condition II, this
sequence , if used on any channel (with ),
must achieve a strictly positive error exponent and therefore a
rate not exceeding . Without condition II, the definition
would have only required that for each channel there would be
a good coding scheme, which does not capture the notion of
universality.

For any and let

(21)

where is defined in (9). In the case where
(which implies that )

we set .10 The nonnegative quantity
compares the sequence of coding schemes , in terms of error
exponent, with the best possible sequence of coding schemes
designed for the channel and rate . For any family

, let

S S

(22)

A definition of an optimality criterion with respect to a set of
feedback strategies and a family of channels would be to require
that . This means that there exists a sequence of ’s
each of which yields a rate not exceeding capacity and in the
limit an error exponent equal to Burnashev’s, on any channel
in . However, the existence of such a sequence gives no control
on the rate achieved on the family of channels. In particular, for
two different channels this rate might be negligible on one and
close to capacity on the other.

8The function K(Q) plays the role of the capacity.
9The same “E” is used to for two different quantitiesE(R;Q) andE(S;Q).

No confusion should occur since, while both functions have the same range,
they are defined over different domains.

10The definition of�(S; Q) implicitely assumes thatR(S;Q) is well defined.

A second alternative for the definition of an optimality crite-
rion would be to introduce the quantity

S
S

S

(23)

and to declare optimality if

(24)

equals zero. One can easily check that this second definition of
optimality is stronger than the previous one in that if

, then . Claiming is essentially equiva-
lent to declare that Burnashev’s exponent is universally achiev-
able over , for rates in the range , while universally
having a certain control on the rate through the parameter .
However, notice that the control on the rate is only from below:
we focus on coding schemes that, universally, yield a rate at least
equal to .

We now introduce our optimality criterion that will basically
require to be able to universally achieve Burnashev’s exponent,
and to control the rate from above and from below, on any
channel in the class. Define the quantities

S
S

S

(25)

S
S

S

(26)

For any family of DMCs , we define the diversity as

(27)
We say that a family satisfies the optimality criterion if it is
nondiverse, i.e., if

(28)

Finally, we justify the terminology “diversity” for the quantity
defined in (27). Having large implies that there

exists a pair of channels in such that Burnashev’s exponent
cannot be universally achieved at either sufficiently high rates or
at sufficiently low rates (or both). Informally, if is large,
the family contains some “too different” channels (the family is
too “diverse”) in that, at some particular rate, no coding scheme
can attain Burnashev’s exponent on each of them.

Combining (27) with Theorems 1 and 2 we obtain the fol-
lowing corollaries.

Corollary 1: If then .

Corollary 2: If then .

For , the optimality criterion is satisfied and, in addition,
the corresponding “optimal coding schemes” have the property
that they simultaneously achieve exactly any given fraction of
the capacity of the channel under use.

The following theorem is an extension of the theorem pre-
sented in [19] and provides a converse to the Corollaries 1 and 2.
It says that, given a pair of channels and that satisfies
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certain conditions, Burnashev’s exponent cannot be achieved si-
multaneously on and at all rates for below a
certain threshold.

Theorem 3: Let and be two DMCs on . Let

(29)

and assume that there exists some such that

and

(30)

For any and any such that for
, either or

.

Example 2: Let and where
. One can easily check that

Therefore, the condition (30) becomes

from which we deduce that . Hence, if we operate at a
rate below half the capacity, Burnashev’s error exponent cannot
be simultaneously achieved on and .

As a consequence, in general, for a given family of channels
, we have , and hence the optimality criterion

defined in (28) is not satisfied, i.e., .
A discussion on whether optimal feedback strategies exist

also for more general classes of channels than the binary sym-
metric and the Z will be provided in Section IV-C.

IV. ANALYSIS

This section is devoted to the proofs of the results of Sec-
tion III. We would like to draw the reader’s attention to the fact
that Propositions 1 and 2 and Theorems 1 and 2 still hold if the
feedback link has any constant delay, provided it remains noise-
less. This can be easily checked from the analysis we provide in
this section.

From now on, whenever we consider a channel it is assumed
to have input and output alphabets and .

A. Proofs of Propositions 1 and 2

We first establish five lemmas mainly using tools from the
Method of Types [4].

The set of all joint types of length defined over is
denoted by whereas denotes the set of all joint distribu-
tions over .

Lemma 1 gives the probability that the empirical mutual in-
formation of an incorrect codeword exceeds the threshold that
defines (see (10)) at some time , when the codebook is ran-
domly generated according to a distribution .

Lemma 1: Let and be two distributions over and
, respectively. Let be a sequence of i.i.d. pairs

of random variables such that

for all . For any real and integer

(31)

Proof: The event is the union of
all joint empirical distributions yielding a mutual informa-
tion larger than . From the Method of Types, the proba-
bility that equals a particular empirical joint distribu-
tion is upper-bounded by . A direct computa-
tion yields, for any

(32)

where

and

Hence, , and therefore,

(33)

where the last inequality holds since satisfies
(see, e.g., [4, Lemma 2.2]).

We now present a technical lemma that will often be used in
the sequel. It shows that the quantity introduced
in (12) grows logarithmically in provided that
Given two functions and , we use the notation

if there exist and such that
for . If and
then we write . Finally,

the notation is used if
as .

Lemma 2: Let , let be a probability distribution over
, and let be a channel such that . The quantity

(34)

is well defined for all . Moreover

(35)

Proof: Fix some integer . The function
defined over the compact convex finite-dimensional set is
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Fig. 4. 0 < r = r(�;M;n ) < I(PQ).

convex and therefore (see Luenberger [13]) continuous. Since
is compact

(36)
The function

is nondecreasing with . Since , and because
strictly decreases with , we conclude that

for all . Hence, is well defined.
We now prove (35). Let us first rewrite (34) as

(37)

with .
Since if and only if

(38)

for all (see Fig. 4). Therefore, since ,
by defining

we have for all . Now let
be the unique solution of the equation

(39)

The same arguments as for applies and, therefore,
. Let us write for

since , , and are kept fixed. Using the definitions of and
, one can easily show that, for any

(40)

where the last inequality holds because and .
Therefore, from (40) we conclude

(41)

We now want an estimate of . To that aim, we consider the
first time the sequence of empirical mutual informations that
corresponds to the correct codeword crosses the threshold de-
fined by the curve . Lemma 3 will show that this time
has low probability to occur after when the codebook is ran-
domly generated according to a certain distribution .

Lemma 3: Let be a probability distribution over and let
be a channel such that . Let be a

sequence of i.i.d. pairs of random variables such that

For any and , the quantity
defined in (12) satisfies

(42)
Proof: From the Method of Types we have

(43)

where the last equality follows from the definition of .

Lemma 4 states results about in terms of its mean and its
concentration around the mean as the message set size increases.
Unless stated otherwise, from now on we assume, without loss
of generality, that message is sent.

Lemma 4: Let be a probability distribution over and let
. For any channel such that , the ensemble

of codebooks randomly generated according to satisfies, as

I.

(44)
II.

(45)
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III.

(46)

Proof: For the logic of the proof we prove the claims in
the order I, III, and II.

I. Let where

(47)
We first show that which im-
plies that

Since is a continuous function over the closed
set , the minimum
in the denominator of the right-hand side of (47) is
well defined, and so is . Now suppose that

for all . A
direct computation (as for (32)) yields

(48)

where

Then, since the set of product measures in is
closed and is continuous over , from (48)
we have

(49)
In other words, any product measure is at least at a
distance from . Hence, for large enough ,
the compact set
contains no product measures. Therefore, for large
enough

(50)

implying that is finite. This implies that
decreases with increasing , and since it

is lower bounded by , we get .
From the definition of (see (10)) and since, without

loss of generality, we assume that message is sent, we
have

(51)

where stands for the largest integer not greater than
. Let us focus on the expression

If we expand in the definition of we get

(52)

which implies that

(53)

Hence, from (51) and (53)

(54)

Since and since

from (54) we obtain

(55)

III. From (51)–(54) we deduce that

(56)

for all . Hence, from the definition of we get

(57)

Thus, in order to prove claim III it suffices to show that

(58)

First notice that from the definition of we have
, where denotes the smallest

integer not smaller than . Let us define

and

where

(59)
Similarly as for , we have

. We have

(60)

From (60), and since , in order to
derive (58) it suffices to show that
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From the definition of we get

and

with (61)

The union bound and Lemma 1 yield

with

with

with (62)

An easy computation yields

(63)

Now, expanding in the definition of we
have

(64)

which implies that (same as in (52)–(53))

(65)

From (62), (63), (65), and the definitions of and we
have

(66)

and we conclude that

(67)

II. Since and from
(66) we get

(68)

Remark: We may notice that the function in the defi-
nition of and in the proof of Lemma 4
can be replaced by any strictly positive function such that

.

Lemma 5 is a key lemma and Proposition 1 is an immediate
consequence of it. We consider communication over a channel

by means of a codebook randomly generated according to
some distribution , and the universal decoder
defined in Section III-A.

Let be any integer such that and let denote the
event defined as: no correct decoding decision has been made
during the period . In particular, includes the decoding
error event of .

For notational convenience we shall often remove the argu-
ments of the functions and write, for example, instead of

.

Lemma 5: Let be a probability distribution over and
let be a channel such that . Let and let

be defined as in (12). Then

I.

as (69)

II.

(70)

where .
Proof:

I. We have

and

with (71)

Without loss of generality, we assume that message is
sent, hence .
Lemma 3 in turn yields

(72)
Now, for every and , we have
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(73)

with , and Lemma 1 together
with the union bound gives (73) at the top of the page.
Hence, from (71)–(73) we have s

(74)

II. Let . We readily obtain

(75)

The first equality follows from the fact that
by Lemma 2. The second and third equalities

are justified by Lemma 4 claim III. Finally, combining
(74) and (75) we get

(76)

Hence,

(77)

where by Lemma
4 claim III.

Proof of Proposition 1: Since

(78)

Proposition 1 follows from Lemma 5.

Remark: At this point, we would like to give some intuition
on . This quantity is introduced to find a conve-
nient upper bound on ,
the average error probability of the universal decoder

, when the codebook is randomly gener-
ated according to some distribution . Let be
an integer valued function growing sublinearly with . We
may upper-bound by considering as
an error the event in which has not made a
correct decision in the interval . We denoted this event by

. The event is realized if one of the following two events
happens: an incorrect decision is made in the interval , or,
in the interval no message has a corresponding sequence

of empirical mutual informations that exceeds the threshold
that defines , i.e., . Denoting these two error events
by and , respectively, we get

(79)

What now remains is to strike a good balance between
and by choosing an appropriate . The used above is
chosen such that and have the same error exponent.

From Proposition 1 we deduce that, for any channel , it is
possible to find a codebook that, combined with the universal
decoder described in Section III-A, yields a low error proba-
bility. However, in general, this does not imply the existence
of a codebook that guarantees low error probability for every
channel in a given family. The main point in the proof of Propo-
sition 2 is to show that there exists a codebook that admits low
error probability on all channels in ( ), and
similarly for ( ). An essential ingredient is a cou-
pling among the channels in the families and . This
coupling is made possible because of the ordering among chan-
nels in the families.

Proof of Proposition 2: We first consider the family
where . Pick an input distribution over , a
constant , and let

(80)

For the moment we assume that is well defined and
such that . We will prove this claim at
the end of the proof.

Without loss of generality, we introduce a coupling between
the channels in . This coupling will be used to show the
existence of a universal codebook that, combined with the uni-
versal decoder , has the desired
error probability and expected decision time for all channels in

.
Let be an i.i.d. sequence of random variables such

that is uniformly distributed within the interval , and
set

(81)

where if and if
. We interpret as the th output of the channel

when the input symbol is (one can verify that the crossover
probability of the channel described in (81) is indeed ). The
coupling introduced in (81) is such that whenever the channel

makes a crossover, all the channels with
also make a crossover. Moreover, because of the coupling,

at each time the set behaves as if there were only at
most distinct channels. To see this, let us partition
as follows. Let be the order statistics of , i.e.,
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represents the same set of random variables as
but labeled in increasing order. Then partition as

(82)

where

for and . From
the above partition we deduce that, at time , given an input
sequence , the family produces at most distinct
output sequences of length , i.e., the set behaves as if
there were only at most distinct channels.

We will now consider the decoding rule described in Sec-
tion III-A with decision time instead
of . Using a random coding argument that makes use
of the coupling introduced above, we will prove that, for any

large enough, there exists a coding scheme that simultane-
ously over all channels in has the desired error prob-
ability and desired expected decision time. Let us first con-
sider the error probability that can be simultaneously achieved
over . One can check that claim I of Lemma 5 still holds
when is replaced by (assuming
that ). Therefore, for any ,
the average error probability over the ensemble of codes satis-
fies

(83)

If we apply Markov’s inequality to the error probability defined
over the ensemble of random codebooks generated according to

, from (83) we get

(84)

Now, recall that the coupling introduced among channels
is such that, at each instant , the family behaves as if
there were at most distinct channels. Hence, from the
union bound and (84) it follows that

(85)

Now for the decoding time. From the union bound we get

(86)

From Lemma 4 claim I, for every

(87)
It follows that

(88)

From (86) and (88) we have

(89)

A similar argument as above together with Lemma 4 claim II
yields

(90)

Finally, since grows logarithmically with
, the sum of the right-hand sides of (85), (89), and (90) is

smaller than for larger than some integer , say.
Hence, for every larger than , there exists a (non-
random) codebook such that, for every , the
following two conditions are satisfied:

(91)

and

(92)

From (91) and (92) and a similar computation as in (75)–(77),
by setting

we have

(93)

for every .

Authorized licensed use limited to: Telecom ParisTech. Downloaded on June 26, 2009 at 11:25 from IEEE Xplore.  Restrictions apply.



2138 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 5, MAY 2006

For the case where with , an argument
similar to that for holds. The only difference is that the
coupling should be made according to

(94)

We conclude the proof of the proposition by showing,
along the lines of the proof of Lemma 2, that

. From (12) we have

(95)

On the one hand, the function

(96)

is nondecreasing with . On the other hand,
strictly decreases with , and since ,
we infer that . Let us define as
the unique solution of the equation

(97)

Since , we deduce that

Finally, from a reasoning similar to that concluding the
proof of Lemma 2 (see from (39) onwards) we deduce that

.

B. Proofs of Theorems 1, 2, and 3

We start with a brief study on the two-phase coding strategy
emphasizing the purposes of the first and second phase. Let us
assume that communication is carried out over some channel
and that we have a two-phase coding strategy with the following
properties.

1. There is a low probability that the two-phase coding
scheme makes more than one cycle, i.e., there is a low
probability that, at the end of the second phase, the de-
coder declares “Nack.” As a consequence, the average
decoding time is approximatively equal to the
average decoding time of the first phase, , plus the
average decoding time of the second phase, .

2. The coding scheme used for the first phase achieves a rate
close to capacity.

3. The two-message coding scheme used for the second
phase is such that the probability of
declaring “Ack” while “Nack” is upper-bounded by

.

Under the above assumptions, we have that the average
error probability of the two-phase coding scheme can be
upper-bounded as follows:

(98)

The approximation holds by property 1. If the two-phase
coding scheme makes one cycle with high probability, the error
probability essentially equals to the probability that a wrong
message is declared “most probable” at the end of the first phase,
times the probability that the receiver declares “Ack” while a
“Nack” was sent.11 Inequality holds by the assumption 3.
The approximation holds because by
assumption 1. Approximation holds by hypothesis 2 and
is by definition of the Burnashev’s error exponent (9). Finally,
note that assumption 1 requires to be small, but
not necessarily exponentially small with respect to the average
coding delay of the second phase.

In order to prove Theorems 1 and 2, we will essentially
show that there exist two-phase coding schemes that satisfy
hypotheses 1,2, and 3 universally over and . This will
imply that Burnashev’s error exponent is universally achievable
over and . In addition, we will need to prove that
the rate can be controlled. For , this means that the rate
is guaranteed to be universally at least (or at most) equal to
a given fraction of the channel capacity, whereas for , the
control on the rate means a rate universally equal to a given
fraction of the channel capacity.

Remark: From (98) we see that the role of the first phase
is to carry information at a high rate while the role of the
second phase is to make the probability as small
as possible. Hence, Burnashev’s exponent can be achieved
with two-phase coding strategies even if the first phase has a
corresponding error probability that vanishes arbitrarily slowly
with increasing coding delay, i.e., the error exponent of the
first phase is irrelevant. Hence, the above computation gives
a simple way to prove the achievability part of Burnashev’s
theorem. However, the above computation hides a difficulty:
finding capacity achieving coding schemes for the first phase.
Therefore, the above computation gives only a conceptually
simple way to reach Burnashev’s exponent through a random
coding argument. Indeed, the two-phase scheme proposed in
[2] to prove the achievability of Burnashev’s error exponent
may appear very complex (at each time a complex randomized
decision at both the transmitter and the receiver is required),
but has the advantage that it can be implemented.

The next lemma shows that the probability of error of a two-
phase scheme is approximatively . For
simplicity, from now on we will often drop the subscript .

11 (x(N)) is the average error probability of the coding scheme used for
the first phase.
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Lemma 6: Let be a two-phase coding scheme. If
then

(99)

Proof: Let denote the event that an error occurs at the
end of the th cycle and let denote the event that the re-
ceiver declares “Nack” at the end of the th cycle. The family
of events is such that and also satisfies

. Hence, we have the recursion relation
, and therefore, .

It follows that

(100)

Now, we have

(101)

Since is a family of disjoint events, (100) and (101)
yield

(102)

Proof of Theorem 1: Pick some and as-
sume that communication is carried out over a binary symmetric
channel with crossover probability . The proof is
divided into a few subsections. We first introduce the coding
scheme used for the first phase that we denote by . We then
propose the two-message coding scheme, denoted by , used
for the second phase of communication. In the last subsection,
we show that the two-phase coding scheme has the desired prop-
erties.

a. We consider the coding scheme used for the first phase.
Letting and be the Bernoulli distribution,
we deduce from Proposition 2 that there exists a sequence
of coding schemes

(103)
such that, for every

(104)

and

(105)

b. The messages “Ack” and “Nack” are encoded by using
the all-one sequence and the all-zero se-
quence , respectively. Suppose that
is being sent. The resulting output sequence is
an i.i.d. Bernoulli sequence with . De-
fine the random variables ’s as

if and if
(106)

Let , , and define the stopping time

(107)
Consider the decoding rule:

– if : declare “Ack,”
– if : declare “Nack.”

By symmetry we have

(108)

and

(109)

Now
where is the strictly positive root of the function

(see, e.g., [11, Corollary 1 p. 233]) and equals
.12 Therefore, we have

(110)
From Wald’s equality and (108) we have

(111)

Since

(112)

from (110) and (111) we get

(113)

Hence, using (110) we obtain

(114)

For given and , the two-message coding
scheme described above will be denoted .

12D("k1�") denotes the divergence " ln("=(1�"))+(1�") ln((1�")="):
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c. Let denote the two-phase coding scheme obtained by
using and for the first and second phase, respec-
tively, and let denote the decoding time of

. Using Lemma 6, we deduce that that, for all

(115)

where we used the fact that .
Now, one can show that (see Appendix A)

(116)

Hence, using (113) and (105), for any and

(117)
where

(118)

Therefore, from (115)–(118), for every

(119)

In Appendix B, we show that if (118) and (119) hold for
any , then there exists a sequence of two-phase
coding schemes for which (118) and (119) also hold for

, i.e., there exists such that, for every

(120)

where

(121)

Now, for any with crossover probability

(122)

Choose some . Since is arbitrary, by
setting

from (120)–(122) we conclude that there exists such
that, for every with crossover probability

(123)

where

(124)

Similarly, if we now set

(125)

we deduce from (120)–(122) that there exists such that,
for every with crossover probability

(126)

where

(127)

Since Burnashev’s exponent cannot be exceeded, in-
equalities (123) and (126) are indeed equalities.

Finally, for the case . From (118) and (119), by
fixing and letting as ,
on can easily check that there exists such that, for any

, and

Proof of Theorem 2: Let and assume that com-
munication is carried over some Z channel with crossover
probability . We first introduce the coding scheme used for the
first phase, then the two-message coding scheme for the second
phase of communication. The resulting two-phase coding
scheme has zero error, i.e., infinite error exponent, for rates in
the range , for some fixed-input distribution . As
a final step, we show that the concatenation of two two-phase
coding schemes also yields error-free communication, but now
for all rates in .

a. We consider the coding strategy for the first phase. Let
be a probability distribution over . From Proposition
2 there exists a sequence of coding schemes

that satisfies, for all

(128)

and

(129)
b. The messages “Ack” and “Nack” of the second phase are

encoded by using the all-one sequence
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and the all-zero sequence . The length
of the second phase depends of length of the first phase.
More precisely, the length of the second phase is given by

for some constant that will be appropriately chosen later.
At the end of the second phase the decoding rule is given
by the following:

– if there exists such that :
declare “Ack,”

– otherwise: declare “Nack.”
It follows that

(130)

Now, by definition, we have .
Therefore,

(131)

c. Choose some , let , and let
. Let denotes the two-phase coding scheme

obtained from and , and let denote the de-
cision time of the two phase scheme. Since the average de-
coding time of the two-phase scheme is essentially equal
to the average length of one cycle of the two-phase scheme
(see Appendix A), we have

(132)

Letting and using (129) we get, for all

(133)

From (130), (131), and Lemma 6 we trivially have

(134)

If it suffices to have such that

In this case, and .
We have shown that any rate in can be uni-

versally achieved over at Burnashev’s error exponent
(here infinite). In the next subsection we show that the
concatenation of two two-phase coding schemes yields
the same result as above,now for all rates in .

d. Let , let be the Bernoulli distribution,
and consider a sequence of coding schemes
such that

and

Pick a particular coding scheme with decoding time
. The transmitter starts sending a message out the

messages. At time , the receiver decodes the sent

message (error-free) and the transmitter makes an esti-
mate of the underlying channel according to13

(135)

then sets as being the capacity-achieving distribution
of , i.e.,

(136)

where is the set of all binary distributions such that
.14 At a second stage, the transmitter

chooses a message out of a second message set of size ,
and sends it using a two-phase coding scheme according
to . Clearly, the overall two two-phase coding scheme
is error free, since at the end of each of the two coding
periods no error occurs.

Let us set . In the rest of the proof, we show
that the rate of the two two-phase scheme, that we denote
by , converges to as tends to infinity. We
have

(137)

Now, since the two-phase schemes we consider have their
second phase duration linear in the first phase length,
Lemma 4 extends to the decoding time as

(138)
and

(139)
for some functions and .
Let us define

(140)
From the bounds (138) and (139) we get

(141)

We now derive an upper and a lower bound on .
On the one hand, we have

(142)

From (135), (136), and (138) we deduce that

(143)

13By means of feedback, this operation is performed also at the receiver.
14Majani and Rumsey [14] proved that, for any Z channel, the ca-

pacity-achieving distribution is such that P (0) 2 (1=e; 1=2).
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as , and

(144)

as , where
since .15 From (141)–(144) we have

(145)

On the other hand, since

(146)

a similar computation as above yields

as (147)

From (145) and (147) we conclude that

(148)

as . Hence, from (137), (148), and the fact
that , the two two-phase coding scheme with

messages has its rate that converges
to as tends to infinity.

We now consider an alternative way for proving Theorems 1
and 2. Theorem 1 is proved by considering two-phase coding
schemes. In particular, we used Proposition 2 that claims
the existence of coding schemes, which we used for the first
phase, that achieve an error exponent equal to
with , uniformly over the family , for any

. However, as follows from the discussion that precedes
Lemma 6, the error exponent of the first phase coding scheme
is irrelevant: what is important is to achieve capacity. Hence,
let us keep the second phase of two-message communication
and replace the first phase by a training-based scheme, namely,
a coding scheme that first estimates the channel by means of
a test sequence, then conveys information with a fixed length
block codebook and a maximum-likelihood decoder tuned for
the estimated channel [8], [20]. It may be easily checked that
such a training-based scheme can achieve a rate
uniformly over , for any . Hence, the two-phase
scheme where the first phase is a training-based scheme,
achieves Burnashev’s exponent at a rate that is controlled as
stated in Theorem 1.

A similar argument as above holds for the family . By
using a training-based scheme followed by a two-message
coding scheme, it is possible to achieve Burnashev’s exponent
at a rate that is controlled as stated in Theorem 2. Therefore, we
found a two-phase strategy that yields the same performance as
the coding scheme that results from the concatenation of two
two-phase schemes (see proof of Theorem 2).

The reader may ask why we did not immediately use the
above arguments to prove Theorems 1 and 2, which clearly

15The set r has been defined in (136).

renders these proofs simpler. The reason is the following. A
codebook for a channel with feedback is a set of sequences
of functions . As mentioned above,
Proposition 2 proves the existence of coding schemes that
achieve an error exponent equal to uniformly over
the family . A look at its proof reveals that such universal
codes can be written simply as instead of

. In other words, the universal code-
book of Proposition 2 is composed by infinite sequences of
digits, that are not functions of the received symbols, i.e., do
not make use of feedback. Stated otherwise, the encoder knows,
before communication starts, which symbol will be sent at any
time, unless the decoder makes a decision previously. If we use
training-based schemes instead, at the end of the test period,
the encoder needs to have a large set of available codebooks
for the different channel estimates, which is complex. For this
reason, we preferred to prove Theorems 1 and 2 with a method
that does not involve training-based schemes.

The proof of Theorem 3 is a straightforward extension of the
theorem in [19].

Proof of Theorem 3: Consider two channels and .
Let be any sequence of coding schemes yielding zero rate
on and . From the proof of the Theorem in [19] (see, in
particular, the inequalities (44) and (45) therein) we deduce that
either

or

(or both), where

(149)

Since the error exponent is a nonincreasing function of the
rate, if and

, then, for any and any sequence
of coding schemes such that for

, either

or

C. Extending the Results for and to
More General Families

A difficulty in extending Theorems 1 and 2 to a more general
family of channels is due to the converse result provided by
Theorem 3.

Suppose for simplicity that we want a coding strategy that
achieves Burnashev’s exponent universally over some family

at a rate strictly below capacity. In other words,
we seek for a coding strategy that is optimal from the error
exponent point of view, but that does not necessarily satisfy
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the constraint that controls the rate.16 From the alternative
proofs given for Theorems 1 and 2 (see discussion before
the proof of Theorem 3), the first phase may be carried out
by any universal capacity-achieving coding scheme, such as
training-based schemes. However, a major problem arises in
finding a sequence of two-message coding schemes such that,
for

I. ,
II. as .

For BSCs and Z channels, there exist sequences of two-mes-
sage coding schemes that satisfy I and II. In addition, these
coding schemes have the property of having constant codewords

and . To gain more insight on
the limitation of universal coding schemes, and in connection
with hypothesis testing, it might be interesting to consider the
following situation. Suppose that does not sat-
isfy the conditions (30) in Theorem 3, and that

(150)

Is there a sequence of two-message coding schemes such that
conditions I and II are satisfied? Informally, the question can
be rephrased as: when are adaptive encoding procedures neces-
sary in order to achieve Burnashev’s error exponent universally
at zero rate? The motivation for studying two-message coding
schemes (see [19] for a related study) is that the maximum
achievable error exponent that can be obtained with two-mes-
sage coding schemes corresponds to the Burnashev exponent at
zero rate. This is in contrast with the situation without feedback
where, in general, there is a significant difference between the
maximum error exponents at zero rate and the one obtained with
only two messages [10].

V. CONCLUSION

The main concern of this paper has been to show how much
feedback may help when communication is carried out over a
stationary DMC that is unknown to both the transmitter and
the receiver. We have demonstrated that there are channels for
which the ignorance of both the transmitter and the receiver of
the channel in use is not a fundamental impediment to reliable
communication (Theorems 1 and 2). The communicating par-
ties can employ a universal coding strategy to asymptotically
perform as well as the best communication schemes tuned for
the channel over which communication is carried out. In these
cases we may notice that, in terms of error exponent, it is better
to have feedback while ignoring the channel rather than to know
the channel and not having feedback.

However, in general, for a given family of channels such op-
timal coding schemes do not exist: there are simple families,
namely, families with only two channels, for which universally
optimal coding schemes do not exist (Theorem 3).

In order to further understand in which situations the presence
of feedback helps in a communication setting, it might be in-
teresting to consider the following research directions. The op-

16Formally, using the operator � defined in (22), we ask whether
� (Q) = 0.

timal blind schemes presented in this paper use full feedback,
as Burnashev’s optimal schemes [2]. Since in practice the feed-
back link may have a limited capacity, we are lead to the fol-
lowing questions: what error exponent can be achieved if we
restrict ourselves to a low-rate error-free feedback link or to
decision feedback? Is it necessary to have full feedback to at-
tain Burnashev’s exponent? To the best of our knowledge, Bur-
nashev’s exponent has been obtained only by using two-phase
coding schemes, the basic structure of which was first intro-
duced by Schalkwijk and Barron [16] for Gaussian channels. In
these schemes, full feedback is needed to inform the transmitter
about which message has been declared “most probable” by the
receiver at the end of the first phase (see Section III-B). Perhaps
this amount of feedback may be reduced, for example, by using
the fact that the sent and received symbols are correlated.

In the case where the channel is known, Forney [9] showed
that error in an exponent larger than can be achieved with
decision feedback. In the case where the channel is unknown,
we showed that, in some cases, can be achieved with
1-bit feedback (see Proposition 2).17 For a study related to the
tradeoff between feedback rate and error exponent we refer to
[6]. There the authors consider two-phase schemes where the
feedback channel is used at a low rate, but in a “bursty” way.

An aspect that has not been addressed in this paper is com-
plexity. In this framework, we would like to mention Ooi’s Ph.D.
dissertation [15] in which practical low-complexity feedback
schemes have been derived for different categories of known/un-
known channels, such as discrete channels with and without
memory, and multiple-access channels. It might be interesting
to further study low-complexity coding schemes in the frame-
work of a more general question that seeks the tradeoff between
performance and complexity.

APPENDIX A
TWO-PHASE CODING SCHEME DECODING TIME

In this section, we show that the average decoding time of a
two-phase scheme is approximatively equal to the sum of the av-
erage decoding time of the first phase and the average decoding
time of the second phase, which justifies (116) and (133).18

Let be the overall decoding time, be
the decoding time of the first phase (for brevity we write for

), and be the decoding time of the
first phase. Let , and denote the number of
cycles performed by the two-phase scheme (i.e., the number of
“Nacks” before the final “Ack,” plus one). We have

(151)

where denotes the expected value of the first cycle given
that, at the end of the second phase, the decoder declares mes-
sage .

17Note that the information carried by this single bit through the feedback
link is more than 1 bit since it is sent at a random time.

18Note that the assertion becomes trivial if one considers fixed-length block
coding schemes for the first and second phase.

Authorized licensed use limited to: Telecom ParisTech. Downloaded on June 26, 2009 at 11:25 from IEEE Xplore.  Restrictions apply.



2144 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 5, MAY 2006

We will show that

(152)

and that is approximatively equal to the average length
of one cycle, i.e.,

(153)

We first prove (153). From the identity

(154)

and since , it suffices to show that

(155)

We have

(156)

where is the probability that, at the beginning of
the second phase, ( ) is sent conditioned
on the event that, at the end of the second phase, the decoder
declares message ( ). Similarly

(157)

We now show that the four terms on the right-hand side of (157)
are negligible compared to .

Since , we have

(158)

Then, by symmetry of the two-message coding scheme we have
, and therefore,

(159)
Now for the term , let us define as

such that (160)

Since , it follows that

(161)

Using Lemma 1 and the union bound we have19

(162)

19We assume that message 1 is sent.

Since (see paragraph after (94)) we
conclude that , and therefore, (161) gives

(163)

Finally, we show that

(164)

Let be equal to if at the end of the second phase a “Nack”
is declared, and be equal to zero otherwise. Since

, we have

(165)
Hence, since , to prove (164) it suffices
to show that the term . To that aim we
refer to [11, Ch. 7], where one can find the results that we use
here and that concern the expected stopping times for random
walks. Let where is the binary random
variable taking value in and such that
( ). Let be the strictly positive root of
and let denote the derivative of at . Let be any value
in such that . From [11, p. 236]20 one
deduces that

(166)

where . Since , the right-hand
side of (166) vanishes as tends to infinity, i.e.,

(167)

and therefore (164) follows from (165).
Combining (157), (158), (159), (163), and (164) we have

(168)

and (154) gives

(169)

yielding (153).
Now notice that, in order to prove (168), the only property of

we used is that it tends to zero as goes to infinity. In
other words, we made no assumption on the speed of decay of

. Hence, since ,21 using (168) we also de-
duce that . From (151)–(153)
we have

(171)

From (171), and since , we conclude that

(172)

20In [11, p. 236] there is a typo in (28). The first term on the right-hand side
of (28) should be e instead of e .

21Letting N denote the event that a “Nack” is declared at the end of the ith
cycle, we have that S � i if and only if there has been i � 1 times a “Nack”
that was declared at the end of the second phase. Hence,

S = (S � i)

=1 + (N )

=
1

1� (N )
(170)

where the last equality is justified after (100).
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where we wrote for , which proves the
desired result.

APPENDIX B
THE CLOSURE OF A SET OF ACHIEVABLE ERROR EXPONENTS

We prove that if (118) and (119) hold for any , then
(118) and (119) also hold for .

Let be a nonincreasing sequence such that
. For convenience, let us define the six quan-

tities:

(173)

Then we introduce the sequence where
and, for every , the quantity is obtained by recur-
sion as

and

for all

(174)

From (174), we deduce that

(175)
Using (119), we have , there-
fore from (175) we get

(176)

Similarly, we obtain

(177)

Since the sequence is nondecreasing, by defining

(178)

we conclude that

and (179)

Setting

we infer that there exists a sequence of coding schemes
such that, for all

(180)

where

(181)
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