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Tracking Stopping Times
Through Noisy Observations
Urs Niesen, Student Member, IEEE, and Aslan Tchamkerten

Abstract—A novel quickest detection setting is proposed, gen-
eralizing the well-known Bayesian change-point detection model.
Suppose ����� ������� is a sequence of pairs of random variables,
and that � is a stopping time with respect to �������. The problem
is to find a stopping time � with respect to ������� that optimally
tracks �, in the sense that � minimizes the expected reaction delay
�� � ���, while keeping the false-alarm probability �� � ��

below a given threshold � � ��� ��. This problem formulation ap-
plies in several areas, such as in communication, detection, fore-
casting, and quality control.

Our results relate to the situation where the ��’s and ��’s take
values in finite alphabets and where � is bounded by some positive
integer �. By using elementary methods based on the analysis of
the tree structure of stopping times, we exhibit an algorithm that
computes the optimal average reaction delays for all� � ��� ��, and
constructs the associated optimal stopping times � . Under certain
conditions on ����� ������� and �, the algorithm running time is
polynomial in �.

Index Terms—Algorithms, decision theory, feedback communi-
cation, forecasting, monitoring, optimal stopping, quickest detec-
tion problem, sequential analysis, synchronization, tree analysis.

I. PROBLEM STATEMENT

T HE tracking stopping time (TST) problem is defined
as follows. Let be a sequence of pairs of

random variables. Alice observes and chooses a
stopping time (s.t.) with respect to that sequence.1 Knowing
the distribution of and the stopping rule ,
but having access only to the ’s, Bob wishes to find a s.t.
that gets as close as possible to Alice’s. Specifically, Bob
aims to find a s.t. minimizing the expected reaction delay

, while keeping the false-alarm
probability below a certain threshold .
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1Recall that a s.t. with respect to a sequence of random variables �� � is a
random variable� taking values in the positive integers such that the event �� �
��, conditioned on �� � , is independent of �� � for all � � �. An
s.t. � is nonrandomized if �� � ��� � � � � ��� �� for all � � �
and � � �. An s.t. � is randomized if �� � ��� � � � � ��� �� for all
� � � and � � �.

Example 1. Monitoring: Let be the distance of an object
from a barrier at time , and let be the first time the object hits
the barrier, i.e., . Assume we have
access to only through a noisy measurement , and that we
want to raise an alarm as soon as the object hits the barrier. This
problem can be formulated as the one of finding a s.t. with
respect to the ’s that minimizes the expected reaction delay

, while keeping the false-alarm probability
small enough.

Another situation where the TST problem applies is in the
context of communication over channels with feedback. Most
of the studies related to feedback communication assume per-
fect feedback, i.e., the transmitter is fully aware of the output
of the channel as observed by the receiver. Without this as-
sumption—i.e., if the feedback link is noisy—a synchroniza-
tion problem may arise between the transmitter and the receiver
which can be formulated as a TST problem, as shown in the fol-
lowing example.

Example 2. Communication: It is well known that the pres-
ence of a noiseless feedback link allows to dramatically increase
the reliability for a given communication delay (see, e.g., [12]).
However, to take advantage of feedback, variable-length codes
are often necessary.2 This can be observed by looking at a non-
perfect binary erasure channel. In this case, any block coding
strategy yields a strictly positive error probability. In contrast,
consider the variable-length strategy where the encoder keeps
sending the bit it wishes to convey until it is successfully re-
ceived. This simple strategy achieves error-free communication
at a rate equal to the capacity of the channel in question. Can we
still use this coding strategy if the feedback channel is (some-
what) noisy? Because of the noisy feedback link, a synchroniza-
tion problem between the decoder and the encoder arises: if the
first nonerased output symbol occurs at time , what should be
sent at time ? This agreement problem occurs because the
encoder observes now only a noisy version of the symbols re-
ceived by the decoder (see Fig. 1). In particular, the first non-
erased output symbol may not be recognized as such by the
encoder.3 Instead of treating the synchronization issue that re-
sults from the use of variable-length codes over channels with
noisy feedback, let us consider the simpler problem of finding
the minimum delay needed by the encoder to realize that the de-

2The reliability function associated with block coding schemes is lower than
the one associated with variable length coding. For symmetric channels, for in-
stance, the reliability function associated with block coding schemes is limited
by the sphere packing bound, which is lower than the best optimal error expo-
nent attainable with variable length coding ([5], [10]).

3For fixed-length coding strategies over channels with noisy feedback we
refer the reader to [13], [6].
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Fig. 1. The decoding time � depends on the output of the forward channel.
The encoder decides to stop transmission at time � based on the output of the
feedback channel. If the feedback channel is noisy, � and � need not coincide.

coder has made a decision. In terms of the TST problem, Alice
and Bob represent the decoder and the encoder, the ’s and

’s correspond to the input and output symbols of the feed-
back channel, whereas and represent the decoding time
and the time the encoder stops transmission, respectively. Here

represents the delay needed by the encoder to realize
that the decoder has made a decision, and we aim to minimize
it given that the probability of stopping transmission too early,

, is kept below a certain threshold .
Note that , in the context of feedback communication, it is

reasonable to define the communication rate with respect to the
overall delay . This definition,
in contrast with the one that takes into account only the de-
coding time (such as for rateless codes), puts the delay constraint
on both the transmitter and the receiver. In Example 8, we in-
vestigate the highest achievable rate with respect to the overall
communication delay if the “send until a non-erasure occurs”
strategy is used and both the forward and the feedback links are
binary erasure channels.

Example 3. Forecasting: A large manufacturing machine
breaks down as soon as its cumulative fatigue hits a certain
threshold. Knowing that a machine replacement takes, say,
ten days, the objective is to order a new machine so that it
is operational at the time the old machine breaks down. This
prevents losses due to an interrupted manufacturing process as
well as storage costs caused by an unused backup machine.

The problem of determining the operating start date of the
new machine can be formulated as follows. Let be the cu-
mulative fatigue up to day of the current machine, and let de-
note the first day that crosses the critical fatigue threshold.
Since the replacement period is ten days, the first day a new
machine is operational can be scheduled only on the basis of
a (possibly randomized) function of . By defining
to be equal to if and else equal to zero, the day

is now a s.t. with respect to , and we can formulate
the requirement on as aiming to minimize while
keeping below a certain threshold.

In the forecasting example, Alice has access to more infor-
mation than Bob. From the process she observes, she can de-
duce Bob’s observations—simply by delaying hers. This fea-
ture may be interesting in other applications. The general for-
mulation where Alice has access to more information than Bob
is obtained by letting the observation available to Alice at time

be , and the observation available to Bob be
.

Example 4. Bayesian Change-Point Detection: In this ex-
ample, we will see how the TST setting generalizes the Bayesian
version of the change-point detection problem, a long studied
problem with applications to industrial quality control and that
dates back to the 1940s [1]. The Bayesian change-point problem
is formulated as follows. Let be a random variable taking
values in the positive integers. Let be a sequence of
random variables such that, given the value of , the conditional
probability of given is for

and is for . We are interested in a s.t.
with respect to the ’s minimizing the change-point reac-

tion delay , while keeping the false-alarm probability
below a certain threshold .

Shiryaev (see, e.g.,[20], [19, Ch. 4.3]) considered the La-
grangian formulation of the above problem: Given a constant

, minimize

over all s.t.’s . Assuming a geometric prior on the change-point
and that before and after the observations are independent

with common density function for and for ,
Shiryaev showed that the optimal stops as soon as the poste-
rior probability that a change occurred exceeds a certain fixed
threshold. Later Yakir [22] generalized Shiryaev’s result by con-
sidering finite-state Markov chains. For more general prior dis-
tributions on , the problem is known to become difficult to
handle. However, in the limit , Lai [14] and, later, Tar-
takovsky and Veeravalli [21], derived asymptotically optimal
detection policies for the Bayesian change-point problem under
general assumptions on the distributions of the change-point and
observed process.4

To see that the Bayesian change-point problem can be for-
mulated as a TST problem, it suffices to define the sequence of
binary random variables such that if
and if , and to let (i.e.,

). The change-point problem defined by and be-
comes the TST problem defined by and . How-
ever, the TST problem cannot, in general, be formulated as a
Bayesian change-point problem. Indeed, the Bayesian change-
point problem yields for any

(1)

since . In words,
given that no change occurred up to time , the observations

are useless in predicting the value of the change-point . In
contrast, for the TST problem, in general we have

(2)

because .

4For the non-Bayesian version of the change-point problem, we refer the
reader to [16], [18], [17].
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As is argued in the last example, the TST problem is a gener-
alization of the Bayesian change-point problem, which itself is
analytically tractable only in special cases. This makes an ana-
lytical treatment of the general TST problem difficult. Instead,
we present an algorithmic solution to this problem for an arbi-
trary process and an arbitrary s.t. bounded by
some constant . The proof of correctness of this algorithm
provides insights into the structure of the optimal s.t. tracking

, and into the tradeoff between expected delay and
probability of false-alarm . Under some conditions
on and , the computational complexity of this
algorithm is polynomial in .

The rest of the paper is organized as follows. In Section II, we
provide some basic properties of the TST problem defined over
a finite alphabet process , and in Section III, we
provide an algorithmic solution to it. In Section IV, we derive
conditions under which the algorithm has low complexity and
illustrate this in Section V with examples.

II. THE OPTIMIZATION PROBLEM

Let be a discrete-time process where the ’s
and ’s take value in some finite alphabets and , respec-
tively. Let be a s.t. with respect to such that
almost surely for some constant . We aim to find for any

(3)

where the s.t.’s are possibly randomized. Note that the restric-
tion is without loss of optimality.

Now, the set of all s.t.’s over is convex, and its ex-
treme points are nonrandomized s.t.’s ([2], [11]). This implies
that any randomized s.t. can be written as a convex com-
bination of nonrandomized s.t.’s bounded by , i.e.,

for any integer , where denotes the finite set of all non-
randomized s.t.’s bounded by , and where the ’s are nonneg-
ative and sum to one. Hence, because false-alarm and expected
reaction delay can be written as

the function is convex and piecewise linear, with break-
points achieved by nonrandomized s.t.’s. Its typical shape is de-
picted in Fig. 2.

For , define the Lagrangian

(4)

Lemma 1: We have

where the minimization is over all nonrandomized s.t.’s
bounded by .

Fig. 2. Typical shape of the expected delay ���� as a function of false-alarm
probability �. The breakpoints are achieved by nonrandomized s.t.’s.

Proof: The linear (in ) minimization problem (3) ad-
mits at least one feasible point, namely, . Therefore,
strong Lagrange duality holds (see, e.g., [3, Ch. 5]), and we ob-
tain

(5)

Because is convex with extreme points achieved by non-
randomized s.t.’s, we may restrict the minimization in (5) to be
over the set of nonrandomized s.t.’s bounded by .

III. AN ALGORITHM FOR COMPUTING

We first establish a few preliminary results later used to
evaluate . Emphasis is put on the finite tree rep-
resentation of bounded s.t.’s with respect to finite alphabet
processes. We then provide an algorithm that computes the
entire curve .

We introduce a few notational conventions. The set repre-
sents all finite sequences over . An element in is denoted
either by or by , depending on whether or not we want to
emphasize its length. To any nonrandomized s.t. , we asso-
ciate a unique -ary tree (i.e., all the nodes of have ei-
ther zero or exactly children) having each node specified by
some , where represents the vertex path from the
root to the node . The depth of a node is denoted by

. The tree consisting only of the root is the trivial tree.
A node is a leaf if . We denote
by the leaves of and by the intermediate (or non-
terminal) nodes of . The notation is used to denote the
(nonrandomized) s.t. induced by the tree . Given a node
in , let be the subtree of rooted in . Finally, let
denote the descendants of in . The next example illustrates
these notations.

Remark: Unless explicitly stated otherwise, trees and their
subtrees have the same root.

Example 5: Let and . The tree depicted
in Fig. 3 corresponds to the nonrandomized s.t. taking value

if and value if . The sets and
are given by and , respectively. The subtree

of consists of the nodes , and its descendants
are . The subtree is the same as , and its

descendants are .

We now describe an algorithm that, for a given s.t. , con-
structs a sequence of s.t.’s and Lagrange mul-
tipliers with the following two properties. First, the

’s and ’s are ordered in the sense that
and .

(Here, the symbol denotes inclusion, not necessarily strict.)
Second, for any and the
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Fig. 3. Tree corresponding to the s.t. � defined by � � � if � � �, and
� � � else.

tree minimizes among all nonran-
domized s.t.’s. The algorithm builds upon ideas from the CART
algorithm for the construction of classification and regression
trees [4].

Before we state the algorithm, we need to introduce a few
quantities. Given a nonrandomized s.t. represented by its

-ary tree , we write the Lagrangian as

where

We extend the definition of to subtrees of by setting

With this definition5

if
if

Similarly, we define

For a given and , define to be the sub-
tree of such that for all subtrees , and

for all subtrees satisfying
. In words, among all subtrees of yielding a minimal

cost for a given , the tree is the smallest. As we shall see
in Lemma 2, such a smallest subtree always exists, and hence

is well defined.

5We used �� � � � � and ��� as possible arguments of � � � �. No confusion
should arise from this slight abuse of notation, since for nonrandomized s.t.’s
all of these arguments can be interpreted as trees.

Remark: is different from . Indeed,
refers to the optimal subtree of with respect to , whereas

refers to subtree rooted in of the optimal tree .

Example 6: Consider again the tree in Fig. 3. Assume
. Then

The smallest optimal subtree of is and

The smallest optimal subtree of is and

Given a -ary tree and , the following lemma shows
that always exists and characterizes and .
The reader may recognize the Finite-Horizon backward induc-
tion algorithm whose detailed proof can be found in textbooks
(e.g., [7, Chs. 3 and 4]).

Lemma 2: Pick a -ary tree and . For every

and
if
else.

The optimal tree and the corresponding cost are
given by and evaluated at .

Proof: By induction on the depth of the tree starting from
the root.

From the structure of the cost function , the larger the
value of , the higher the penalty on the error probability. There-
fore, one expects that the larger the the “later” the optimal
tree will stop. Indeed, Lemma 3 states that the tree corre-
sponding to the optimal s.t. of a smaller is a subtree of the tree
corresponding to the optimal s.t. of a larger . In other words,
if , in order to find , we can restrict our search to
subtrees of .

Lemma 3: Given a tree , if then .
Proof: We have

(6)

Similarly, one shows that .
By contradiction, assume , but is not a subtree of

. Then there exists such that .
By definition of and Lemma 2
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and thus

(7)

Now, since and

(8)

Combining (7) and (8) yields

and therefore

Since , this contradicts the definition of by
Lemma 2.

The next theorem represents a key result. Given a tree , it
characterizes the smallest value can take for which .
For a nontrivial tree , define for any

where we set . The quantity captures the
tradeoff between the reduction in delay and the
increase in probability of false alarm if we stop
at some intermediate node instead of stopping at the leaves

of .

Theorem 4: For any nontrivial tree

Proof: Let be a nontrivial tree and . We have

By (6), , and hence the following two implications
hold:

(9)

Therefore, if then

(10)

for all .
We first show by induction that if

then . Consider a subtree of having depth one
and rooted in , say. Since by (10), we have

by Lemma 2. Now consider a subtree of with
depth , rooted in a different , and assume the assertion to
be true for all subtrees of with depth up to . In order
to find , we use Lemma 2 and compare with

. Since is a subtree of with depth less

Fig. 4. For all � � ��� �� � � � �� � �� the tree � is the smallest tree mini-
mizing the cost � � � � for any � � �� � � �.

than , we have by the induction hypothesis.
Therefore

and since by (10), we have
by Lemma 2, which concludes the induction step. Hence, we
proved that if , then .

Second, suppose

In this case, there exists such that .
We consider the cases when and are the same for
all and when they differ for at least one . If

for all then

and thus by Lemma 2. If for at least
one then again by Lemma 2.

Finally, if

then follows from the previous case and Lemma 3.

Let denote the complete tree of depth . Starting with
, for recursively define

where is the smallest integer such that , and with
if the set over which the infimum is taken is empty.

Lemma 3 implies that for two consecutive transition points
and , we have for all
as shown in Fig. 4.

The following corollary is a consequence of Lemma 3 and
Theorem 4.

Corollary 5: For

(11)

(12)

Moreover, the set with

are the breakpoints of .
Proof: Let be fixed. Equation (11) follows directly

from Theorem 4. For (12), notice that as is continuous
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in , the definition of yields .
Hence, is the smallest subtree of having a cost equal
to . From (9) and Lemma 2, we deduce that
is obtained from by removing the descendants of any

such that .
It remains to show that are the breakpoints

of . By Lemma 1, the breakpoints are achieved by non-
randomized s.t.’s. By Lemma 3, we have , i.e.,

is the smallest subtree of minimizing the cost .
Hence, among the minimizers of yields the largest

. Therefore, each pair is a breakpoint.
Conversely, given a breakpoint of , let be the smallest
subtree of achieving it. Then for some . Since

we have that , and,
therefore, for some .

From Corollary 5, we deduce the algorithm below that
fully characterizes by computing its set of breakpoints

.

Algorithm: Compute breakpoints of

complete tree of depth

Repeat

until

As a -ary tree has less than nonterminal nodes, the
algorithm terminates after at most that many iterations. Further,
one may check that each iteration has a running time that is

. Therefore, the worst case running time of the al-
gorithm is . This is to be compared, for instance,
with exhaustive search, which has a running
time (because all breakpoints of are achieved by nonran-
domized s.t.’s and there are already -ary trees having
leaves at either depth or ).

In Sections IV and V we will see that, under certain conditions
on and , the running time of the algorithm is
only polynomial in .

A. A Lower Bound on the Reaction Delay

From Corollary 5, we may also deduce a lower bound on
. Since is convex, we can lower-bound it as

(13)

where denotes the right derivative of at . By
Corollary 5, if then is achieved by the complete
tree , and if then is achieved by which is a
strict subtree of . Hence, (13) can be written as

if
else.

(14)

the above bound is tight for with when ,
and is tight for with when . The
following example illustrates this bound.

Example 7: Let be independent and identically dis-
tributed (i.i.d.) Bernoulli , and let the ’s be the output
of a binary-symmetric channel with crossover probability

for input . Consider the s.t. defined as

if
else.

For , the tree corresponding to this s.t. is depicted in Fig. 3.
Since , it is clear that whenever is not the

complete tree of depth , we have , hence

An easy computation using Corollary 5 yields

and using (14), we get

(15)

Let us comment on (15). Consider any two correlated sequences
and and a s.t. with respect to the ’s. Intu-

ition tells us that there are two factors affecting . The first is
the correlation between the ’s and ’s, in the above example
parameterized by . The lower the correlation, the higher .
The second factor is the “variability” of , and might be char-
acterized by the difference in terms of depth among the leaves
having large probability to be reached. In the above example the
“variability” might be captured by , since with probability

a leaf of depth is reached, and with probability a leaf
of depth is attained.

Example 8.: We refer to the feedback communication
problem of Example 2. Consider the “send until non-erasure”
strategy when the forward and the feedback channels are
binary erasure channels with erasure probabilities and ,
respectively. The decoder keeps sending ’s over the feedback
channel until time , the first time a non-erasure occurs or

time units have elapsed (the parameter plays the role of
a “time-out”). From that time on the decoder sends ’s. The
encoder keeps sending the message bit it wants to deliver
until time (a s.t. with respect to the output of the feedback
channel).We analyze the communication rate with respect to

. To that aim, we investsigate .
One can show that and, therefore, the bound (14) be-

comes , where
from Corollary 5. A somewhat involved computation yields

(16)

as .
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For the communication scheme considered here, there are two
events leading to decoding errors. The event , in-
dicating that only erasures were received by the decoder until
time , and the event , indicating that the encoder
stopped retransmission before the decoder received a non-era-
sure. In both cases, the decoder will make an error with proba-
bility . Hence, the probability of error can be bounded
as

It is then reasonable to choose , i.e., to scale with
so that both sources of errors have the same weight. This results
in a minimum reaction delay of

as .
Since the communication rate is computed with respect to

. We conclude that the “send
until a non-erasure” strategy asymptotically achieves a rate that
is upper-bounded as

When , this bound is strictly below the capacity
of the binary erasure channel . Hence, repre-
sents a critical value for the erasure probability of the feed-
back channel above which the “send until non-erasure” strategy
is strictly suboptimal. Indeed, there exist block coding strate-
gies, making no use of feedback, that (asymptotically) achieve
rates up to , the capacity of the forward channel.

IV. PERMUTATION-INVARIANT STOPPING TIMES

We consider a special class of s.t.’s and processes
for which the optimal tradeoff curve

and the associated optimal s.t.’s can be computed in polyno-
mial time in .

A s.t. with respect to is permutation invariant if

for all permutations , all and
. Examples of permutation-invariant s.t.’s are

or for some con-
stant and assuming the ’s are positive. The notion of a per-
mutation-invariant s.t. is closely related to (and in fact slightly
stronger than) that of an exchangeable s.t. as defined in [15].

The following theorem establishes a key result, from which
the running time of one iteration of the algorithm can be de-
duced.

Theorem 6: Let be i.i.d. and be a permuta-
tion-invariant s.t. with respect to . If is nonran-
domized and permutation invariant then

for all and all permutations .

We first establish two lemmas that will be used in the proof
of Theorem 6.

Lemma 7: Let be a nonrandomized s.t. with respect to
and the corresponding tree. Then is permutation

invariant if and only if for all and permutations
.

Proof: Assume is permutation invariant and let
. Then

and hence .
Conversely assume that, for all and permutations

, we have . Pick an arbitrary . First, if
, then , and by assumption also

. Thus, . Second, if
, then , and by assumption

also . Thus, .

Lemma 8: Let be i.i.d. and be a permutation-
invariant s.t. with respect to . Then is a permutation-
invariant s.t. with respect to .

Proof: Using that the are i.i.d., one can
easily check that is a s.t. with respect to . It remains
to show that it is permutation invariant. For any permutation

where the second last equality follows by the permutation in-
variance of and the fact that the ’s are i.i.d.

Proof of Theorem 6: We show that

(17)

for all . We prove that the numerator and the denom-
inator in (17) remain unchanged if we replace by . Fix
some , and, to simplify notation, set
until the end of this proof. For the denominator, using Lemma 8
we obtain
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(18)

A consequence of Lemma 7 is that the set of all such that
is identical to the set of all such that

. Hence, by (18)

For the numerator in (17), we have

(19)

By Lemma 8

Combining this with (19) and using Lemma 7 as before, we get

concluding the proof.

We now show that one iteration of the algorithm has only
polynomial running time in . Specifically, we evaluate the run-
ning time to compute from if and are per-
mutation invariant and if the ’s are i.i.d. To that aim,
we assume the input of the algorithm to be in the form of a list
of the probabilities for all and

—specifying —and a list of
for all and —characterizing the distribution of the
process . As is permutation invariant, we only
have to specify for each composition6

of . Since the number of compositions of length at most is
upper-bounded by —any element appears
at most times in a string of length —the list of these prob-
abilities has only polynomial size in . Using a hash table, we
assume that, given , the element in the
list can be accessed in time. The proof of the following
theorem is deferred to Appendix I.

Theorem 9: Let be i.i.d., let and
be permutation-invariant s.t.’s with respect to and

, respectively, and let and
be given. Then, and

can be computed in polynomial time in .

6Two sequences have the same composition (or type) if any particular symbol
appears the same number of times in both the sequences.

As a corollary of Theorem 9, we obtain the worst case run-
ning time for computing the set of breakpoints
together with the associated optimal s.t.’s .

Corollary 10: Let be i.i.d. and be a permu-
tation-invariant s.t. with respect to . If all
are permutation invariant, then the algorithm has a polynomial
running time in .

Proof: By Theorem 9 we only have to bound the number
of iterations of the algorithm. To this end note that by The-
orem 6 every composition of can be only once a maximizer
of (as the corresponding nodes will be leaves in the
next iteration of the algorithm). Hence, there are at most

iterations.

Note that, in the cases where are not permuta-
tion invariant, one may still be able to derive a lower bound on

in polynomial time in , using (14). Indeed, the tree is
permutation invariant since it is complete and, by Theorem 9,
if are i.i.d. and is permutation invariant, then
the first subtree can be computed in polynomial time in .
Therefore, the bound

(20)

can always be evaluated in polynomial time in when the
’s are i.i.d. and is permutation invariant. this bound

is in general weaker than the one derived in Section III-A.
However, when the bound (20) is tight for
with . It is easily checked that the condition is
satisfied if for all .

In the next section, we present two examples for which the
conditions of Corollary 10 are satisfied, and hence for which
the algorithm has a polynomial running time in . First, we
consider a TST problem that indeed can be formulated as a
Bayesian change-point problem. Second, we consider the case
of a pure TST problem, i.e., one that cannot be formulated as a
Bayesian change-point problem. For both examples, we provide
an analytical solution of the Lagrange minimization problem

.

V. ONE-STEP LOOK-AHEAD STOPPING TIMES

Define

and let

(21)

In words, stops whenever the current cost

is less than the expected cost at time , i.e.,

Recall that denotes the complete tree of depth . For
’s i.i.d., Theorem 11 provides a sufficient condition on

for which . In words, the s.t. minimizes
among all s.t.’s bounded by . Furthermore, among

all s.t.’s minimizing , the s.t. admits the smallest
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tree representation. The proof of Theorem 11 is deferred to
Appendix II.

Theorem 11: Let be i.i.d., and let be a s.t.
with respect to that satisfies

(22)

for all . Then

Note that, unlike the algorithm, Theorem 11 provides an an-
alytical solution only to the inner minimization problem in (5).
To find the reaction delay one still needs to maximize over
the Lagrange multipliers .

Using Theorems 10 and 11, we now give two examples of
process and s.t. for which the algorithm has
only polynomial running time in .

Example 9: Let be i.i.d. with the ’s taking
values in . Consider the s.t. . We
have for

Hence, Theorem 11 yields that the one-step look-ahead s.t.
defined in (21) satisfies .

We now show that the algorithm finds the set of breakpoints
and the corresponding in polyno-

mial running time in . To that aim, we first show that is
permutation invariant. By Lemma 7, we equivalently show that,
for all and permutations , if then .
We have for

(23)

where we have used Lemma 8 for the second equality. Thus,
implies , and therefore is permutation

invariant. Since for all by Theorem 11,
all are permutation invariant. Finally, because is
permutation invariant, applying Corollary 10 we conclude that
the algorithm has indeed polynomial running time in .

The problem considered in this example is actually a
Bayesian change-point problem, as defined in Example 4 in
Section I. Here, the change-point has distribution

, where . The
conditional distribution of given is

if
if
if

unlike the case considered by Shiryaev (see Example 4 in Sec-
tion I), the distribution of the process at the change-point differs
from the ones before and after it.

We now give an example that cannot be formulated as a
change-point problem and for which the one-step look-ahead
s.t. minimizes the Lagrangian .

Example 10: Let be i.i.d. where the ’s and
’s take values in , and let .

A similar computation as for Example 9 reveals that if

then Theorem 11 applies, showing that the one-step look-ahead
s.t. defined in (21) satisfies .

Furthermore, since is permutation invariant, (23) shows that
is permutation invariant. Applying Corollary 10, one de-

duces that the algorithm has polynomial running time in in
this case as well.

The problem considered here is not a change-point problem
since, for

and therefore (1) does not hold.

VI. REMARKS

In our analysis, we exploited the finite tree structure of
bounded s.t.’s defined over finite alphabet processes, and de-
rived an algorithm that outputs the minimum reaction delays for
tracking a s.t. through noisy observations, for any probability of
false alarm. This algorithm has a complexity that is exponential
in the bound of the s.t. we want to track and, in certain cases,
even polynomial. In comparison, an exhaustive search has a
complexity that is doubly exponential.

The conditions under which the algorithm runs in polyno-
mial time are, unfortunately, not very explicit and require fur-
ther study (see Corollary 10). Explicit conditions, however, are
expected to be very restrictive on both the stochastic process and
the s.t. to be tracked.

For certain applications, it is suitable to consider s.t.’s defined
over more general processes, such as continuous time over con-
tinuous alphabets. In this case, how to solve the TST problem
remains a wide open question. As a first step, one might con-
sider a time and alphabet quantization and apply our result in
order to derive an approximation algorithm.

APPENDIX I
PROOF OF THEOREM 9

In the following, we write for . From Theorem 6, to find
the maximizing , we only have to compute

for all possible compositions of . The number of such
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compositions is . We now show that
can be computed in polynomial time in . From the Proof of
Theorem 6, we have to show that can be
computed in polynomial time, and that the sums in (18) and (19)
can be computed in polynomial time.

We have

Each term in the summation on the right-hand side depends only
on the composition of , and hence
can be computed in polynomial time in .

Consider now the sum over all in (18)

(24)

By Lemma 7, if and only if
for all permutations . And as , we can
compute (24) in polynomial time in .

Consider next the sum over all in (19). Using
Lemma 8

Applying Lemma 7 as before, we conclude that the right-hand
side can be computed in polynomial time in .

It remains to prove that and can be computed
in polynomial time in from and . This follows from
the same argument, as it suffices to compute the differences

and for all maximizing
.

APPENDIX II
PROOF OF THEOREM 11

Fix some . Let us write as where

We say that the are nested if, for any and
, we have that implies . We show

that (22) implies that the are nested, and that this in turn
implies that the one-step look-ahead stopping rule is optimal.
The second part of the proof is well known in the theory of
optimal stopping and is referred as the monotone case (see, e.g.,
Chow et al. [7, Ch. 3]). Here we provide an alternative proof
that emphasizes the tree structure of s.t.’s.

if and only if . We
now show that

(25)

Since are i.i.d., is also a (randomized) s.t. with
respect to by Lemma 8. It follows that

from which one deduces (25).
Next, we prove that the are nested. By (25) this is equiv-

alent to showing that, whenever for some

(26)

we also have

(27)

for any . Suppose that (26) holds for some . Using the
fact that is a s.t. with respect to the ’s (Lemma 8) together
with the hypothesis of the theorem yields for any

and therefore (27) holds. Hence , the are nested.
Let be the tree corresponding to . The final step is

to show that if the are nested then . To
that aim we show that and

. Pick an arbitrary . Using Lemma 2,
we compare with . We distinguish two
cases. First suppose that , i.e., .
Then

and, hence, . But since the are nested,
no prefix of can be an element of and hence

.
Second, assume . If , then clearly

. If , then and we now
show by induction that this implies that . Note first
that as the are nested, we have for any (i.e.,
for any with prefix )

(28)

Assume first that has depth one. Then (28) implies by
Lemma 2 that . Suppose then that this is true for
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all of depth at most . Let have depth . Then by
the induction hypothesis and (28)

and thus by Lemma 2, concluding the induction
step. This implies .
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