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‘Habilitation à diriger des recherches’

Jury:

Prof. Venkat Anantharam (UC Berkeley, CA, US)

Prof. François Baccelli (ENS, Paris)

Prof. Giuseppe Caire (USC, CA, US)

Prof. Philippe Loubaton (Université Marne-la-Vallée)
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Foreword

This report describes some of my main research contributions since my Ph.D. in

2005. The unifying theme is ‘asynchronism,’ which I have been investigating from

both a communication and a statistical perspective. The results are presented

without proofs. The proofs can be found in related papers mentioned at the

beginning of each chapter.
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Introduction

Consider communication with perfect feedback over a binary erasure channel as

depicted in Fig. 1.1. This is a channel where each input bit gets erased with

some fixed probability p, and remains unchanged with probability 1 − p. Perfect

feedback means that the encoder gets to observe every channel output in a causal

fashion—at time t the encoder knows exactly what was received at time t − 1.

Suppose we have a 1-bit message that we transmit using a repetition code.

To communicate message ‘0,’ the encoder sends 0000... and similarly for message

‘1.’ The receiver decodes the first time a non-erasure occurs. Because of perfect

feedback, the transmitter knows when decoding happens.

This simple communication strategy is ‘universally optimal’ for the family of

binary erasure channels in the following sense. First, it is ‘universal’ since neither

the encoding nor the decoding rules depend on the channel parameters—here the

erasure probability p. Second, its long-term communication rate is equal to the

channel capacity. Third, it is optimal in the tradeoff between error probability and

delay: for the same communication delay, no strategy can achieve a lower error

probability—here equal to zero.

The objective of my Ph.D. thesis was to investigate whether there exists uni-

versally optimal feedback schemes for families of channels other than the binary

erasure. Surprisingly perhaps, the answer turns out to be ‘yes’ for at least two

other families, the binary symmetric and the Z families [TT06]. This is one of the

main results of my Ph.D. thesis.

Key to the above result is the (strong) assumption that the feedback channel is

perfect . On the one hand, this allows the transmitter to adjust its encoding strategy

according to the channel behavior; if the channel behaves badly, the encoder may

locally add some redundancy. On the other hand, perfect feedback often allows to

p
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Figure 1.1: The BEC with perfect feedback.
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Figure 1.2: The decoding time τ of the current message depends on the outputs
of the forward channel. The encoder decides to start sending the next message at
time η+1, based on the outputs of the feedback channel. If the feedback channel
is noisy, η and τ need not coincide, which results in a loss of synchronization
between the transmitter and the receiver.

reduce communication delay by having the decoding instant depend on the channel

outputs. For instance, by decoding as soon as the ‘level of confidence’ about the

sent message is high enough, the communication delay gets shorter whenever the

channel behaves well. Because of perfect feedback, the transmitter can look over

the shoulders of the receiver, know when decoding happens, and thereby know

when it can start sending the next message. That is, perfect feedback guarantees

synchronization between the transmitter and the receiver when a variable length

code is used. In turn, variable length coding can be universally optimal, similarly

as the ‘send until a non-erasure’ coding strategy that we described above for the

family of binary erasure channels.

What happens when feedback is non-perfect, is it still possible to communicate

universally as well as the best feedback schemes tuned for the specific channel under

use? This natural question also points to a broader concern in information theory:

how practically meaningful are theoretical results stated under ideal assumptions—

in practice feedback is ubiquitous but hardly ‘perfect.’

When there is noise in the feedback channel, we have a situation like the one

depicted in Fig. 1.2, where τ denotes the decoding time of the current message,

and where η + 1 denotes the instant when the encoder starts sending the next

message. Since feedback is noisy, the encoder can now at best observe only a noisy

version of the symbols received by the decoder. Hence, if τ depends on the forward

channel outputs, we may have η �= τ , which results in a loss of synchronization

between the transmitter and the receiver. For instance, if η < τ , the encoder starts

sending the next message while the current message has not yet been decoded. This

synchronization problem imposes to restrict communication to block coding where

decoding always happens at a fixed time known by both the transmitter and the

receiver. In turn, block coding is much less efficient than variable length coding

in the tradeoff between error probability and delay (in particular in the high rate

regime [Dob67, Bur76]).

The penalty caused by a potential lack of synchronization in the above setting

motivated me to investigate information theoretic aspects of asynchronous com-
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munication after my Ph.D. It turned out this was very much an open area. The

theoretical literature on asynchronous communication was (and, to a large extent

still is) sparse. Asynchronous communication has been representing one of my

main research efforts since my Ph.D., and is the focus of Chapter 2. There, funda-

mental communication limits in terms of delay, energy, rate, and error probability

are provided for point-to-point communication.

The other main research direction I have been pursuing since my Ph.D., is the

investigation of a statistical decision problem, also motivated by communication

with noisy feedback. Let us again consider the channel in Fig. 1.2, and suppose

the decoder simply forwards its received symbols to the encoder via the feedback

channel. That is, Y1, Y2, . . . also represent the outputs of the forward channel,

and the encoder observes a noisy version of these symbols that are denoted by

Z1, Z2, . . .. Now suppose the decoding instant is a stopping time τ defined over

Y1, Y2, . . . . What is the best transmitter estimate for τ?

This motivates the following general statistical decision problem. Suppose there

is a stopping time τ defined on a stochastic process Y = Y1, Y2, . . . . Statistician

doesn’t have access to Y directly but, instead, has access to correlated observa-

tions Z = Z1, Z2, . . .. Statistician wants to find a stopping time η with respect

to Z that best tracks τ , e.g., so that to minimize the mean absolute deviation

E|η − τ |. Interestingly, this problem formulation applies in several areas including

monitoring, forecasting, and finance, in addition to generalizing the well known

change-point detection problem, a central problem in quality control that dates

back to the early 1940’s. Chapter 3 is devoted to the TST problem.

This report ends with Chapter 4 where I provide a brief description of Ph.D.

thesis for which I have been involved as a (co-)supervisor.

Chapters 2 and 3 can be read independently. Chapter 2 supposes that the

reader has some background in Information Theory, Probability, and Statistics,

while Chapter 3 assumes some background in Probability and Statistics.
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Fundamental Limits on

Asynchronous Communication

In this chapter, we first present the asynchronous communication model proposed

in [TCW09]. Then, in Sections 2.2 and 2.3, we present related capacity and ca-

pacity per unit cost results, respectively. These limits characterize the maximum

number of bits per channel use that can reliably be transmitted as well as the min-

imum energy needed to transmit one bit of information reliably. The results pre-

sented in this Chapter are from [CTW08], [TCW09], [TCW08], [CTW09], [TCW],

and [CTT10].

2.1 Communication model

Shannon’s original point-to-point communication model [Sha48] assumes that in-

formation is available at the transmitter at time 1 and that communication takes

place between time 1 and time N , for some N ≥ 1 known to both the transmit-

ter and the receiver. We extend this model to address asynchronism between the

transmitter and the receiver. The proposed model captures the following features:

• Information is available at the transmitter at a random time;

• Outside the information transmission period, the transmitter stays idle and

the receiver observes noise;

• The receiver decodes without knowing the information arrival time at the

transmitter.

Communication is assumed to be discrete-time and carried over a discrete mem-

oryless channel characterized by its finite input and output alphabets X and Y ,

respectively, and transition probability matrix Q(y|x) for all x ∈ X and y ∈ Y .

The message to be transmitted is available at the transmitter at a random time

ν, uniformly distributed over {1, 2, . . . , A}, where the integer A ≥ 1 characterizes

the asynchronism level between the transmitter and the receiver. Only one message

arrives over the period [1, 2, . . . , A + N − 1]. If A = 1, the channel is said to be

synchronous. The capacity of the synchronous channel is denoted by C.
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Figure 2.1: Time representation of what is sent (upper arrow) and what is
received (lower arrow). The ‘�’ represents the ‘idle’ symbol. Message m is being
sent from time ν up to time time ν + N − 1. Decoding occurs at time τ .

For a given message m ∈ {1, 2, . . . , M} to be transmitted, the transmitter

sends a codeword cN (m), a sequence of length N composed of symbols from X.

Hence, from time ν up to time ν + N − 1, the receiver observes a noisy version of

cN(m). Outside this transmission period, the receiver observes pure noise, which

we model as independent channel outputs distributed according to Q(·|�), where

� ∈ X denotes the special ‘idle’ symbol.

Knowing the asynchronism level A, but not the value of ν, the receiver decodes

by means of a sequential test (τ, φ), where τ is a stopping time, bounded by

A+N−1, with respect to the output sequence Y1, Y2, . . . indicating when decoding

happens, and where φ denotes a decision rule that declares the decoded message

(see Fig. 2.1).1

The above asynchronous communication model complements the well-known

insertion, deletion, and substitution (IDS) channel model proposed by Dobrushin

[Dob67]. In the IDS model, the time at which transmission begins is known to the

receiver. However, each time a symbol from the codeword is transmitted, a string

of symbols of variable length (possibly even length zero) is received.2 Hence, the

duration of the information transmission is random. By contrast, in our model

the receiver doesn’t know the time at which transmission starts, but the informa-

tion transmission period is constant—equal to the codeword length. Hence, the

IDS channel is suitable for modeling asynchronism caused by the communication

medium itself, whereas our model is suitable for modeling asynchronism caused by

a bursty source of information. It is also worth remarking that, in contrast to our

model, the intuitive notion of ‘asynchronism level’ for a channel is more difficult

to capture succinctly with the IDS model since any reasonable such notion would

depend on the associated channel transition probabilities.

1To be more precise, φ is any Fτ -measurable function that takes value in the message set,
where Ft is the sigma field generated by Y1, Y2, . . . , Yt.

2The IDS channel is characterized by the set of all conditional output distributions Q(y|x)
for each x ∈ X, where y is a string of some length (even zero) of symbols from Y.
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2.2 Bits per channel use

In this section we derive limits on the maximum number of bits per channel use

that can be communicated over an asynchronous channel. First, we consider the

simple problem of ‘communicating’ a single message, the decoding problem being

only to detect it accurately. Second, we consider the transmission of one out of

many possible messages, the decoding problem being now to detect and locate the

transmitted message reliably. At the end of this section we discuss the performance

of training based schemes where codewords start with a ‘sync’ preamble to help

the decoder detect the codeword. We show that these practically widely used

communication architectures need not be optimal.

Throughout this chapter, X always refers to a random channel input and Y its

corresponding ouput, i.e., if X ∼ P then XY ∼ P (·)Q(·|·). Also, Yx denotes the

ouput of the channel when the channel input symbol is x ∈ X . Thus, for instance,

Y� denotes the random ‘pure noise’ output of the channel when the transmitter is

idle.

2.2.1 The single message case: sequential ‘frame synchronization’

Assume there is just one possible message, i.e., M = 1, and that the receiver

wants to quickly locate this message on the basis of sequential observations. This

is one of the most basic synchronization problems which Massey refers to as the

‘one-shot’ frame synchronization problem in [Mas72].

A key parameter we shall be concerned with is

α � log A

N
,

which we call the asynchronism exponent. Theorem 1 below characterizes the

largest value of α for which it is possible to perfectly locate the codeword at the

channel output with arbitrarily high probability.3

For a given codeword cN = c1, c2, . . . , cN and decoding detection rule τN , we

first define the error probability as

P(τN �= ν + N − 1) ,

i.e., the probability of not stopping exactly at the end of the codeword transmission.

Second, we define the synchronization threshold .

Definition 1. An asynchronism exponent α is achievable if there exists a sequence

of pairs codeword/decoder {(cN , τN)}N≥1 such that, for any ε > 0 and all N large

enough, (cN , τN) operates under asynchronism level A = 2(α−ε)N , and so that

P(τN �= ν − N + 1) ≤ ε .

3In this setting where there is a unique codeword, it is custom to call it ‘(sync) preamble’
instead of ‘codeword’ as this sequence of bits carries no information and is usually used for
synchronization purposes only.
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The synchronization threshold, denoted by αT, is the supremum of the set of

achievable asynchronism exponents.

Theorem 1 ([CTW08, TCW09]). The synchronization threshold is given by

αT = max
x∈X

D(Yx||Y�) , (2.1)

where D(Yx||Y�) is the Kullback-Leibler distance between Q(·|x) and Q(·|�). Fur-

thermore, if the asynchronism exponent is above the synchronization threshold, a

maximum likelihood decoder that is revealed the maximum length sequence of size

A + N − 1 makes an error with a probability that tends to one as N → ∞.

A direct consequence of the theorem is that a sequential decoder can (asymptot-

ically) locate the sync pattern as well as the optimal maximum likelihood decoder

that operates on a non-sequential basis having access to sequences of maximum

size A + N − 1. The last part of the theorem indicates that the synchronization

threshold refers to a phase transition: for α < αT the error probability tends to

zero whereas for α > αT the error probability tends to one.

Finally note that D(Yx||Q�) in (2.1) is simply the Chernoff exponent for dis-

criminating pure noise from a string composed of symbol x at the output of the

channel. Thus, not too surprisingly, an optimal codeword is mostly composed of

symbols that maximize this exponent.4

2.2.2 Multiple messages: information transmission

In this section, we consider the case of multiple possible messages, i.e., where

M ≥ 2. For a given set of codewords C = {cN(m)}M
m=1, which we refer to as

‘codebook,’ and for a given decoder, we first define the maximum over messages,

average over time, decoding error probability as

P(E|C) = max
m

1

A

A∑
t=1

Pm,t(E), (2.2)

where E indicates the event that the decoded message does not correspond to the

sent message, and where the subscripts ‘m,t’ indicate conditioning on the event

that message m starts being sent at time ν = t. In the expression (2.2), with a

slight abuse of notation, we let C denote the codebook together with the decoder

4Certain readers may wonder why optimal codewords are ‘mostly’ and not ‘only’ composed
of symbols that maximize the exponent. If a constant codeword is used, with non-vanishing
probability the receiver will observe a sequence of length N , typical with the codeword, and that
is shifted by one unit from the transmitted codeword (and in fact this remains true for any fixed
length shift). Because of this, a constant codeword cannot be pinpointed (asymptotically) with
arbitrarily high probability. This imposes to have a codeword with sufficiently small Hamming
distance with any of its (circular) shifts. Interestingly, it is possible to design a sufficiently
‘constant’ codeword that has low enough ‘autocorrelation’ so that to achieve the synchronization
threshold [CTW08].
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(i.e., τ and φ). When C represents a codebook and a decoder we refer to it as

‘code’ instead of ‘codebook.’ This convention carries throughout this chapter.

Second, we define communication rate with respect to the average elapsed time

between the instant the codeword starts being sent and the instant when the

decoder makes a decision, i.e.,

R =
log |C|
D bits per channel use, (2.3)

where

D = max
m

1

A

A∑
t=1

Em,t(τ − t)+ ,

x+ denotes max{0, x}, and where Em,t denotes the expectation with respect to

Pm,t. (In the above delay expression, expectation comes after taking the positive

value of (τ − t), i.e., by Em,t(τ − t)+ we mean Em,t((τ − t)+).)

The following definition extends Shannon’s original definition of an achievable

transmission rate to the situation where transmitter and receiver are not a priori

synchronized.

Definition 2 ((R, α) Coding Scheme). A pair (R, α) with R ≥ 0 and α ≥ 0

is achievable if there exists a sequence of codes {CN}N≥1, labeled by the codebook

length N , that asymptotically achieves rate R at asynchronism exponent α. This

means that for any ε > 0 and every N large enough, the code CN

• operates under asynchronism level A = 2(α−ε)N ;

• has a rate at least equal to R − ε;

• achieves a maximum error probability at most equal to ε.

An (R, α) coding scheme is a sequence of codes {CN}N≥1 that achieves a rate R at

an asynchronism exponent α.

In Definition 2, we choose to grow A exponentially with N . Indeed, when A

grows sub-exponentially with N , the capacity turns out to be the same as for

the synchronous channel [TCW09]. When A grows faster than exponentially with

N , reliable communication is not possible in general. In fact, Theorem 1 says

that when asynchronism is exponential in N with an exponent higher than the

synchronization threshold, message location is not possible. This, in turn, can

be shown to imply that the decoding error probability can’t be made negligible.

Hence, the interesting asynchronism regime is exponential in the blocklength N

with an exponent not exceeding the synchronization threshold.

Definition 3 (Asynchronous Capacity). For given α ≥ 0, the asynchronous

capacity R(α) is the supremum of the set of rates that are achievable at asyn-

chronism exponent α. Equivalently, the asynchronous capacity is characterized

by α(R), defined as the supremum of the set of asynchronism exponents that are

achievable at rate R ≥ 0.
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Figure 2.2: Lower bound on asynchronous capacity, given by expression (2.5),
for the binary symmetric channel with crossover probability 0.1 and � = 0. Any
pair (R,α) below the curve is achievable.

While R(α) may have a more natural interpretation than α(R), most of our results

are more conveniently stated in terms of α(R).

A decoder at the output of an asynchronous channel should discriminate be-

tween noise and a typical channel output when a message is sent. The following

Theorem provides a lower bound to the asynchronous capacity by considering the

(Chernoff) error exponent for discriminating hypothesis ‘noise’ from hypothesis

‘message’ when codewords are randomly generated according to a certain distribu-

tion. This random coding bound can be shown to be achievable with deterministic

codes using standard expurgation techniques (see, e.g., [Gal68, p. 151]).

Theorem 2 (Lower Bound on Asynchronous Capacity [TCW08]). Let

X be a random input to the channel and Y the corresponding output. Then, (R =

I(X; Y ), α) is achievable, where I(X; Y ) denotes the input-output channel mutual

information, and where

α = min
V

max{D(V ||Y ), D(V ||Y�)} , (2.4)

with the minimization being over all random variables V defined over the output

alphabet Y. Thus, maximizing over all possible input distributions, a lower bound

to α(R) in Definition 3 is

max
X:I(X;Y )≥R

min
V

max{D(V ||Y ), D(V ||Y�)} . (2.5)

In Fig. 2.2, we plot the expression (2.5) as a function of the rate for a binary

symmetric channel with crossover probability 0.1 and where � = 0 (i.e., when

the transmitter is idle the receiver observes 0’s and 1’s with probability 0.9 and

0.1, respectively). Note that, at rate equal to the synchronous capacity (equal to

0.368...), the asynchronism exponent is strictly positive: one doesn’t need to back

off from the synchronous capacity in order to achieve a strictly positive asynchro-

nism exponent. It turns out that this somewhat surprising property is shared by

most channels (notice that we clearly have α(R) = 0 for R > C):
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Theorem 3 (Discontinuity of α(R) at R = C [CTW09]). α(R = C) > 0 if

and only if Q� differs from the (unique) capacity achieving output distribution of

the synchronous channel.

Theorem 3 in [TCW08] provides an upper bound on asynchronous capacity by

stating necessary conditions that must be fulfilled by any (R, α) coding scheme.

However, this theorem has an unwieldy form which is why we prefer to omit it here.

Instead, we provide the simple capacity expression for any channel with infinite

synchronization threshold, i.e., whose noise distribution Q(·|�) cannot produce all

possible channel outputs.

Theorem 4 (Capacity when αT = ∞ [TCW]). If αT = ∞, then

α(R) = max
X

min
Ỹ |X

max{D(XỸ ||XY ), D(XỸ ||X, Y�)} R ∈ [0, C] ,

where D(XỸ ||XY ) refers to the Kullback-Leibler distance between the joint dis-

tributions of XỸ and XY ; where D(XỸ ||X, Y�) refers to the Kullback-Leibler

distance between the joint distributions of XỸ and the product distribution of X

and Y�;
5 and where the minimization is over all conditional distributions of Ỹ

given X.

Therefore, when αT = ∞, α(R) is actually a constant that doesn’t depend on

the rate. Put it the other way around, the asynchronous capacity is the same as

the synchronous capacity up to a certain level of asynchronism. Above this level,

capacity is zero.

2.2.3 Suboptimality of training based schemes

The usual practical approach for communicating over asynchronous channels is a

training-based architecture. In such schemes, each codeword is composed of two

parts. The first part, the sync preamble, is a sequence of symbols common to all

the codewords. As such, this sequence carries no information, and its only purpose

is to help the decoder locate the sent message. The second part carries information.

The decoder operates according to a two-step procedure. First, it tries to locate

the codeword by seeking the sync preamble. Once the sync preamble is located, it

declares a message based on the subsequent symbols.

Below we first formally define training-based schemes. It can be shown that this

definition is natural in the sense that the properties that characterize it are satisfied

by most practical training based strategies [CTW09]. Second, we characterize

the set of rate/asynchronism exponent pairs (R, α) that are achievable with such

schemes. As a consequence of this result, we shall deduce the important conclusion

that training based schemes can be suboptimal in certain communication regimes.

5To differentiate product distributions we put a comma in the argument of the Kullback-
Leibler distance, such as for D(XỸ ||X, Y�).
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Definition 4 (Training Based Schemes). A training based scheme is a coding

scheme {(CN , (τN , φN))}N≥1 with the following properties. There exist ε > 0 and

η ∈ [0, 1] such that

i. For all N ≥ 1 large enough, there is a common preamble across codewords

of size ηN ;

ii. The empirical distribution PN of the preamble of the codebook CN converges

to some fixed distribution as N → ∞ (say, L1-norm convergence);

iii. For all N large enough, the decoding time τN is such that the event {τN = t},
conditioned on the ηN observations Y t−N+ηN

t−N+1 , is independent of all other

observations (i.e., Y t−N
1 and Y A+N−1

t−N+ηN+1);

iv. For all N large enough, the codebook CN and the decoding time τN satisfy

P(τN ≥ t + 2N − 1|τN ≥ t + N, ν = t) ≥ ε

for all t ∈ {1, 2, . . . , A − 2N + 1}.

Property ii. is a mild technical requirement. Property iii. says that the decoder of a

training based scheme should stop based on a ‘sliding window’ sequential rule that

seeks the sync preamble. Property iv. is a key requirement. The intuition behind

it is that the codeword information symbols shouldn’t help the decoder stop at the

right time. If the decoder missed the sync preamble, which is captured by the event

{τN ≥ ν +N}, then with some non vanishing probability the decoder will actually

miss the entire codeword, which is captured by the event {τN ≥ ν +2N −1}. Note

that, without Property iv., one could envision ‘information’ symbols that actually

start with a second preamble. The overall codeword would be composed of two

successive sync preambles followed by information symbols. The second preamble

would clearly help the decoder stop at the right moment, even if the decoder tries

to locate the first preamble.

The following theorem characterizes the asynchronous capacity restricted to

training based schemes:

Theorem 5 (Capacity of Training Based Schemes [CTW09]). The ca-

pacity restricted to training based schemes is given by

α(R) =

(
1 − R

C

)
max

X
min
Ỹ |X

max{D(XỸ ||XY ), D(XỸ ||X, Y�)} R ∈ (0, C] .

If the synchronization threshold αT is finite, the max-min-max term in the

above expression is finite, which yields the following result:

Corollary 1. If αT < ∞, then α(R)
R→C−→ 0 for training based schemes.
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In Theorem 3 we saw that α(R = C) > 0 if and only if the capacity achieving

output distribution of the synchronous channel differs from Q(·|�). In contrast,

Corollary 1 says that for training based schemes we have α(R) → 0 as R → C,

whenever αT < ∞. Thus, we are lead to the following somewhat surprising con-

clusion: training based are sub-optimal in the high rate communication regime for

the broad class of channels for which αT < ∞ and for which the capacity achieving

output distribution of the synchronous channel differs from Q(·|�). This suggests

that for these channels, to achieve a high rate under strong asynchronism (i.e., ex-

ponential in the codeword length), synchronization and information transmission

must be jointly performed. Each transmitted bit should carry information while

also acting as an information ‘flag’ to help the decoder locate the codeword.

2.2.4 Open problems

Two immediate open questions are the characterization of the asynchronous ca-

pacity in the general case, and finding explicit (non-random) code constructions

that perform well asynchronously. Some insight for the latter problem has recently

been obtained in [CST10]. Another interesting research direction to pursue would

be to consider a multi-user setting, say a multiple-access setting where each trans-

mitter communicates in a bursty fashion. Note that this setting is different than

the asynchronous multiple-access setting considered in [CMP81, HH85] where the

senders operate asynchronously but not in a bursty manner—each sender transmits

messages on a continuous basis, without idle periods between them.

2.3 Bits per unit cost

In Section 2.2, the performance metric is data rate: the number of information

bits divided by the average elapsed time between the instant information starts

being sent and the instant it is decoded.

The data rate is a sensible performance metric for bursty communication if the

information to be communicated is delay-sensitive. Then, maximizing the data

rate is equivalent to minimizing the time to transmit the burst of data. In many

applications, however, the allowable delay may not be tightly constrained, and data

rate is less relevant a measure than the energy needed to transmit the information.

In this case, the minimum energy needed to transmit one bit of information is an

appropriate fundamental measure. Thus, we are led to ask the following question:

what is the impact of asynchronism on the minimum energy needed to transmit

one bit of information?

The main result in this section is a single-letter characterization of the asyn-

chronous capacity per unit cost, or, equivalently, the minimum cost to transmit

one bit of information. The results in this section can be found in [CTT10].
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2.3.1 Performance criterion

We use the communication model described in Section 2.1, with one small modifi-

cation that makes the current model somewhat more general. Instead of requiring

that information transmission starts exactly at the moment when information is

available, i.e., time ν, we now let the transmitter choose when it actually wants to

start transmitting information. More precisely, if message m is available at time

ν, information transmission starts at a time σ(ν, m) with the only constraint that

ν ≤ σ(ν, m) ≤ A ,

i.e., the transmitter cannot start transmitting before the message arrives or af-

ter the end of the uncertainty window. The reason for allowing here to delay

information transmission is given after Definition 7.

In addition to the error probability as defined in (2.2), we are interested in the

communication cost:

Definition 5 (Cost of a Code). The (maximum) cost of a code C is defined

as

K(C) � max
m

N∑
i=1

k(ci(m))

where k : X → [0,∞] is a function that assigns a non-negative value to each

channel input.

The alphabet X is the set of symbols that can be used for codebook design.

In this section, however, we shall distinguish the cases where X contains � from

the case where � can’t be used for codebook design and thus lies outside X .6 The

reason for not always including � into X is practically motivated. The � symbol

corresponds to ‘pure noise,’ and so there is no point in assigning to it a cost other

than zero. On the other hand, the transmitter may, in certain cases, not be able

to stay ‘idle’ at no cost (just being ‘on’ may incur some energy cost). To model

such scenarios, we allow the possibility for � not being in X .

Definition 6 (Delay of a Code). Given ε > 0, the (maximum) delay of a

code C, denoted by D(C, ε), is defined as the smallest d such that

min
m

Pm(τ − ν ≤ d) ≥ 1 − ε,

where Pm denotes the output distribution conditioned on the sending of message m.7

6Hence, in this section, the overall ‘input alphabet’ is X ∪ {�}.
7Hence, by definition we have

Pm(·) =
1
A

A∑
t=1

Pm,t(·) .
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Letting B = log M , a key parameter we shall be concerned with is

β � log A

B
,

which we call the timing uncertainty per information bit.

Next, we define the asynchronous capacity per unit cost in the asymptotic

regime where B → ∞ while β is kept fixed.

Definition 7 (Asynchronous Capacity per Unit Cost). R is an achievable

rate per unit cost at timing uncertainty per information bit β and delay exponent

δ if there exists a sequence of codes {CB}, and a sequence of numbers {εB} with

εB
B→∞→ 0, such that

P(E|CB) ≤ εB ,

lim sup
B→∞

log(D(CB, εB))/B ≤ δ ,

and

lim inf
B→∞

B

K(CB)
≥ R.

The asynchronous capacity per unit cost, denoted by C(β, δ), is the largest achiev-

able rate per unit cost. In the important case when δ = 0, we define C(β) �
C(β, 0).8

Note that asynchronism is captured here by the parameter β = (log A)/B,

instead of by α = (log A)/N as in Section 2.2. The motivation for this is that,

in the context of capacity per unit cost, N is an implicit parameter that can be

optimized,9 and hence is less a fundamental quantity than B, the number of bits

to be transmitted.

Recall that in the current asychronous channel model we allow the transmitter

to delay information transmission after it is available; transmission may start at any

time σ with ν ≤ σ ≤ A. The reason for allowing this is that when the performance

metric is the cost, it may be sub-optimal to start transmitting information right

when it is available. As an extreme case, note that if there is no delay constraint,

the transmitter can choose to send information at time A, which nullifies the

impact of asynchronism. More generally, when a large delay is tolerated, i.e.,

when δ > 0, it is suitable to delay information transmission as this contributes to

increase reliability via asynchronism reduction [CTT10]. In contrast, when data

rate is the performance metric (as in Section 2.2), and thus delay is important,

delaying information transmission is sub-optimal.

In the next section we characterize the capacity per unit cost for an arbitrary

asynchronism parameter β ≥ 0 and an arbitrary delay parameter δ ≥ 0. Similarly

as for the synchronous case, the results simplify when there is a zero cost symbol,

specifically when � ∈ X and k(�) = 0.

8Throughout this chapter, we assume that Q has non-zero capacity, for otherwise the capacity
per unit cost and, a fortiori, the asynchronous per unit cost, equal to zero.

9Just as for the synchronous capacity per unit cost (see comment after [Ver90, Definition 2]).
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2.3.2 Results

Our first result gives the asynchronous capacity per unit cost when δ = 0. It can

be viewed as the asynchronous analogue of [Ver90, Theorem 2], which states that

the synchronous capacity per unit cost is

max
X

I(X; Y )

E[k(X)]
, (2.6)

where the maximization is over random variables X defined over the channel input

alphabet X .

Theorem 6 (Asynchronous Capacity per Unit Cost: Sub-exponential

Delay Constraint). The asynchronous capacity per unit cost at delay exponent

δ = 0 is given by

C(β) = max
X

min

{
I(X; Y )

E[k(X)]
,
I(X; Y ) + D(Y ||Y�)

E[k(X)](1 + β)

}
(2.7)

where the maximization is over all random variables X defined over X . Further-

more, capacity can be achieved by codes whose delay grows linearly with B.

The two terms in (2.7) reflect the two constraints on reliable communication.

The first term corresponds to the standard constraint that the number of bits that

can reliably be transmitted per channel use cannot exceed the input-output mutual

information. This constraint applies when the channel is synchronous, hence also

in the absence of synchrony. To see this, note that by swapping the max and the

min in (2.7), we deduce that C(β) is less than (2.6), the synchronous capacity per

unit cost.

The second term in (2.7) corresponds to the receiver’s ability to determine the

arrival time ν of the data. Indeed, even though the decoder is required only to

produce a message estimate, because of the delay constraint there is no loss in terms

of capacity per unit cost to also require the decoder to (approximately) locate the

time codeword transmission begins—the delay constraint imposes the decoder to

locate the sent message within a time window that is negligible compared to A.

The quantity

I(X; Y ) + D(Y ||Y�)

measures how difficult it is for the receiver to discern a data-carrying transmitted

symbol from pure noise and thus determines how difficult it is for the receiver to

get the timing correct.

When the alphabet X contains a zero-cost symbol 0, the synchronous re-

sult (2.6) simplifies, and Theorem 3 in [Ver90] says that the synchronous capacity

per unit cost becomes

max
x∈X

D(Yx||Y0)

k(x)
, (2.8)
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an optimization over the input alphabet instead of over the set of all input distri-

butions, where Yx refers to is the output distribution given that x is transmitted.

We find an analogous simplification in the asynchronous setting when � is in X

and has zero cost:

Theorem 7 (Asynchronous Capacity per Unit Cost With Zero Cost

Symbol: Sub-exponential Delay Constraint). If � is in X and has zero

cost, the asynchronous capacity per unit cost at delay exponent δ = 0 is given by

C(β) =
1

1 + β
max
x∈X

D(Yx||Y�)

k(x)
, (2.9)

and capacity can be achieved by codes whose delay grows linearly with B.

Hence, a lack of synchronization multiplies the cost of sending one bit of in-

formation by 1 + β. An intuitive justification for this is as follows. Suppose there

exists an optimal coding scheme that can both isolate and locate the sent message

with high probability—as alluded to above, the ability to ‘locate’ the message is

a consequence of the decoder’s delay constraint. This allows us to consider mes-

sage/location pairs as inducing a code of size ≈ A
N

2B used for communication

across the synchronous channel . Hence, if, say, N grows sub-exponentially with

B, we are effectively communicating ≈ βB + B = B(1 + β) bits reliably over the

synchronous channel. Therefore, sending B bits of information at asynchronism

level β is at least as costly as sending B(1 + β) bits over the synchronous chan-

nel. Flipping this reasoning around, the asynchronous channel effectively induces a

codebook for message/location pairs where the location is encoded via PPM. From

[Ver90], optimal coding schemes are similar to PPM in that the codewords consist

almost entirely of the zero cost symbol. This provides an intuitive justification for

why asynchronism multiplies the cost of sending one bit of information by a factor

1 + β.

Theorem 7 can be extended to the (continuous-valued) Gaussian channel, where

the idle symbol � is the 0-symbol:

Theorem 8 (Asynchronous Capacity per Unit Cost for the Gaus-

sian Channel: Sub-exponential Delay Constraint). The asynchronous

capacity per unit cost for the Gaussian channel with variance N0/2, quadratic cost

function (i.e., k(x) = x2), and delay exponent δ = 0, is given by

C(β) =
1

1 + β

log e

N0
β ≥ 0 .

Theorem 6 can be extended to the case of a large delay constraint, i.e., when

0 < δ < β. As for Theorem 6, the following result holds irrespectively of whether

or not X contains �. A simplification similar to Theorem 7 applies if X contains

� and it has zero cost.
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Theorem 9 (Asynchronous Capacity per Unit Cost: Exponential De-

lay Constraint). The asynchronous capacity per unit cost at delay constraint

δ, with 0 < δ < β, is given by

C(β, δ) = C(β − δ),

i.e., it is the same as the capacity per unit cost with delay exponent δ = 0, but with

asynchronism exponent β reduced to β − δ.

The uniform distribution on ν in our model is not critical. The next result

extends Theorem 6 to the case where ν is non-uniform. For a non-uniform distri-

bution on ν, what is important turns out to be its ‘smallest’ set of mass points

that contains ‘most’ of the probability.

Below, νB denotes the arrival time random variable when B bits of informa-

tion have to be transmitted (In Theorem 6, νB has the uniform distribution over

{1, 2, . . . , 2βB}).
Theorem 10 (Asynchronous Capacity per Unit Cost With Non-uni-

form Arrival Time: Sub-exponential Delay Constraint). Define

β̄ = inf
{εB}

lim
B→∞

log(S(εB))

B
, (2.10)

where the infimum is with respect to all sequences {εB} of nonnegative numbers

such that limB→∞ εB = 0, where S(εB) denotes the size of the smallest set with

probability at least 1 − εB, and it is assumed that the limit in (2.10) exists.

Then, the asynchronous capacity per unit cost at delay exponent 0 is given by

C(β̄) = max
X

min

{
I(X; Y )

E[k(X)]
,
I(X; Y ) + D(Y ||Y�)

E[k(X)](1 + β̄)

}
.

Although the formula for β̄ in (2.10) appears unwieldy, in many cases it can

easily be evaluated. For example, in many cases, such as for the uniform or the

geometric distributions, the formula reduces to the normalized entropy

β̄ = lim
B→∞

H(νB)/B .

There are cases, however, where (2.10) doesn’t reduce to the normalized entropy.

For instance, consider the case when νB = 1 with probability 1/2, and νB = i with

probability (1/2)2−βB for i = 2, . . . , 2βB + 1. Then,

β̄ = 2 lim
B→∞

H(νB)/B .
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Tracking a Stopping Time

Through Noisy Observations

In Chapter 2, the task of the sequential decoder is to quickly identify the trans-

mitted message. Statistically, this means that the decoder must quickly detect

and isolate the cause of the change in distribution with respect to the ‘nominal

distribution’ given by ‘pure noise’—before the change-point ν the decoder observes

pure noise and from time ν to time ν + N − 1 the decoder observes a noisy ver-

sion of the transmitted message. In this chapter, we present the tracking stopping

time (TST) problem, a statistical decision problem whose formulation applies in

several areas, including communication. In the TST problem the goal is also to

quickly react to a change in distribution, but not to isolate its cause. The chief

difficulty here lies in the distribution of the change-point, which may depend on

an unobserved stochastic sequence that is correlated to the observation process.

In contrast, in the communication problem there is no such dependency since ν is

randomly drawn independently of everything else. This chapter is based on [NT09]

and [BT10].

3.1 Introduction

The TST problem is defined as follows. Let X = {Xt}t≥0 be a discrete-time

stochastic process and let τ be a stopping time defined over X. Statistician has

access to X only through correlated observations Y = {Yt}t≥0. Knowing the

probability distribution of (X, Y ) and the stopping rule τ , Statistician wishes to

find a stopping η so as to minimize the mean absolute deviation E|η − τ |.
The TST problem formulation, introduced in [NT09], naturally generalizes

to continuous time and other delay penalty functions such as E(η − τ)+ for a

fixed ‘false-alarm’ probability level P(η < τ). Important situations are when the

observation process is a noisy version of X, a delayed version of X, or represents

partial information with respect to X — at time t, Xt = (X̃t, Ỹt) and Statistician

observes only Yt = Ỹt. For specific examples of applications of the TST problem

related to monitoring, forecasting, and communication we refer to [NT09].

In [NT09], an algorithmic approach is proposed for discrete-time settings where

all the Xi’s and Yi’s take values in a common finite alphabet (otherwise the X and
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Y processes are arbitrary), and where τ is bounded by some constant c ≥ 1. Given

the probability distribution of (X, Y ) and the stopping rule of τ , the algorithm

outputs the minimum reaction delay E(η − τ)+ together with an optimal stopping

rule, for all false-alarm probability levels P(η < τ) ≤ α, α ∈ [0, 1]. Under certain

conditions on (X, Y ) and τ , the computational complexity of this algorithm is

polynomial in c.

What motivated an algorithmic approach for the TST problem, is that it gen-

eralizes the Bayesian change-point detection problem, a long studied problem with

applications to industrial quality control that dates back to the 1940’s [AGP47],

and for which analytical solutions have been reported only for specific, mostly

asymptotic, settings.

In the Bayesian change-point problem, there is a random variable θ, taking val-

ues in the positive integers, and two probability distributions P0 and P1. Under P0,

the conditional density function of Yt given Y1, Y2, . . . , Yt−1 is f0(Yt|Y1, Y2, . . . , Yt−1),

for every t ≥ 0. Under P1, the conditional density function of Yt given Y1, Y2, . . . , Yt−1

is f1(Yt|Y1, Y2, . . . , Yt−1), for every t ≥ 0. The observed process is distributed ac-

cording P θ which assigns the same conditional density functions as P0 for all t < θ,

and the same conditional density functions as P1 for all t ≥ θ.

The Bayesian change-point problem typically consists in finding a stopping

time η, with respect to {Yt}, that minimizes some function of the delay η − τ .

Shiryaev [Shi63, Shi78], for instance, considered minimizing the Lagrangian func-

tion

E(η − θ)+ + λP(η < θ)

for given constant λ ≥ 0. Assuming a geometric prior on the change-point θ,

and that before and after θ the observations are independent with common den-

sity function f0, for t < θ, and f1 for t ≥ θ, Shiryaev showed that an optimal

η stops as soon as the posterior probability that a change occurred exceeds a

certain fixed threshold. Later, Yakir [Yak94] generalized Shiryaev’s result by con-

sidering finite-state Markov chains. For more general prior distributions on θ,

the problem is known to become difficult to handle. However, in the limit of

small false-alarm probabilities P(η < θ) → 0, Lai [Lai98] and, later, Tartakovsky

and Veeravalli [TV05], derived asymptotically optimal detection policies for the

Bayesian change-point problem under general assumptions on the distributions

of the change-point and observed process. (For the non-Bayesian version of the

change-point problem we refer the reader to [Lor71, Mou86].)

It can be shown that any Bayesian change-point problem can be formulated

as a TST problem, and that a TST problem cannot, in general, be formulated as

a Bayesian change-point problem [NT09]. The TST problem therefore generalizes

the Bayesian change-point problem, which is analytically tractable only in special

cases.

In the next section, we consider the situation where X and Y are correlated

Gaussian random walks given by X0 = Y0 = 0, Xt = s · t +
∑t

i=1 Vi and Yt =
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Xt + ε
∑t

i=1 Wi, for t ≥ 1 and some arbitrary constant s > 0 and ε > 0. The Vi’s

and Wi’s are assumed to be independent zero mean unit variance Gaussian random

variables. The stopping time to be tracked is the threshold crossing moment

τl = inf{t ≥ 0 : Xt ≥ l} for some arbitrary threshold level l > 0. For this

setting, we provide upper and lower bounds on infη E|η − τl| that imply

inf
η

E|η − τl| =

√
2lε2

πs3(1 + ε2)
(1 + o(1)) (l → ∞) (3.1)

for fixed s > 0 and ε > 0. Interestingly, (3.1) is still valid if we let η be an

estimator of τ that depends on the entire sequence Y ∞
0 ; causality doesn’t come at

the expense of increased delay in the above asymptotic regime.

For the particular case where the random walks have no drift, i.e., s = 0, we

show that E|η − τl|r = ∞ whenever r ≥ 1/2, ε > 0, and l > 0, for any estimate η

of τl that potentially may also depend on the entire observation process Y ∞
0 .

The above results naturally extend to the continuous time setting where
∑t

i=1 Vi

and
∑t

i=1 Wi are replaced by two independent standard Brownian motions. In par-

ticular, (3.1) remains valid for fixed s > 0 and ε > 0.

3.2 Problem Formulation and Main Results

The results in this section can be found in [BT10]. We consider the discrete-time

processes

X : X0 = 0 Xt =

t∑
i=1

Vi + st t ≥ 1

Y : Y0 = 0 Yt = Xt + ε

t∑
i=1

Wi t ≥ 1

where V1, V2, . . . and W1, W2, . . . are two independent sequences of independent

standard (i.e., zero mean unit variance) Gaussian random variables, and where

s > 0 and ε > 0 are arbitrary constants.

Given the threshold crossing time

τl = inf{t ≥ 0 : Xt ≥ l}

for some arbitrary level l > 0, we aim at finding a stopping time with respect to

observation process Y that best tracks τl. Specifically, we consider the optimization

problem

inf
η

E|η − τl| , (3.2)

where the minimization is over all stopping times η defined with respect to the

natural filtration induced by the Y process.
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To avoid trivial situations, we restrict l and ε to be strictly positive. When

l = 0 or ε = 0, (3.2) is equal to zero: for l = 0, η = 0 is optimal, and for ε = 0,

η = τl is optimal.

The reason for restricting our attention to the case where also s is strictly

positive is that, when s = 0, (3.2) is infinite for all l > 0 and ε > 0. In fact,

Proposition 1, given at the end of this section, provides a stronger statement: for

s = 0, ε > 0, and l > 0, we have E|η− τl|r = ∞ for any r ≥ 1/2 and any estimator

η = η(Y ∞
0 ) of τl that may depend on the entire observation process Y ∞

0 (i.e., η

need not be a stopping time).

The following theorem provides a non-asymptotic upper bound on (3.2) which

is achieved by a threshold crossing stopping time applied to a certain estimate of

the X process:

Theorem 11 (Upper bound). Fix ε > 0, s > 0, l > 0, and define X̂t as

X̂0 = 0 X̂t = st +
1

1 + ε2
(Yt − st) for t ≥ 1.

Then, the stopping time η = inf{t ≥ 0 : X̂t ≥ l} satisfies

E |η − τl| ≤
√

2lε2

π(1 + ε2)s3
+

6

s

(
l

(2πs)3

)1/4

+

√
8(s + 2)

πs3
+ 10 +

20

s
. (3.3)

The next theorem provides a non-asymptotic lower bound on E|η − τl| for any

estimate η = η(Y ∞
0 ) of τl that has access to the entire sequence Y ∞

0 . The function

Q(x) is the standard Q-function defined as Q(x) = (2π)−1/2
∫∞

x
exp(−u2/2)du.

Theorem 12 (Lower bound). Let ε > 0 and l/s ≥ 2 with s > 0. Then, for any

integer n such that 1 ≤ n < l/s, the following lower bound holds:

inf
η(Y ∞

0 )
E|η − τl| ≥

√
2nε2

πs2(1 + ε2)

(
1 − Q

(
l − sn√
n(1 + ε)

))

−
√

2

πs3

(
l − sn +

√
n

2π

)1/2

− 2 − 4

s
. (3.4)

When n approaches l/s and l/s tends to infinity in a suitable way, the upper

and lower bounds (3.3) and (3.4) become tight. The following result can be derived

from Theorems 11 and 12:

Theorem 13 (Asymptotics). Let q be a constant such that 1/2 < q < 1. In the

asymptotic regime where l/s ≥ 2,

s

(
l

s

)q−1/2

−→ ∞ ,

and (
l

s

)1−q
ε2

1 + ε2
−→ ∞ ,
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we have

inf
η(Y ∞

0 )
E|η − τl| = inf

η
E|η − τl| =

√
2lε2

πs3(1 + ε2)
[1 + o(1)] . (3.5)

In particular, (3.5) holds in the limit l → ∞ for fixed s > 0 and ε > 0.

To prove Theorem 11, we consider η = inf{t ≥ 0 : X̂
(c)
t ≥ l}, where X̂

(c)
t is the

estimate of Xt defined as X̂
(c)
t = st+c(Yt−st), then optimize over c ≥ 0. It should

be noted that, in the asymptotic regime (given by Theorem 13) where the upper

and lower bounds on infη E|η − τl| coincide, the optimal c (equal to 1/(1 + ε2)) is

the value for which the variance of Xt − X̂
(c)
t is minimized.

Let us now consider the setting where
∑t

i=1 Vi and
∑t

i=1 Wi are replaced by

standard Brownian motions, i.e., with the X and the Y processes being defined as

X : X0 = 0 Xt = Bt + st for t > 0

Y : Y0 = 0 Yt = Xt + εNt for t > 0

where {Bt}t>0 and {Nt}t>0 are two independent standard Brownian motions. The

previous results easily extend to the Brownian motion setting. Indeed, the analysis

is simpler than for the Gaussian random walk setting as there is no ‘excess over

threshold’ for a Brownian motion — the value of a Brownian motion the first time

it crosses a certain level equals this level.

Theorems 14, 15, and 16 are analogous to Theorems 11, 12, and 13, respectively.

Theorem 14 (Upper bound: Brownian motion with drift). Fix ε > 0,

s > 0, l > 0, and define X̂t as

X̂0 = 0 X̂t = st +
1

1 + ε2
(Yt − st) for t > 0.

Then, the stopping time η = inf{t ≥ 0 : X̂t = l} satisfies

E |η − τl| ≤
√

2lε2

π(1 + ε2)s3
+

6

s

(
l

(2πs)3

)1/4

.

Theorem 15 (Lower bound: Brownian motion with drift). Let ε > 0,

s > 0, and l > 0, and let n be such that 1 ≤ n < l/s. Then,

inf
η(Y ∞

0 )
E|η − τl| ≥

√
2nε2

πs2(1 + ε2)

(
1 − Q

(
l − sn√
n(1 + ε)

))

−
√

2

πs3

(
l − sn +

√
n

2π

)1/2

.

Theorem 16 (Asymptotics : Brownian motion with drift). Theorem 13

is also valid in the Brownian motion setting.
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We end this section with a proposition related to the particular case where

s = 0, which we referred to earlier. When s = 0, ε > 0, and l > 0, it is impossible

to finitely track τl, even having access to the entire observation process Y ∞
0 : for

any estimate η = η(Y ∞
0 ), E(|η−τl|r) = ∞ for all r ≥ 1/2. The proposition is valid

in both the Gaussian random walk and the Brownian motion settings.

Proposition 1. Let s = 0 and let f(x), x ≥ 0, be a non-negative and non-

decreasing function such that

Ef(τh/2) = ∞ (3.6)

for some constant h > 0. Then,

i. Ef(|τl − η|) = ∞ for any estimate η = η (Y ∞
0 ), whenever ε > 0 and l > 0.

ii. If f(x) = xr, r ≥ 1/2, then (3.6) holds for all h > 0, whenever ε > 0 and

l > 0. (Hence, E|τl − η|r = ∞ for any estimate η = η (Y ∞
0 ) of τl whenever

r ≥ 1/2, s = 0, ε > 0, and l > 0.)

3.3 Open problems

In a further collaboration with M.V. Burnashev from the Russian Academy of

Sciences, we are extending the above results to higher order penalty functions, i.e.,

E|η − τ |r with r > 1. Another research direction we are pursuing is to investigate

the situation where the Y process is a delayed version of the X process. This

setting applies, for instance, in high-frequency trading in finance and leads to a

collaboration with L. Kogan from the Sloan School of Management at MIT.
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Thesis supervisions

4.0.1 Ashish Khisti: secrecy communication

I was a co-phd-supervisor with Prof. Gregory Wornell for Ashish Khisti while I

was at MIT as a postdoctoral associate between 2005 and 2008. The Ph.D thesis

was defended in 2008. My involvement was only in first part of the thesis whose

main results appeared in [KTG08].

In the first part of the thesis, Ashish considers secret communication in the

presence of eavesdroppers. The goal is to reliably communicate to a set of intended

receivers, while keeping the eavesdroppers in ignorance. Ashish first considers a

time varying fading channel. Both the scenarios when each legitimate receiver

wants a common message as well as the scenario when they all want separate

messages are studied and capacity results are established.

4.0.2 Milad Sefidgaran: communication and computing

Milad started his Ph.D. under my supervision in October 2009. Milad is investi-

gating fundamentals of cooperation in the context of multi-user computation. For

instance, consider the multiple-access channel where the receiver wants to compute

a certain function of two correlated inputs. For a broad class of multiple-access

channels, Milad recently derived the minimum number of bits that each sender

needs to transmit in order for the receiver to compute the function with high

probability. This work extends the work of [OR98] where point-to-point commu-

nication is considered.
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