Conclusion 00

Detection of a Stopping Time Through Noisy Observations

Aslan Tchamkerten

Telecom ParisTech

Joint work with U. Niesen (MIT)

IWSM 2009

Main results

Conclusion

・ロト ・聞ト ・ヨト ・ヨト

Conclusion

The Tracking Stopping Time problem

Process $\{(X_i, Y_i)\}_{i \ge 1}$ whose law is known to Alice and Bob. Alice

• chooses a stopping time *S* with respect to $\{X_1, X_2, \ldots\}$ Bob

- observes only Y_1, Y_2, \ldots
- knows the rule of S

Bob's goal

Find T so that $\mathbb{E}(T - S)^+$ is minimized while $\mathbb{P}(T < S) \leq \alpha$.

A D > A P > A D > A D >

Conclusion

Example: monitoring

- X_n: distance at time n of an object from a barrier
- *S*: first time *n* when $X_n = 0$
- Y_n: noisy measurements of X_n

What time *T* should an alarm be raised? $\mathbb{E}(T - S)^+ =$ "reaction time" $\mathbb{P}(T < S) =$ false-alarm probability

Conclusion

Example: forecasting

- X_n: fatigue up to day n of a big manufacturing machine
- S: first day n for which X_n crosses critical fatigue threshold
- Machine replacement period: 10 days
- T: first day new machine is operational

Wanted T close to S because

- *T* > *S*: interrupted manufacturing process
- *T* < *S*: storage costs
- \Rightarrow TST problem with $Y_n = X_{n-10}$ if n > 10 and $X_n = 0$ else.

・ ロ ト ・ 雪 ト ・ 目 ト ・

Conclusion

Example: change-point problem

- θ positive integers valued random variable
- $\{Y_i\}_{i\geq 1}$ i.i.d. with $Y_i \sim P_0$ if $i < \theta$ and $Y_i \sim P_1$ if $i \geq \theta$
- Goal: find *T* such that $\mathbb{E}(T \theta)^+$ minimized while $\mathbb{P}(T < \theta) \le \alpha$

Equivalent to:

- $\{X_i\}_{i\geq 1}$ with $X_i = 0$ if $i < \theta$ and $X_i = 1$ if $i \geq \theta$.
- $S = \inf\{i \ge 1 : X_i = 1\}$ (i.e., $S = \theta$)
- Goal: find T such that $\mathbb{E}(T S)^+$ minimized while $\mathbb{P}(T < S) \le \alpha$

Change-point or tracking a stopping time?

C-P and TST are not equivalent:

for k > n

C-P:
$$\mathbb{P}(\theta = k | Y^n = y^n, \theta > n) = \mathbb{P}(\theta = k | \theta > n)$$

TST: $\mathbb{P}(S = k | Y^n = y^n, S > n) \neq \mathbb{P}(S = k | S > n)$ in general

i.e., for the C-P problem,

if $\{\theta > n\}$, the first *n* samples Y^n are useless for predicting θ .

Conclusion

Given the law of $\{(X_i, Y_i)\}_{i \ge 1}$ and a s.t. S on $\{X_i\}_{i \ge 1}$ find

• the curve $d(lpha) = \min_{\mathcal{T}: \mathbb{P}(\mathcal{T} < \mathcal{S}) \leq lpha} \mathbb{E}(\mathcal{T} - \mathcal{S})^+$

• the corresponding optimal stopping times.

Vain results

Conclusion 00

Here

- discrete time, finite alphabet processes
- $S \leq \kappa$

Stopping time \equiv full tree

Ex:
$$X_i \in \{0, 1\}, S = \begin{cases} 1 & \text{if } X_1 = 1 \\ 3 & \text{else} \end{cases}$$

・ロト ・聞ト ・ヨト ・ヨト

Conclusion

What we can easily deduce

Epigraph of
$$d(\alpha) = \min_{\mathcal{T}: \mathbb{P}(\mathcal{T} < \mathcal{S}) \leq \alpha} \mathbb{E}(\mathcal{T} - \mathcal{S})^+$$

- Decreasing
- Convex
- Finitely many extreme points: deterministic stopping times
- \Rightarrow $d(\alpha)$ is piecewise linear and convex.

Main results

Conclusion

Main result

Algorithm for constructing $\{T_m\}_{m=0}^M$ using key property:

$$T_0 \geq T_1 \geq T_2 \geq \ldots \geq T_M$$

・ロト ・聞ト ・ヨト ・ヨト

Main results

Conclusion

Construction of $\{T_m\}_{m=0}^M$

Tree pruning algorithm: $T_m \rightarrow T_{m+1}$

- cost associated to each intermediate nodes of T_m
- find nodes in *T_m* with maximum cost
- get T_{m+1} by cutting the branches above those nodes

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

Main results

Conclusion

Construction of $\{T_m\}_{m=0}^M$

Tree pruning algorithm: $T_m \rightarrow T_{m+1}$

- cost associated to each intermediate nodes of T_m
- find nodes in *T_m* with maximum cost
- get T_{m+1} by cutting the branches above those nodes

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

Main results

Conclusion

Construction of $\{T_m\}_{m=0}^M$

Tree pruning algorithm: $T_m \rightarrow T_{m+1}$

- cost associated to each intermediate nodes of T_m
- find nodes in *T_m* with maximum cost
- get T_{m+1} by cutting the branches above those nodes

Main results

Conclusion

Construction of $\{T_m\}_{m=0}^M$

Tree pruning algorithm: $T_m \rightarrow T_{m+1}$

- cost associated to each intermediate nodes of T_m
- find nodes in *T_m* with maximum cost
- get T_{m+1} by cutting the branches above those nodes

Main results

Conclusion

Construction of $\{T_m\}_{m=0}^M$

Tree pruning algorithm: $T_m \rightarrow T_{m+1}$

- cost associated to each intermediate nodes of T_m
- find nodes in *T_m* with maximum cost
- get T_{m+1} by cutting the branches above those nodes

Main results

Conclusion

Construction of $\{T_m\}_{m=0}^M$

Tree pruning algorithm: $T_m \rightarrow T_{m+1}$

- cost associated to each intermediate nodes of T_m
- find nodes in *T_m* with maximum cost
- get T_{m+1} by cutting the branches above those nodes

Main results

Conclusion

Construction of $\{T_m\}_{m=0}^M$

Tree pruning algorithm: $T_m \rightarrow T_{m+1}$

- cost associated to each intermediate nodes of T_m
- find nodes in *T_m* with maximum cost
- get T_{m+1} by cutting the branches above those nodes

Conclusion

 $a(T_{\mathbf{v}})$

(日)

Cost function

Given a tree T_m define for all of its nodes **y**

$$\begin{aligned} & \boldsymbol{a}(\mathbf{y}) = \mathbb{E}\left(|\mathbf{y}| - \boldsymbol{S}\right)^+ \big| \, \mathbf{Y} = \mathbf{y}\right) \mathbb{P}(\mathbf{Y} = \mathbf{y}) \\ & \boldsymbol{b}(\mathbf{y}) = \mathbb{P}\left(|\mathbf{y}| < \boldsymbol{S} \, \big| \, \mathbf{Y} = \mathbf{y}\right) \mathbb{P}(\mathbf{Y} = \mathbf{y}) \;. \end{aligned}$$

For each intermediate node \mathbf{y} in T_m

$$r(\mathbf{y}) \triangleq rac{a(T_{\mathbf{y}}) - a(\mathbf{y})}{b(\mathbf{y}) - b(T_{\mathbf{y}})}$$

To get T_{m+1} cut branches of T_m above maximal cost intermediate nodes.

- Algorithm complexity: $\exp(O(\kappa))$
- Exhaustive search: exp(exp(Ω(κ)))

э

ヘロン 人間 とくほど くほとう

Main results

Conclusion

Easy TST instances

ヘロト 人間 とくほとう ほとう

Conclusion

Easy TST instances

S is permutation invariant if

$$\mathbb{P}(S \le n | X^n = x^n) = \mathbb{P}(S \le n | X^n = \pi(x^n))$$

for any π and $n \ge 1$.

Theorem 1

lf

• the (X_i, Y_i) 's are i.i.d.

 S is permutation invariant then T₁ is obtained in poly(κ).

(日)

Main results

Conclusion

Easy TST instances

S is permutation invariant if

$$\mathbb{P}(S \le n | X^n = x^n) = \mathbb{P}(S \le n | X^n = \pi(x^n))$$

for any π and $n \ge 1$.

Theorem 2

lf

- the (X_i, Y_i) 's are i.i.d.
- *S* and $\{T_m\}_{m=0}^{M}$ permutation invariant

then the algorithm is $poly(\kappa)$.

(日)

Main results

Conclusion

Easy TST instances (cont.)

Example 1:

・ロト ・聞ト ・ヨト ・ヨト

Conclusion

Easy TST instances (cont.)

Example 1:

٠

- $\{(X_i, Y_i)\}_{i \ge 1}$ i.i.d. with $X_i \in \{0, 1\}$
- $S \triangleq \inf\{i \ge 1 : X_i = 1 \text{ or } i = \kappa\}.$

Note that (for $n < \kappa$)

•
$$\mathbb{P}(S = n) = p(1 - p)^{n-1}$$
, where $p \triangleq \mathbb{P}(X = 1)$

$$\mathbb{P}(Y_i = y_i | S = n) = \begin{cases} \mathbb{P}(Y_i = y_i | X_i = 0) & \text{if } i < n, \\ \mathbb{P}(Y_i = y_i | X_i = 1) & \text{if } i = n, \\ \mathbb{P}(Y_i = y_i) & \text{if } i > n. \end{cases}$$

Conclusion 00

Easy TST instances (cont.)

Example 1:

٠

- $\{(X_i, Y_i)\}_{i \ge 1}$ i.i.d. with $X_i \in \{0, 1\}$
- $S \triangleq \inf\{i \ge 1 : X_i = 1 \text{ or } i = \kappa\}.$

Note that (for $n < \kappa$)

•
$$\mathbb{P}(S = n) = p(1 - p)^{n-1}$$
, where $p \triangleq \mathbb{P}(X = 1)$

$$\mathbb{P}(Y_i = y_i | S = n) = \begin{cases} \mathbb{P}(Y_i = y_i | X_i = 0) & \text{if } i < n, \\ \mathbb{P}(Y_i = y_i | X_i = 1) & \text{if } i = n, \\ \mathbb{P}(Y_i = y_i) & \text{if } i > n. \end{cases}$$

 \Rightarrow change-point problem.

Main results

Conclusion

Easy TST problems (cont.)

Example 2: a pure TST problem

• $\{(X_i, Y_i)\}_{i \ge 1}$ be i.i.d. with $X_i \in \{0, 1\}$

•
$$S \triangleq \inf\{i \ge 1 : \sum_{j=1}^{i} X_j = 2\}.$$

A D > A P > A D > A D >

Main results

Conclusion

Summary

• A change-point problem generalization appearing in:

- detection
- prediction
- communication (e.g., feedback communication)
- quality control
- information econometrics
- Contribution:
 - Algorithmic solution (discrete time, finite alphabet)
 - Criterion for low complexity solution

A lot remains to be done:

- Algorithmically: explicit conditions for polynomial algorithm
- Analytically: exact results may be difficult to get. Given (X, Y) and S good lower bound on E(T − S)² as a function of the correlation between X and Y and 'variability' of S?

Ref.: U. Niesen & A. Tchamkerten, 'Tracking stopping times through noisy observations,' IEEE Transactions on Information Theory, January 2009

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト