SOCOM205 Dec. 10 2015

Cours 6

Enseignant: Aslan Tchamkerten Crédit: Toni Franceschelli

1 Un peu d'histoire...

La Théorie du codage date des années '50. <u>Claude Elwood Shannon</u> (1916-2001) et Richard Hamming (1915-1998) en sont les pionniers.

Le premier, considéré comme le père de l'ère digitale, s'est intéressé principalement aux *limites fondamentales* de communication en terme de:

- stockage de données: limite ultime de compression.
- transmission de données: limite ultime de vitesse de transmission fiable de données.

De façon complémentaire, Hamming s'est intéressé aux algorithmes permettant au mieux de corriger et détecter des erreurs. Le papier de Shannon A mathematical theory of communication (1948) et celui de Hamming Error detecting and error correcting codes (1950) établirent les domaine de la théorie de l'information et le domaine du codage, respectivement. A noter que Hamming considére un modéle de communication quelque peu différent de celui de Shannon.

2 Codes correcteurs d'erreurs

Problème de Hamming, exemple:

- On veut stocker des bits sur un support magnétique.
- Les bits sur le support peuvent se corrompre mais très rarement (au pire 1 bit sur 63).

2.1 Une solution naïve

Une première solution naïve consiste à répéter chaque bit 3 fois. La taille du mot code est donc 3 fois plus grande que celle du message. Exemple : message $\Rightarrow 0100$; mot code $\Rightarrow 000111000000$.

Performances:

- Complexité de codage et décodage: linéaire en la taille du message
- Taux de codage = $\frac{Taille\ message}{Taille\ mot\ code} = \frac{1}{3}$

Ce codage protège d'une erreur. Pour le décodage, on utilise la règle de la majorité sur 3 bits consécutifs.

2.2 Solution 1 de Hamming

On découpe le message en blocs de 4 bits chacun.

On associe à chaque bloc m un mot code $m \cdot G$ où $m \in \{0,1\}^4$ et

$$G = \left(\begin{array}{cccccccc} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{array}\right)$$

Propriété:

 $\overline{\forall m_1 \neq m_2} \in \{0,1\}^4$, $m_1 \cdot G$ et $m_2 \cdot G$ diffèrent d'au moins 3 positions.

 $\underline{\text{Taux}}$: $\frac{4}{7}$

Décodage:

Soit $y \in \{0,1\}^7$ contenant au plus 1 erreur.

 $y\cdot H$ donne l'index du bit corrompu de y avec

$$H = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

2.3 Solution 2 de Hamming

 \exists deux matrices $G \in \mathcal{M}_{57,63}$ et $H \in \mathcal{M}_{63,6}$ possédant les propriétés suivantes:

- $\forall m_1 \neq m_2 \in \{0,1\}^4$, $m_1.G$ et $m_2.G$ diffèrent d'au moins 3 positions;
- si y est un mot "corrompu" d'au plus 1 erreur alors $y \cdot H$ donne l'index du bit corrompu;

<u>Taux</u>: $\frac{57}{63} > \frac{4}{7}$. Aucun schéma qui corrige une erreur ne peut atteindre un taux supérieur à $\frac{57}{63}$, comme on le verra plus bas.

2.4 Notions de Hamming

2.4.1 Distance de Hamming

Soit Σ un ensemble fini appelé alphabet.

Soit Σ^n l'ensemble des mots de n lettres sur Σ .

On appelle distance de Hamming $\Delta(x, y)$, avec $x, y \in \Sigma$, le nombre de coordonnées où x et y diffèrent.

On note $\delta(x,y)$ la distance normalisée de Hamming: $\delta(x,y) \stackrel{\text{def}}{=} \frac{\Delta(x,y)}{n}$.

Fait: La distance de Hamming est une métrique.

- 1. $\Delta(x,y) \geq 0, \forall x,y \in \Sigma^n$
- $2. \ \Delta(x,y) = \Delta(y,x)$
- 3. $\Delta(x,y) + \Delta(y,z) \ge \Delta(x,z)$

2.4.2 Codes

Soit $C \subseteq \Sigma^n$.

1. $\underline{\mathcal{C}}$ corrige t erreurs si tout motif de t erreurs peut être corrigé (par un décodage possiblement inefficace).

Formellement:

- $B(x,t) \stackrel{\text{def}}{=} \{ y \in \Sigma^n : \Delta(x,y) \le t \}$
- \mathcal{C} corrige t erreur si $\forall x, y \in \mathcal{C}$ avec $x \neq y, B(x, t) \cap B(y, t) = \emptyset$.

2. $\underline{\mathcal{C}}$ détecte $e \ge 1$ erreurs si à chaque fois que $1 \le \#$ erreurs $\le e$, on peut détecter que des erreurs ont eu lieu.

Formellement:

$$\forall x \in \mathcal{C}, B(x, e) \cap C = \{x\}$$

3. On appelle distance d'un code $\Delta(C)$, la distance minimale qui sépare deux mots d'un code:

$$\Delta(\mathcal{C}) = \min_{x,y \in \mathcal{C}, x \neq y} \Delta(x,y)$$

Proposition 1 Les conditions suivantes sont équivalentes:

- 1. C corrige t erreurs
- 2. C détecte 2t erreurs
- 3. $\Delta(\mathcal{C}) > 2t + 1$

Preuve

• $3 \rightarrow 1$:

 $\Delta(\mathcal{C}) \geq 2t+1 \Rightarrow$ Les boules B(x,t) ne se recouvrent pas \Rightarrow on associe à $y \in \Sigma^n$ le décodage "plus proche voisin"

$$\Phi(y) = \arg\min_{x \in \mathcal{C}} \Delta(x, y)$$

Ce décodeur corrige bien t erreurs.

 $\bullet \neg 3 \rightarrow \neg 1$:

 $\Delta(\mathcal{C}) \leq 2t \Rightarrow \exists \ 2 \text{ mots codes } x_1 \text{ et } x_2 \in \mathcal{C} \text{ dont les boules de rayon } t \text{ se recouvrent: } B(x_1,t) \cap B(x_2,t) \neq \emptyset.$

Si y appartient à cette intersection \rightarrow problème pour décoder.

• $3 \rightarrow 2$:

$$\forall x \in \mathcal{C}, B(x, 2t) \cap C = \{x\}$$

On considère le décodage:

Si $y^n = x^n \in \mathcal{C}$, on déclare x^n . $y^n \in \bigcup_x B(x, 2t) \setminus \mathcal{C}$, on déclare "erreur". $y \notin \bigcup_x B(x, 2t)$, on déclare n'importe quel mot code.

Ce décodeur détecte bien 2t erreurs.

 $\bullet \ \neg 3 \rightarrow \neg 2$:

 $\Delta(\mathcal{C}) \leq 2t \Rightarrow 2$ mots codes appartiennent à une même boule \Rightarrow . Si y est égal à l'un de ces mots codes il n'est pas possible de savoir si y correspond à un mot code où s'il s'agit d'une version bruitée d'un mot code.

Proposition 2 Pour $\Sigma = \{0, 1\}$

1.
$$|B(x,t)| = \sum_{i=0}^{t} {n \choose i} \stackrel{\text{def}}{=} \text{Vol}(n,t)$$

- 2. Si C corrige t erreurs $\Rightarrow |C| \leq \frac{2^n}{\text{Vol}(n,t)}$
- 3. Soit $0 \le p \le \frac{1}{2}$ alors
 - (a) $Vol(n, np) \leq 2^{nH(p)}$ pour tout np entier
 - (b) $\operatorname{Vol}(n, np) \geq 2^{n(H(p)-o(1))}$ pour n suffisament grand

$$où H(p) \stackrel{\text{def}}{=} - p \cdot log_2(p) - \overline{p} \cdot log_2(\overline{p}), \ \overline{p} \stackrel{\text{def}}{=} 1 - p$$

Observation 3 H(p), $0 \le p \le 1$, est une fonction concave, symétrique, qui atteint son maximum à p = 1/2, et telle que H(0) = H(1) = 0.

Observation 4 Pour n = 63, t = 1 on a $Vol(63, 1) = 64 \Rightarrow |\mathcal{C}| \leq \frac{2^{63}}{64} = 2^{57}$ $\Rightarrow Taux \frac{57}{63}$ optimal (Solution 2 Hamming).

Preuve

- 1. $\binom{n}{i}$ représente le nombre de séquences de longueur n qui diffèrent d'une séquence donnée sur i coordonnées exactement.
- 2. Si $\mathcal C$ corrige t erreurs alors pour tout $x,y\in\mathcal C$ on a $B(x,t)\cap B(y,t)=\emptyset$ d'où

$$2^n \ge |\cup_{x \in \mathcal{C}} B(x,t)| = |\mathcal{C}| \cdot \operatorname{Vol}(n,t)$$

3. (a)

$$\begin{split} \sum_{i=0}^{np} \binom{n}{i} &= 2^{nH(p)} \sum_{i=0}^{np} \binom{n}{i} \cdot p^{np} \cdot \overline{p}^{n\overline{p}} \\ &= 2^{nH(p)} \sum_{i=0}^{np} \binom{n}{i} \cdot p^{i} \cdot \overline{p}^{n-i} \cdot \left(\frac{p}{1-p}\right)^{np-i} \\ &\leq 2^{nH(p)} \end{split}$$

où l'inégalité vient du fait que $p/(1-p) \leq 1$ pour $p \leq 1/2$ et de l'identité

$$\sum_{i=0}^{n} \binom{n}{i} \cdot p^{i} \cdot \overline{p}^{n-i} = 1.$$

(b) En utilisant une version grossière de la formule de Stirling

$$k! = k^k \cdot e^{-k} \operatorname{poly}(k)$$

où poly(k) est un terme polynomiale en k (i.e., $k^{\alpha} \leq \text{poly}(k) \leq k^{\beta}$ pour certains $0 < \alpha \leq \beta$ et k suffisamment grand) on a

$$\sum_{i=0}^{np} \binom{n}{i} \ge \binom{n}{np}$$

$$= \left(\frac{1}{p}\right)^{pn} \left(\frac{1}{\bar{p}}\right)^{\bar{p}n} \operatorname{poly}(n)$$

$$= 2^{nH(p)} \operatorname{poly}(n)$$

$$> 2^{n(H(p)-o(1))}$$