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ASSIGNMENT 6 - SOLUTIONS

Exercise 1 (RAID, distributed storage). Redundant Arrays of Independent Disks consist of a set of
disks such that any subset of s disks can be disabled and the others are still able to reconstruct any
requested file (the system can tell which disks are disabled).The rate of a RAID system corresponds
to the rate at which data is stored.

1. Design a RAID system for 7 disks and s = 2. To do this you may want to consider the (7, 4)
Hamming code.

2. What happens if we use this code and try correct 3 erasures?

Solution. 1. Encode each successive 4 bits of data into the corresponding seven bit codeword
of a (7, 4) Hamming code, and write each bit of the codeword on a different disk. If s disks
are disabled, this means that we get to observe codewords with erasures at some specific s
positions. To reconstruct the original codeword x from a corrupted (i.e., x with 2 erased
positions) vector y, observe that because the minimum distance is 3, all except codeword
x will differ from y in at least one of the non-erased positions. Therefore only x will be
consistent with y, and erasure decoding will be error-free.

2. Things might go wrong. Consider two codewords whose distance is 3 and suppose one of
them is stored. If the 3 erased positions correspond to the positions where the 2 codewords
differ then it won’t be possible to (fully) recover the original data.

Exercise 2. Let C be a code with minimum distance d. Prove that C can correct any pattern of e1
errors and e2 erasures provided that 2e1 + e2 + 1 ≤ d. (Hint: given an erasure pattern, consider the
code obtained by the deleting the erasure positions.)

Solution. Consider a pattern of e2 ≤ d − 1 erasures, and the code obtained by deleting the erasure
positions of the code. The resulting code C ′ has a minimum distance at least d − e2 and thus can
be corrected as long as 2e1 ≤ (d − e2) − 1. Once C ′ has been error corrected, C can be erasure
corrected since e2 ≤ d− 1 (see Ex.1).

Exercise 3 (Perfect codes). A code is a perfect t−error correcting code if the set of t−spheres
centered on the codewords fill the Hamming space {0, 1}n without overlapping. Here we will show
that such codes do not, in general, achieve the capacity of the BSC.

Consider a set of three codewords of length n. Let µn denote the number of positions where
the first codeword differs from both the second and the third codewords, let vn denote the number
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of positions where the second codeword differs from both the first and the third codewords, let wn
denote the number of positions where the third codeword differs from both the first and the second
codewords, and finally let zn denote the number of positions where the three codewords agree.

1. Argue that we can assume, without loss of generality, that one of them is the all-zero
codeword.

2. Assuming that the code is f · n-error correcting, give necessary conditions on u, v, w.

3. Show that for a certain range of f we must have u+ v + w > 1 which is impossible.

4. Conclude that, for a certain range of f , perfect codes do not exist.

5. Reconcile this result with the Shannon’s result which says that ‘with high probability it is
possibe to correct f · n errors with exponentially many codewords’.

Solution. 1. From a given code, pick any codeword, and XOR it with each codeword in the code.
The new code is simply a translated version of the original code, with one codeword being the
all-zero codeword. As such it achieves the exact same performance as the original code, both
in terms of rate and error probability.

2.
u+ v > 2f u+ w > 2f u+ w > 2f

3. Summing the three inequalities and dividing by two we get u + v + w > 3f . So if f > 1/3
the sum exceeds 1, a contradiction.

4. See 3.

5. Hamming error correction requires to be able to correct error patterns exactly. This gives rise
to a worst case scenario where the minimium distance plays the central role. In fact, beyond
half the minimum distance we cannot guarantee that all error patterns will be corrected. By
contrast, Shannon requires to correct error patterns with high probability which, in turn,
allows to correct many error patterns above the minimum distance. More specifically, since
Shannon’s theorem says that (for the BSC) capacity is 1 − H(f) (where f is the crossover
probability of the channel), it is indeed possible to correct with arbitrarily high probability up
to a fraction fn of the codeword.

Exercise 4 (A(n, d, w), A(n, d)). For any integers n, d, w with d ≤ 2w ≤ n, let A(n, d, w) be the
largest possible size of a set of binary vectors of length n and weight w whose minimum distance
is at least d, and let A(n, d) be the largest possible size of a set of length n binary vectors whose
minimum distance is at least d. Prove that

A(n, d) ≤
n∑

w=0

A(n, d, w)

Solution. Consider a code which achieves A(n, d). This code is the disjoint union of classes of
codewords of different weight w. Since each class has a minimum distance at least equal to d it has
at most A(n, d, w) elements.
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