ASSIGNMENT 3: Solution

Exercise 1 (Conditional entropy). Show that if $H(Y \mid X)=0$, then Y is a function of X.
Proof.

$$
0=H(Y \mid X)=\sum_{x \in \mathcal{X}} H(Y \mid X=x) \cdot p(x)
$$

Hence, for each $p(x)>0$ we should have $H(Y \mid X=x)=0$, which means $\exists y_{x} \in Y$ such that $p\left(y_{x} \mid x\right)=1$. So, for each $x \in \mathcal{X}$ that $p(x)>0$ and its corresponding y_{x}, define $f(x)=y_{x}$, which shows that $Y=f(X)$ is a function of X.

Exercise 2 (Mutual information). a. Let X be a uniform random variable over $\{1,2,3,4\}$. Let

$$
Y=\left\{\begin{array}{l}
0 \text { if } X \text { is odd } \\
1 \text { otherwise. }
\end{array} \quad Z=\left\{\begin{array}{l}
0 \text { if } X \text { is even } \\
1 \text { otherwise } .
\end{array}\right.\right.
$$

Find $I(Y ; Z)$.
b. We roll a fair die which has six sides. What is the mutual information between the top side and the one facing you?
Proof. a. Note that always $Y \neq Z$, which means knowing Z let us know Y, i.e. $H(Y \mid Z)=0$.

$$
I(Y ; Z)=H(Y)-H(Y \mid Z)=1-0=1
$$

b. Top side X_{T} can take any of $\{1,2,3,4,5,6\}$ with same probability. Moreover, knowing the one facing us, X_{F}, X_{T} can take four values with same probability, so

$$
I\left(X_{T} ; X_{F}\right)=H\left(X_{T}\right)-H\left(X_{T} \mid X_{F}\right)=\log (6)-\log (4)
$$

Exercise 3 (Conditional mutual information). Consider a sequence of n binary random variables $X_{1}, X_{2}, \cdots, X_{n}$. Each sequence with an even number of 1 's has probability $2^{-(n-1)}$, and each sequence with an odd number of 1's has probability 0 . Find the mutual informations $I\left(X_{1} ; X_{2}\right)$, $I\left(X_{2} ; X_{3} \mid X_{1}\right), \cdots, I\left(X_{n-1} ; X_{n} \mid X_{1}, \ldots, X_{n-2}\right)$.

Proof. We have always $X_{n}=X_{1} \oplus X_{2} \oplus \cdots \oplus X_{n-1},{ }^{1}$ since the sequences with odd number of ones have zero probability, and since each sequence with even number of 1 s is equiprobable, X_{1}, X_{2}, \cdots, X_{n} are independent Bernoulli $\left(\frac{1}{2}\right)$ random variables. So, for $2 \leq i \leq n-2$,

$$
\begin{aligned}
I\left(X_{i} ; X_{i+1} \mid X_{1}, \cdots, X_{i-1}\right) & =H\left(X_{i+1} \mid X_{1}, \cdots, X_{i-1}\right)-H\left(X_{i+1} \mid X_{1}, \cdots, X_{i-1}, X_{i}\right) \\
& =H\left(X_{i+1}\right)-H\left(X_{i+1}\right)=0
\end{aligned}
$$

[^0]and for $i=n-1$,
\[

$$
\begin{aligned}
& I\left(X_{n-1} ; X_{n} \mid X_{1}, \cdots, X_{n-2}\right)=H\left(X_{n} \mid X_{1}, \cdots, X_{n-2}\right)-H\left(X_{n} \mid X_{1}, \cdots, X_{n-2}, X_{n-1}\right) \\
& \quad=H\left(X_{1} \oplus X_{2} \oplus \cdots \oplus X_{n-1} \mid X_{1}, \cdots, X_{n-2}\right)-H\left(X_{1} \oplus X_{2} \oplus \cdots \oplus X_{n-1} \mid X_{1}, \cdots, X_{n-2}, X_{n-1}\right) \\
& \quad=H\left(X_{n-1} \mid X_{1}, \cdots, X_{n-2}\right)-0 \\
& \quad=H\left(X_{n-1}\right)=1
\end{aligned}
$$
\]

Exercise 4 (Entropy and pairwise independence). Let X, Y, Z be three binary Bernoulli $\left(\frac{1}{2}\right)$ random variables that are pairwise independent; that is, $I(X ; Y)=I(X ; Z)=I(Y ; Z)=0$.
a. Under this constraint, what is the minimum value for $H(X, Y, Z)$?
b. Give an example achieving this minimum.

Proof. a.

$$
\begin{aligned}
H(X, Y, Z) & =H(X)+H(Y \mid X)+H(Z \mid Y, X) \\
& =H(X)+H(Y)+H(Z \mid Y, X) \\
& \geq H(X)+H(Y) \\
& =2
\end{aligned}
$$

b. Let $Z=X \oplus Y$.

Exercise 5 (Typicality). To clarify the notion of typical set $A_{\epsilon}^{(n)}$, we will calculate the set for a simple example. Consider a sequence of i.i.d. binary random variables, $X_{1}, X_{2}, \cdots, X_{n}$, where the probability that $X_{i}=1$ is 0.7 .
a. Compute $H(X)$.
b. With $n=8$ and $\epsilon=0.1$, which sequences fall in the typical set $A_{\epsilon}^{(n)}$? What is the probability of the typical set? How many elements are there in the typical set?
Solution. a. $H(X)=h_{b}(0.3) \simeq 0.88$
b. Suppose there are r ones in the sequence. The probability of this sequence is

$$
p\left(x^{n}\right)=0.7^{r} \cdot 0.3^{8-r} .
$$

So, for being typical we should have

$$
\left|-\frac{1}{8} \log \left(p\left(x^{n}\right)\right)-H(X)\right| \leq \epsilon,
$$

which gives that

$$
\left|-\frac{r \cdot \log (0.7)+(8-r) \cdot \log (0.3)}{8}-0.88\right|=|0.857-0.152 r| \leq 0.1
$$

It can be verified that $r=5$ and $r=6$ satisfy this condition, i.e. sequences with 5 or 6 ones. The probability of typical set is

$$
\operatorname{Pr}\left(A_{0.1}^{(8)}\right)=\binom{8}{5}(0.7)^{5}(0.3)^{3}+\binom{8}{6}(0.7)^{6}(0.3)^{2}
$$

and the number of elements is

$$
\left|A_{0.1}^{(8)}\right|=\binom{8}{5}+\binom{8}{6}
$$

Exercise 6 (AEP). $\operatorname{Let}\left(X_{i}, Y_{i}\right)$ be i.i.d. $\sim p(x, y)$. Compute

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{p\left(X^{n}\right) p\left(Y^{n}\right)}{p\left(X^{n}, Y^{n}\right)}
$$

Solution.

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{p\left(X^{n}\right) p\left(Y^{n}\right)}{p\left(X^{n}, Y^{n}\right)}=\mathbb{E} \log \frac{p(X) p(Y)}{p(X, Y)}=-I(X ; Y)
$$

Exercise 7 (Desintegration). An entity of size 1 splits each second into two parts, with proportion of sizes having the following distribution:

$$
\text { Proportion }= \begin{cases}\left(\frac{3}{4}, \frac{1}{4}\right) & \text { with probability } \frac{2}{5} \\ \left(\frac{2}{3}, \frac{1}{3}\right) & \text { with probability } \frac{3}{5}\end{cases}
$$

At each time, the bigger part remains, and the smaller part will disapear. Thus, for example, a splitting in the first second may result in a part of size $\frac{3}{4}$. In the 2 nd second, the size might reduce to $\left(\frac{3}{4}\right) \cdot\left(\frac{2}{3}\right)$, and so on. How large, to first order in the exponent, is the remained part after n splitting?

Solution. Consider $C_{n}=X_{1} \cdot X_{2} \cdots X_{n}$ where

$$
X_{i}= \begin{cases}\frac{3}{4} & \text { with probability } \frac{2}{5} \\ \frac{2}{3} & \text { with probability } \frac{3}{5}\end{cases}
$$

We know that $\frac{1}{n} \log \left(C_{n}\right)=\frac{1}{n} \sum_{i} \log \left(X_{i}\right)=\mathbb{E} \log X \pm \varepsilon_{n}$, where $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. So

$$
C_{n}=2^{n\left(\mathbb{E} \log X \pm \varepsilon_{n}\right)}
$$

where $\mathbb{E} \log X=\frac{2}{5} \log \frac{3}{4}+\frac{3}{5} \log \frac{2}{3}$.

[^0]: ${ }^{1} \oplus$ is sum modulo 2.

