Cognitive Radio: an information theoretic perspective

Daniela Tuninetti, UIC,

in collaboration with:
Stefano Rini, post-doc @ TUM,
Diana Maamari, Ph.D. candidate@ UIC, and
Natasha Devroye, prof. @ UIC.

- Coexisting devices on a radio channel unite interfere with one another.
- Prime frequency bands all licensed with almost no free band for new services.

- Is it possible to coexist in overcrowded spectrum without degrading existing users/services?
- Idea: use smart devises with advanced sensing/processing capabilities.

- Major problems: not technical but regulatory
- Currently, divide-and-set-aside:
 - spectrum divided into distinct bands;
 - regulated communication uses in each band;
 - license each band for exclusive use (ex, cellular, TV, radio, navigation, emergency, defense, etc).
- This approach has pros and cons ...

- Some bands are shared/unlicensed to encourage innovation and reduce cost to purchase licensed spectrum (ex, 2.4GHz: Bluetooth, 802.11b/g/n WiFi, etc.).
- Killed by their own success? too much interference.

- Cognitive radio aims to bring the advantages of unlicensed bands to licensed bands without disrupting existing services.
- But how?

Cognitive Radio (CR)

- CR is a wireless communication system with <u>side information</u> about:
 - the channel activity,
 - channel conditions,

- Breaking Spectrum Gridlock with Cognitive Radios: An Information Theoretic Perspective, Goldsmith et al, *Proceedings of IEEE*, 2009.
- user' codebooks/messages.
- CR devices seek to interweave, underlay or overlay their signals with those of existing users without impacting their QoS.

Interweave CR

- CR opportunistically frequency exploits spectral holes
 to communicate without disrupting primary transmissions.
- Needs knowledge about channel activity (extensively studied in CommTh and SigProc).

Secondary

Primary

Primary

Secondary

time

Joseph Mitola, "Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio," PhD Dissertation, KTH, Sweden, December 2000

TPT April 2012

UNIVERSITY OF ILLINOIS and Computer Engineering
COLLEGE OF ENGINEERING

Underlay CR

- CR sends if interference at PRx is below a fixed interference margin (MIMO or UWU)
 - Pros: primary users are protected

- Cons: short range communication

interference
TPT April 2012

Overlay CR

- CR uses sophisticated signal processing and coding to <u>maintain or improve</u> the communication of PR while achieving its own communication goals.
- Needs knowledge of primary codebooks (ex from standards) and possibly primary messages (ex after first transmission).

IT overlay CR

N. Devroye, P. Mitran, V. Tarokh, Achievable Rates in Cognitive Radio Channels," IEEE Transactions on Information Theory, vol. 52, pp. 1813–1827, May 2006

IT overlay CR

Information Theory, vol. 52, pp. 1813–1827, May 2006

the larger, the better

Maric et al ETT08

Past Work - capacity

• Weak interference [W. Wu et al IT 2007,

)7,

 $X_{1}^{N} \longrightarrow X_{2}^{N} \longrightarrow Y_{1}^{N} \longrightarrow Dec1 \longrightarrow \widehat{W}$ $X_{2}^{N} \longrightarrow Y_{2}^{N} \longrightarrow Dec2 \longrightarrow \widehat{W}$

Jovicic et al IT 2006 for AWGN]

- (Very) strong interference [I. Maric et al IT 2007]
- Some semi-deterministic [Y. Cao et al Asilomar 2009]
- Some Z-channel [N. Liu et al ISIT 2009]

Contributions: general CIFC

- Computable outer bound (the tightest is still by Maric et at ETT 2008)
- Largest inner bound
- Capacity in "better cognitive decoding"
- Capacity for semi-deterministic channels

S. Rini et al, "New Inner and Outer Bounds for the Memoryless Cognitive Interference Channel and some Capacity Result", IT 2011

Contributions: AWGN CIFC

- Unifying outer bound (for weak and strong interference)
- "BC with degraded message set" outer bound for strong interference
- Capacity in "primary decodes cognitive" [subset also presented by J. Jiang et al ICC 2011]
- Capacity for some Z-channels [extension claimed by M. Vaezi et al CWIT 2011]
- Capacity to within 1 bit or a factor 2

S. Rini et al, "Inner and Outer Bounds for the Gaussian Cognitive Interference Channel and New Capacity Results", IT 2012

TPT April 2012

AWGN CIFC

$$Y_1 = X_1 + aX_2 + Z_1,$$

 $Y_2 = |b|X_1 + X_2 + Z_2,$

$$egin{aligned} Y_1 &= X_1 + aX_2 + Z_1, \ Y_2 &= b|X_1 + X_2 + Z_2, \end{aligned} egin{aligned} X_1^N &= f_1(W_1, W_2) : rac{1}{N} \sum_{t=1}^N \mathbb{E}[|X_{1,t}|^2] \leq P_1, \ X_2^N &= f_2(W_2) : rac{1}{N} \sum_{t=1}^N \mathbb{E}[|X_{2,t}|^2] \leq P_2, \ Z_j &\sim \mathcal{N}(0,1), \ j = 1, 2. \end{aligned}$$

Contributions: AWGN CIFC

Outer Bound

Wu et al IT 07 (BC argument; not the

tightest)

$$R_1 \le I(Y_1; X_1 | X_2),$$

$$R_2 \le I(U, X_2; Y_2),$$

$$R_1 + R_2 \le I(U, X_2; Y_2) + I(Y_1; X_1 | U, X_2),$$

- U: help from the cognitive to the primary
- [Rini et al IT11] tight for "semi-deterministic" channels and for "better cognitive decoding"

Outer Bound

Rini et al IT 11 (IFC argument)

$$R_1 \le I(Y_1; X_1 | X_2),$$

$$R_2 \le I(X_1, X_2; Y_2),$$

$$R_1 + R_2 \le I(X_1, X_2; Y_2) + I(Y_1; X_1 | Y'_2, X_2),$$

- does not contain auxiliary RVs, hence it is computable
- [Rini et al IT12]: it unifies weak and strong interference outer bounds for AWGN

- Rate splitting:
 - common message (decoded @ non intended destination)
 - private message (treated as noise @ non intended destination)
- Superposition coding/nesting: start with primary-common end with cognitive-private
- Interference pre-coding/binning: remove effect of interf. non-causally known at CTx

@ cognitive: common/private split

Inner Bound

Inner Bound

Overall region (not that "ugly"...)

$$R_{1} \leq I(Y_{1}; U_{1pb}, U_{1c}|U_{2c}) - I(U_{1pb}, U_{1c}; X_{2}|U_{2c}),$$

$$R_{1} \leq I(Y_{1}; U_{1pb}|U_{1c}, U_{2c}) + I(Y_{2}; U_{2pb}, U_{1c}, X_{2}|U_{2c}) - I(U_{1pb}; X_{2}|U_{1c}, U_{2c}),$$

$$R_{2} \leq I(Y_{2}; U_{2pb}, X_{2}, U_{1c}, U_{2c}) + I(U_{1c}; X_{2}|U_{2c}),$$

$$R_{1} + R_{2} \leq I(Y_{1}; U_{1pb}, U_{1c}, U_{2c}) + I(Y_{2}; U_{2pb}, X_{2}|U_{1c}, U_{2c}) - I(U_{1pb}; U_{2pb}, X_{2}|U_{1c}, U_{2c}),$$

$$R_{1} + R_{2} \leq I(Y_{1}; U_{1pb}|U_{1c}, U_{2c}) + I(Y_{2}; U_{2pb}, X_{2}, U_{1c}, U_{2c}) - I(U_{1pb}; U_{2pb}, X_{2}|U_{1c}, U_{2c}),$$

$$2R_{1} + R_{2} \leq I(Y_{1}; U_{1pb}, U_{1c}, U_{2c}) + I(Y_{1}; U_{1pb}|U_{1c}, U_{2c}) + I(Y_{2}; U_{2pb}, U_{1c}, X_{2}|U_{2c})$$

$$- I(U_{1pb}; U_{2pb}, X_{2}|U_{1c}, U_{2c}) - I(U_{1pb}, U_{1c}; X_{2}|U_{2c}),$$

Capacity Results W1 Enc1 + X1 + P1 + Dec1 + W1 + Dec2 + W2 + Enc2 + X2 + Dec2 + W2

Primary

Capacity Results W1 Enc2 + X2 Enc2 + X2

→ Y₁ → Dec1 → W₁

1bit additive gap

Inspired by the capacity achieving scheme for the deterministic channel: Uk,pb = Yk

$$R_1 \le H(Y_1|X_2)$$

$$R_2 \le H(Y_2)$$

$$R_1 + R_2 \le H(Y_2) + H(Y_1|X_2, Y_2)$$

1bit additive gap

Secondary/Cognitive $\downarrow Z_1^N$ $W_1 \longrightarrow Enc1 \longrightarrow X_1^N \longrightarrow (+) \longrightarrow Y_1^N \longrightarrow Dec1 \longrightarrow \widehat{W}_1$ $\downarrow Z_2^N$ $\downarrow Z_2^N$ Primary

- Impossible to set U_{k,pb} = Y_k
- U_{k,pb} ~ Y_k does the trick
- Why does it work?

Gap =
$$log(1 + Var[Y_k]/(1 + Var[U_{k,pb}])$$
)
 <= $log(1+1) = 1$ bit

factor 2 gap

Generalized DoF X_2^N $X_2^$

Useful for gDoF:

- $P_1 = P_2 := SNR$,
- $b^2 P_1 = a^2 P_2 := SNR_1^{0}$
- d_2 -CIFC(α)
 - $:= max(R_1+R_2)/log(1+SNR)$
 - $= 2\max(1, \alpha) \alpha := V(\alpha)$

Generalized DoF X_2^N $X_2^$

What is the value of cognition?

More than 2 pairs

- dGoF [Maamari et al, submitted to ISIT 2012]
 - sum-capacity for LDA-AWGN for K=3
 - $d_{K-CIFC}(\alpha) := K \max(1, \alpha) \alpha$
 - $d_{K-BC}(\alpha) := K \max(1, \alpha)$

Current Work

- Cognitive channels with <u>nested messages</u>.
- <u>Casal</u> cognition, i.e., secondary users learn the primary message(s) -- a special case of cooperation/generalized feedback.
- Cognitive channels with <u>oblivion</u> constraints, i.e., primary users are unaware of the presence of the secondary users.

Thank you

danielat@uic.edu