RFID UHF pour l'identification et la traçabilité des objets

Jean-Marc Laheurte
Professeur à l’Université Paris-Est
Agenda

- Generalities and Principles
- HF versus UHF
- UHF Spectrum regulations
- Back Scattering Modulation and Maximum Read Range
- UHF antennas (860-960 MHz)
- Propagation, absorption, detuning issues
- EPC Gen2 protocol
 - Integrated circuit – Memory
 - Coding and Modulation
 - Anticollision algorithms
RFID Principles

Radio Frequency IDentification

HF Tag

UHF Tag

antenna

chip

antenna

chip
RFID Principles

- **Data** is stored in a **chip** connected to an antenna.

- Uses radio frequency transmission in either, inductive **near field** or radiating **far field**.

- Ability to automatically identify **multiple objects without line of sight**.

- Tags can be **passive**, semi-passive or **active**, **with** or **without security**.
Different Frequencies are used: LF, HF, UHF…..

Could replace the bar code !!!
- Simultaneous reading of a large number of tags
- Tag does not need to be within line of sight of the reader
- Tag may be embedded in the tracked object

Used for many applications in a growing number of markets world-wide.
RFID Applications

- Real-time inventory and stock control
- Supply chain management (fashion, retail, pharmaceuticals)
- Libraries
- Rental
- Animal ID
Les métiers de la RFID

- Chip manufacturer / designer
- Inlay manufacturer
- Label manufacturer
- LF/HF/UHF readers
- Infrastructure, RFID stations
- Supervision, Communication, Installation, Maintenance
Market Potential

Estimated value share of RFID market in 2010, by region

Global forecast of RFID hardware, middleware and IT market
HF versus UHF
Inductive Coupling - Propagation coupling

Near field (HF)

- Inductive coupling
- Frequencies: LF (125 kHz) and HF (13.56 MHz)
- Impedance variation
- Loop antennas

![Near field](image1)

Far field (UHF)

- Propagation Coupling
- Frequencies: UHF (900 MHz) and MW (2.45 GHz)
- Backscattered modulation
- Dipole antennas

![Far field](image2)
UHF vs HF (1)

UHF
- Based on electromagnetic waves
 - Electric Field
 - Magnetic Field
 - Best Performances in “Far-Field” (FF)
- Long Range
 - E and H field in FF decrease with 1/r
- Performances in presence of dielectrics
 - bad

Dipole antenna

Loop antenna

HF
- Based on Magnetic Field
 - in “Near-Field” (NF)
- “Short” Range
 - H field in NF decrease with 1/r^3
- Performances in presence of high dielectrics
 - good
Low Frequency (LF): ~125 kHz
- Inductive coupling
- Data rate 10 kbits/s
- RW distances: 1m
- Metal: low perturbations
- Water: no perturbations

High Frequency (HF): 13,56 MHz
- Inductive coupling
- Data rate >=100 kbits/s
- RW distances: Max: 1m
- Metal: high perturbations
- Water: no perturbations

Ultra High Frequency (UHF): ~900 MHz
- E-field coupling
- Data rate >= 256 kbits/s
- RW distances: up to 10 m
- Metal: high perturbations
- Water: med. perturbations

Micro Wave (MW): ~2,45 GHz
- E-field coupling
- Data rate >= 256 kbits/s
- RW distances: >10m
- Metal: high perturbations
- Water: high perturbations
Security

People
- Access Control
- Security
- Payment
- Passport/Visas
- Transport ticketing

Short Range
- Identification
- Authentication
- Data Security

Long Range
- Identification

Objects
- Laundry
- Library
- Supply Chain
- Logistics
- Luggage
- Apparel
- Traceability

Limited Security

Smart cards, key fobs,...
UHF Spectrum regulations
UHF regulation overview

EU
- Frequency: 865 MHz to 869.5 MHz
- Radiated power: 2 Werp

US
- Frequency: 902 MHz to 928 MHz
- Radiated power: 2,4 Werp

Japan
- Frequency: 952 MHz to 955 MHz
- Radiated power: 2,4 Werp (high power)

<table>
<thead>
<tr>
<th>Channel band width</th>
<th>EU (200 kHz)</th>
<th>US (500 kHz)</th>
<th>Japan (200 kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel nb</td>
<td>15</td>
<td>52</td>
<td>9 for (high power) / 14 for (low power)</td>
</tr>
<tr>
<td>Synchronization</td>
<td>LBT</td>
<td>Frequency Hopping</td>
<td>LBT</td>
</tr>
<tr>
<td>Radiated power</td>
<td>2 Werp</td>
<td>2,4 Werp</td>
<td>2,4 Werp (high power) / 12 mWerp (low power)</td>
</tr>
</tbody>
</table>

Important Points
- **Listen Before Talk technique**: Interrogators are only permitted where they employ frequency agile techniques.
- **Only 10 sub-bands** – likely to be many more readers than that in same radio ‘space’ ⇒ Real risk of system degradation and data loss if these sub-bands are not used responsibly.

ETSI EN 300 208 limitations

1. Very low listen threshold (-96 dBm)
 ► in free space, a reader transmitting at 2W will be detected by another reader at a range of 78 km!
 ► sharing channel is thus almost impossible in a same area

2. The Transmit spectrum mask defines spurious emissions at -36 dBm
 ► this spurious level is not compatible with the listen level of -96 dBm
 ► readers in 2 adjacent channels must be spaced by 30 m

3. The channel spacing is reduced to 200 kHz limiting the uplink data rate

Conclusions
► performances with the current 302 208 regulation are very limited
► a task group (TG34) is updating the regulations
 ● Limitation of 4 to 5 readers transmitting at the same time
 ● Time multiplexing by “global listen” or by “radio communication” between readers
Back Scattering Modulation and Maximum Read Range
Reader/tag data exchange (UHF)

- The reader sends commands & energy to the tag via pulse amplitude modulation.
- The tag sends responses to the reader via backscatter modulation.

The chip in the tag is powered
The tag changes its impedance by switching on and off a resistor (or a capacitor). This impedance variation will change the tag reflections seen by the reader antenna, i.e., the tag RCS=Radar Cross Section.

\[
\Delta \text{RCS} = \frac{\lambda^2}{4 \cdot \pi} \cdot G_{\text{Tag}} \cdot (|\Gamma_{\text{mod}}|^2 - |\Gamma_{\text{unmod}}|^2)
\]
Reader with linear polarized antenna

With linear polarized antennas:

- A tag’s performance depends on its orientation with respect to a linear polarized antenna.
Reader with circular polarized antenna

With circular polarized antennas, tag orientation is less critical.

- The helical nature of the field from a circular polarized antenna allows it to read tags in more than one orientation.

- The down side of circular polarized antennas is that their output is less than linear antennas (approximately 1/3 down).
FRIIS Formula applied to RFID

- Transferred power from a reader antenna to the chip

\[P_{Chip} = P_{EIRP} \cdot \frac{\lambda^2}{(4 \cdot \pi \cdot R)^2} \cdot G_{Label} \]

- Peirp = Pe * Ge (dBi)
Read Range of an UHF/GHz Chip

- Example III (UHF)

- under EN 302 208 European regulation:
 \(P_{ERP} = 2 \text{ W equals } P_{EIRP} = 3.28 \text{W} \); \(G_{Label} = 1.64 \)
 \(f = 869 \text{MHz}; \ P_{CHIP} = 35 \mu \text{W} \)
 \(G_{\text{Matching}} = 0.8 ; \ G_{\text{Polarisation}} = 1 ; \ G_{\text{Antenna}} = 0.5 \)

\[
R_{max} = \sqrt{\frac{3.28W \cdot 1.64 \cdot 0.35m^2}{(4 \cdot \pi)^2 \cdot 35 \cdot 10^{-6} W \cdot 0.8 \cdot 1 \cdot 0.5}} = 6.90m
\]
Active vs passive

Passive tag
- RF Chip powering + backscattering
- Battery for chip powering only, RF transmission from tag to reader is backscattering
- Up to 10 m!

Semi-passive = Battery assisted
- Battery for chip powering & RF Transmission
- Emits its own signal.
- Up to 50 m!

Active tag
- Battery for chip powering & RF Transmission
- Up to 200 m!

Price ↗ with reading distance
UHF antennas (860-960 MHz)
Chip equivalent circuit

\[Z_C = R + jX_C \]

\[X_C = \frac{1}{2\pi f C} = \frac{1}{\omega C} \]

......capacitive reactance
Example of UHF RFID chip: Monza 4 Impinj

<table>
<thead>
<tr>
<th>Chip Load Model</th>
<th>Single-port connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conjugate Match Impedance</td>
<td>866 MHz</td>
</tr>
<tr>
<td></td>
<td>13 + j151 Ω</td>
</tr>
<tr>
<td></td>
<td>1650 Ω</td>
</tr>
</tbody>
</table>
Impedance matching

\[\Gamma = \frac{Z_a - Z^*_c}{Z_a + Z_c} \]

- Know impedance behavior of the Antenna
- The chip input
 - Know impedance behavior of the Chip
 - Match it!

- To ensure maximum power transfer from the antenna to the reader, the required output impedance should be
 \(\approx 22 + j\ 195 \ \Omega \) for 915 Mhz.
- This means a inductive (coil-like properties) antenna impedance
Connexion directe de la puce à l’antenne

Adaptation de l’impédance IC à l’impédance antenne via un transformateur d’impédance associant inductance série et inductance parallèle
Principe de l’adaptation

On veut: \(Z_A \text{ ramené} = Z_{ic}^* \)

- \(Z_A = \) résonance série du dipôle (quelques dizaines d’ohms et réactance faible)
 - A priori à l’INTERIEUR du cercle \(\text{Re}(Z_{ic})=\)constante car valeur faible
 - validité du transformateur d’impédance proposé.
Near-field and far-field elements
Examples de tags UHF à connexion directe

<table>
<thead>
<tr>
<th>Antenna Design</th>
<th>Layout</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range: Far Field</td>
<td></td>
<td>Dimension: 98mm x 10mm</td>
</tr>
<tr>
<td>Name: FF98-4</td>
<td></td>
<td>Works best up to Epsilon r = 4</td>
</tr>
<tr>
<td>Range: Far Field</td>
<td></td>
<td>Dimension: 95mm x 10mm</td>
</tr>
<tr>
<td>Name: FF95-8</td>
<td></td>
<td>Works best up to Epsilon r = 8</td>
</tr>
<tr>
<td>Range: General Purpose</td>
<td></td>
<td>Dimension: 33mm x 24mm</td>
</tr>
<tr>
<td>Name: GP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range: Mid Range</td>
<td></td>
<td>Dimension: 34mm x 15mm</td>
</tr>
<tr>
<td>Name: MR34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application: Fashion / airport baggage tagging</td>
<td></td>
<td>Dimension: 50mm x 30mm</td>
</tr>
<tr>
<td>Name: OmniDir50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Read range (in meters)

Loop resonance

Dipole resonance
Propagation, absorption, detuning issues
Multipath effects (1)

At UHF frequencies multi-path RF waves, caused by reflections from the floor and other obstructions, may combine constructively or destructively.
Multipath effects (2)
Dynamic reading

Tags detected

- 100%
- 90%
- 0%
Standard UHF Tag tuned at 900 MHZ placed in water. Range: ≈ 0 m

Attenuation ≈ -40 dB
Detuning: [900→750] MHZ
UHF RFID Inlay: Material Detuning Effect

Table E: Permittivity Values of the Reference Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>PTFE</th>
<th>PMMA</th>
<th>PC</th>
<th>PET</th>
<th>PU/PUR</th>
<th>KITE</th>
<th>CARP</th>
<th>Glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>2.15</td>
<td>2.15</td>
<td>2.15</td>
<td>2.15</td>
<td>2.15</td>
<td>2.15</td>
<td>2.15</td>
<td>5.00</td>
</tr>
</tbody>
</table>

Figure 7: UHF Reference Materials
Label position

It may not be possible to read labels on cartons in the center of a pallet.

- It depends on a number of factors:
 - Output power of the reader antennas
 - The distance from the antennas
 - The material in the cartons

- If at all possible, position the labels on the outside of the pallet load.

- One situation that **must** be avoided is overlapping labels
 - Labels that overlap are the same as placing each label close to metal. They de-tune each other and performance is lost.
EPC Gen2 protocol
• **EPC Global**

 - *Not-for-profit organization entrusted by industry to establish and support the Electronic Product Code (ePC).*

 - *Develop a global standard for immediate, automatic, and accurate identification of any single item in the supply chain of any company, in any industry, anywhere in the world. The tag is only a token to access distributed and replicated databases.*

 - **EPC Global Generation 2 (new global protocol available since December 2004)**

• **ISO 18000 – Part 6 (International Standard Organization)**

 Information technology - Radio frequency identification (RFID) for item management Type C (same as EPC Global Gen2, RTF protocol)
EPC Gen2 protocol
Integrated circuit - Memory
Gen2 Block Diagram

+ data encoder
+ clock extractor
Memory types and Gen2 operations

Read Only (RO)
Data (ID) are burned into the tag at factory ⇒ can never be changed

Write Once Read Many (WORM)
Data generally written into tag at point of application ⇒ when encoded, cannot be reprogrammed

Read Write (RW)
Data may be written, erased and rewritten into memory in field

<table>
<thead>
<tr>
<th>Operation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory</td>
<td>Singulate tags and receive their EPCs</td>
</tr>
<tr>
<td>Read</td>
<td>Read tag memory</td>
</tr>
<tr>
<td>Write</td>
<td>Write tag memory</td>
</tr>
<tr>
<td>Lock</td>
<td>Permalock, lock, or unlock tag memory</td>
</tr>
<tr>
<td>Kill</td>
<td>Render a tag permanently inoperative</td>
</tr>
</tbody>
</table>
Not everything below is implemented usually:

- **UID = Unique ID**
 Unique ID, usually read only similar to the MAC address of a network card.

- **EPC memory = Electronic Product Code**
 Writable 96 bits EPC code similar to barcode

- **EAS = Electronic Article Surveillance**
 Security bit implemented on some chips

- **AFI = Application Family Identifier**
 Byte used to categorize the tag by application

- **Write access**
 Byte used to store the ACL (Access Control List) of the user memory

- **Passwords to kill the tag or read/write**
 Different 32 bits passwords used by the tag. If unused, bits are zero

- **User memory**
 Structure and size depends on the chip - up to a few kb
Delivery types

Bumped Wafer on Film Frame Carrier
UCODE HSL, UCODE EPC 1.19, UCODE EPC G2

Standard Package TSSOP8
UCODE HSL, UCODE EPC G2

I-Connect Flip Chip Package
UCODE EPC G2

NXP Ucode
Flip Chip Assembly

Assembling process adds parasitic Capacitances

\[
C_{\text{parasit}} = C_{\text{chip}} = R \]

\[
C_{\text{tot}} = C_{\text{parasit}} + C_{\text{chip}}
\]
EPC Gen2 protocol
Coding and Modulation
Reader-to-Tag communications

Modulation
ASK: can be detected with a simple envelope detector

- Double-sideband amplitude shift keying (DSB-ASK)
 - Simple, but not spectrally efficient
- Single-sideband amplitude shift keying (SSB-ASK),
 - More complex (requires a IQ modulator)
 - More spectrally efficient
- Phase-reversed amplitude shift keying (PR-ASK)
 - Reduces the width of the spectrum

Data Coding
Pulse interval encoding (PIE)
- Ensures a constant RF energy from the reader to power the tag chip.
Reader-to-Tag: PIE encoding

Tari = reference time interval (duration of a data-0)

Data rates according with local radio regulations:
- 6.25μs = 160kbps
- 12.5μs = 80kbps
- 25μs = 40kbps

<table>
<thead>
<tr>
<th>Tari Value</th>
<th>Tari-Value Tolerance</th>
<th>Spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.25 μs</td>
<td>+/- 1%</td>
<td>DSB-ASK, SSB-ASK, or PR-ASK</td>
</tr>
<tr>
<td>12.5 μs</td>
<td>+/- 1%</td>
<td></td>
</tr>
<tr>
<td>25 μs</td>
<td>+/- 1%</td>
<td></td>
</tr>
</tbody>
</table>
Tag-to-Reader: FM0 or Miller

FM0 inverts the baseband phase at every symbol Boundary.

A data-0 has an additional mid-symbol phase inversion.

Baseband Miller inverts its phase between two data 0s in sequence, or in the middle of a data-1 symbol.
Subcarrier spectral allocation

<table>
<thead>
<tr>
<th>Region</th>
<th>Link</th>
<th>Rates / Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>Forward</td>
<td>Tari=25µs SSB-ASK</td>
</tr>
<tr>
<td></td>
<td>Backscatter</td>
<td>53.3 kbps at 213.3 kHz subcarrier</td>
</tr>
</tbody>
</table>

B: Subcarrier Spectral Allocation (CEPT: Multiple Channels)

- Reader CW (during backscatter)
- Reader Modulation (SSB ASK shown)
- Tag Response
- Primary Sidebands

Note: Reader modulation may also use PR-ASK

Frequency (kHz)
Read rate - Bit rate

<table>
<thead>
<tr>
<th></th>
<th>EU</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read rate</td>
<td>600 tags/sec</td>
<td>Read rate: 1600 tags/sec</td>
</tr>
<tr>
<td>T→R Bit rate</td>
<td>from 16 kbits/sec (dense reader) to 160 kbits/sec (Maximum throughput)</td>
<td>from 64 kbits/sec (dense reader) to 640 kbits/sec (Maximum throughput)</td>
</tr>
<tr>
<td>R→T Bit rate</td>
<td>from 40 kbits/sec (Nominal) to 80 kbits/sec (Maximum throughput)</td>
<td>from 40 kbits/sec (Nominal) to 128 kbits/sec (Maximum throughput)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environment</th>
<th>Communication speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noisy</td>
<td>Need to talk slowly and carefully</td>
</tr>
<tr>
<td>Europe</td>
<td></td>
</tr>
<tr>
<td>Many readers</td>
<td></td>
</tr>
<tr>
<td>Quiet</td>
<td>Can talk fast</td>
</tr>
<tr>
<td>North America</td>
<td></td>
</tr>
<tr>
<td>Few readers</td>
<td></td>
</tr>
</tbody>
</table>

- Gen2 sometimes needs fast tag reads (Pallets moving through a dock door)
- Gen2 sometimes needs slow tag reads (Noisy environments)
- Solution: Variable read rates
EPC Gen2 protocol
Anticollision algorithms
Protocol: *Reader Talk First* vs *Tag Talk First*

RTF

1. Tag power up
2. Wait for the reader cmd
3. Receive the reader cmd
4. Response to the reader

TTF

1. Tag power up
2. Send ID and data
Collisions and Anticollision Algorithm

Origine of the collision:
A collision occurs when two or more transponders send their data at the same time.

Anticollision algorithm in EPC Gen2 protocol:
Slotted Aloha-based probabilistic algorithm
Simplified Aloha algorithm

1. Everybody pick a small number and a nickname (alias).
2. Is anybody’s number = 0?
 - Nobody: Everybody subtract 1
 - 1 person: Tell me your alias
 - I hear you. Can you hear me?
 - Tell me your full name
 - Go to sleep
 - Wait for now, we’ll try again
 - Everybody else subtract 1
 - 2 or more people: Wait for now, we’ll try again
Slotted Aloha-based probabilistic algorithm

- Reader issues a Query command with a parameter Q
 - Starting the inventory round
- Tags load a Q-bit random value into their slot counter
 - If a tag loads a zero it replies immediately, backscattering an RN16
- Reader acknowledges the tag by sending an ACK containing this same RN16
- Acknowledged tag backscatters its PC, EPC, CRC-16
- Reader issues a QueryRep command
 - Tag toggles the state of its inventoried flag and leaves the round
 - All other tags decrement their slot counters
 - If any tag decrements to zero, it replies with an RN16

RN16 (16 bits random number) ≠ Q-bit random value (length $L = 2^Q - 1$)
• Slot number of each tag is independently chosen
 ⇒ collisions happen

• If $2^Q - 1 = \text{number of tags in the read area}$
 ⇒ minimize collision rate
 ⇒ maximum system efficiency

• **The application can optionally set the starting point**
 – Application can optimize inventory, based on a priori knowledge of the population size, by setting the starting Q value

• **Real-time Q adjustment is handled by the reader**
 – At any given time instant, peak inventory efficiency requires:
 • Allocated slots = Number of remaining (uncounted) tags
 – Real-time visibility into the physical layer metrics is critical
 • Number of single, collided, and empty slots
Typical read rate

Preliminary Stress Test Results

- 325 tag hard to read pallet
- Portal configuration
- Pallet moving at 1.8 m/s