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Chapter 1

Introduction to univariate extreme
value theory

It seems that the rivers know
the theory. It only remains to
convince the engineers of the
validity of this analysis.

Emil Julius Gumbel

• Course material for this chapter: Resnick (1987), chapters 0.1–0.3 (very concise); Lead-
better et al. (2012) (very detailed and easy to read), De Haan and Ferreira (2007),
chapter 1 (additional results, more advanced).

• Other readings : Beirlant et al. (2004) (chapter 1) or Resnick (2007) Chapter 1 : exam-
ples of case studies and exploratory data analysis ; Coles (2001), chapters 3, 4: classical
statistical methods.

1.1 Extreme Value Theory: what and why ?

1.1.1 Context, motivations

Extreme value theory (EVT) relies on elegant probability theory and finds natural statistical
applications in many fields related to risk management (insurance, finance, telecommunica-
tion, climate, environmental sciences. . . ).

To fix ideas (see Figure 1.1.1), call X our quantity of interest (X is a real valued random
variable), which may be e.g. the water level on a coastal point, temperature, insurance
claims . . . say we observe i.i.d. realizations Xt, 1 ≤ t ≤ n. Some questions of interest for risk
management are

• Given a high threshold u, find p = P(X ≥ p)

• Given p (e.g. p = 10−4), find u such that P(X > u) ≤ p.

• Given a long duration T (e.g. 104), and a high threshold u, find p = P(maxt≤T Xt ≤ u).
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In probabilistic terms, this is about estimating high quantiles or small probabilities. Unfor-
tunately, it may happen that the sample size is too small for the naive empirical estimators
to be of interest. As an example, if u is outside the range of observed data,

p̂n = 1
n

∑
t

1xt>u = 0.

Another example about quantiles: we adopt throughout this course the following definition
of the quantile function:

Q(p) = inf{x ∈ R : F (x) ≥ p} (1.1)

where F is the distribution function of the r.v. X under consideration.
An empirical counterpart of (1.1) based on n i.i.d. data is

Q̂n(p) = inf{x ∈ R : F̂n(x) ≥ p} = inf{x :
∑

1Xi≤x ≥ np}

= X(dnpe),

where X(1) ≤ X(2) ≤ . . . ≤ X(n) are the order statistics of the sample (Xt)1≤t≤n. If one is
interested in a very high quantile Q(p) (i.e. p close to one) such that 1 > p > 1 − 1/n, then
dnpe = n and Q̂n(p) = X(n). There is no hope to estimate correctly such a quantile in a
purely empirical manner.

To estimate such extremal quantities based on moderate sample sizes, one need addi-
tional assumption to be able to extrapolate, e.g. from what is observed above moderately
high thresholds (left panel of Figure 1.1.1). As we shall see later on, it turns out that the
answer to those questions depends on the (asymptotic) distribution of the maximum of n
i.i.d. realizations of X, when n is large.
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Figure 1.1: Why the empirical measure is not always useful as it is
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Notations the maximum operator is denoted by
∨
, so that for real numbers xi, 1 ≤ i ≤ n,∨n

i=1 xi = maxni=1 xi. Similarly,
∧

is the minimum operator. In the multivariate case, these
operators are understood componentwise, i.e. if xi = (xi,1, . . . , xi,d),

n∨
i=1

xi = (∨ni=1xi,1, . . . ,∨ni=1.xi,d)

1.1.2 Rationale behind Extreme value theory (EVT)

The general purpose of EVT is to find statistical models for “extremes” (defined as maxima
or excesses above large thresholds), supported by the theory (together with estimation tools).
Consider i.i.d. copies Xi (i ∈ N) of a random variable / vector / process X. Let us denote
by

[
X
∣∣ ‖X‖ > u

]
the conditional distribution of X on the event {‖X‖ > u}. Then under

minimal assumptions,
n∨
i=1

Xi and
[
X
∣∣ ‖X‖ > u

]
both converge to a certain class (as n → ∞ or u → ∞), up to a suitable normalization.
Convergence of maxima is understood in the weak sense (convergence in distribution). Of
course, convergence of the conditional distribution [X |‖X‖ > u] is also a convergence in
distribution. Interestingly enough, convergence of the maxima is equivalent to convergence
of the conditional distribution of excesses. The main idea of extreme value analysis is to
use the class of possible limits as a model for the law of the maximum over a long period of
interest (the duration of a contract, the next 100 years for a dam, the next 1000 years for a
nuclear plant, . . . ) or for the distribution of ‘large’ values (above a sufficiently high threshold).
Inference in the appropriate model will be performed using the few (say k) largest data with
a dataset of size n. Convergence of the various estimators is generally obtained under the
assumption that n→∞, k = k(n)→∞, but k is a ‘small proportion’ of n, i.e. k = o(n).

Why do we need renormalization ? If F is the cumulative distribution function (c.d.f.) of
X and if the Xi’s are i.i.d., then the c.d.f. for Mn := ∨ni=1Xi is

Fn(x) = P(Mn ≤ x) = P(∀i ≤ n,Xi ≤ x) = F (x)n.

Thus, if we do not ‘normalize’ the maximum, its distribution Fn is such that Fn(x) → 0 as
soon as F (x) < 1 and the limit distribution function (if there is one) is degenerate. Similarly,
the distribution of X, given that ‖X‖ ≥ u ‘escapes’ to infinity.

1.1.3 A CLT for maxima ?

Recall hat the Central Limit Theorem states that, if X has finite second moment, we have∑n
i=1Xi − bn

an

d−→ Z

where d−→ stands for convergence in distribution, with Z a centered Gaussian distribution,
bn = nE(X) and an =

√
n.

In extreme value theory, the focus is on the maximum rather than the mean. The working
hypothesis is the so-called maximum-domain of attraction condition (MDA):
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There exist two sequences (an)n≥0, (bn)n≥0 of real numbers, with an > 0 ∀n, and a non-
degenerate random variable Z, such that∨n

i=1Xi − bn
an

d−→ Z (MDA)

where (Xi)i are i.i.d. random variables distributed as X.

Remark 1.1.1 (‘non-degenerate’). A random variable is called ‘non-degenerate’ if its distri-
bution is not concentrated at a single point. In other terms, it means that its c.d.f. F is such
that ∃x < y ∈ R : F (x) < F (y) < 1.

In terms of distribution functions, the (MDA) is equivalent to the existence of a non-
degenerate distribution function G such that

Fn(anx+ bn) −−−→
n→∞

G(x) (MDA’)

a each point x which is a continuity point of the limit G. If (MDA) (or alternatively (MDA’))
holds, X (or F ) is said to belong to the maximum domain of attraction of Z (or G).

Definition 1.1.2 (Extreme Value Distribution). A non-degenerate distribution function G
is called an extreme value distribution if (MDA’) is satisfied for some distribution function
F and some sequences an > 0, bn.

Some natural questions are

• Under which conditions on F do we have (MDA’) for some c.d.f. G ?

• What are the possible forms of the limit G ?

• How can we choose the sequences an, bn ?

• What is the relation between (MDA) and the convergence of the conditional distribution
of excesses above large thresholds ?

The aim of this chapter (and the next one) is to bring some answers, in the case where X is
a real-valued random variable. The multivariate case will be the subject of the last chapter.
This course does not cover the case where X is a (continuous) stochastic process.

1.1.4 Monotone functions and weak convergence

It is standard fact that convergence in distribution for random variables is the same as conver-
gence of the associated distribution functions at each continuity point of the limit. In EVT,
it is useful to extend this type of convergence convergence to the whole class of monotone
functions, as follows.

Definition 1.1.3 (Weak convergence of monotone functions). Let (Hn)n∈N be a family of
monotone functions R → [−∞,∞]. The functions Hn are said to converge weakly, and we
write Hn

w−→H, if there exists a monotone function H : R→ [−∞,∞] such that

∀x ∈ C(H), Hn(x) −−−→
n→∞

H(x).

where C(H) is the set of continuity points of H, that is

C(H) = {x ∈ R : H(x) ∈ R and H is continuous at x. }
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With this definition, if (Xn)n≥0 and X are random variables with associated distribution
functions (Fn)n≥0 and F , then we indeed have

Xn
d−→X ⇐⇒ Fn

w−→ F as n→∞.

Notations When compositions of functions with affine scalings (or with other simple trans-
formations) are involved, e.g. if we consider functions of the kind x 7→ F (ax + b), we will
usually use the notation ‘ F (a · + b)’ instead. As an example,

Fn(an · + bn) w−→G, (n→∞)

means
{x 7→ Fn(anx+ bn)} w−→ G (n→∞).

1.2 Intermediate results

1.2.1 Weak convergence of the inverse

Definition 1.2.1 (Left-continuous inverse). Let H be a non-decreasing, right continuous
function R→ [−∞,∞]. The left-continuous inverse of H is the function

H← : R→ [−∞,∞]
y 7→ H←(y) = inf{x ∈ R : H(x) ≥ y},

with the convention is inf R = −∞ and inf ∅ = +∞.

Remark 1.2.2. It is left as an exercise to verify that H← is indeed continuous from the left.

Lemma 1.2.3 (Order relations)
Let H : R → [−∞,∞] be a non-decreasing, right-continuous function, and let x ∈ R and
y ∈ R. Define Ay = {t ∈ R : H(t) ≥ y}.
Then Ay is a closed set, and

H(x) ≥ y ⇐⇒ x ≥ H←(y). (1.2)

Proof. Notice first that Ay must be either the empty set, or R, or of the form (u,∞) or [u,∞),
for some u ∈ R.

1. If Ay = R, Ay is obviously closed, and H←(y) = −∞. Then both sides of (1.2) hold for
any x ∈ R.

2. if A(y) = ∅, Ay is closed again, and H←(y) = +∞. Also, ∀t ∈ R, H(t) < y, thus neither
side of (1.2) can be true.

3. Otherwise, consider a sequence un ↓ u. Each un belongs to Ay, thus H(un) ≥ y. Since
H is continuous from the right, H(u) ≥ y too, whence u ∈ Ay. Thus Ay = [u,∞)
is closed in R. By definition of H←, we have H←(y) = inf Ay = u. Finally, (1.2) is
obtained by noticing that

H(x) ≥ y ⇐⇒ x ∈ Ay ⇐⇒ x ∈ [H←(y),∞) ⇐⇒ x ≥ H←(y)

6
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Lemma 1.2.4 (Weak convergence of the inverse)
Let (Hn)n∈N and H be monotone functions R→ [−∞,∞]. If

Hn
w−→H as n→∞,

then also
H←n

w−→H← as n→∞.

Conversely, if we assume in addition that

(i) For all n ∈ N, infRHn ≥ infRH,

(ii) Forall x ∈ R such that H(x) <∞, H(x) < supt:H(t)<∞H(t),

Then weak convergence of H←n to H← implies weak convergence of Hn to H.

The proof is deferred to Appendix A.2 Notice that the two conditions (i) and (ii) for the
converse satement of Lemma 1.2.4 may seem intricated, but they are indeed satisfied in the
particular case where we need it (i.e. in the proof of Theorem 1.4.1).

1.2.2 Convergence to types

The limiting form in (MDA’) will be obtained ‘up to rescaling’, in the sense defined below.

Definition 1.2.5 (Functions of the same type). to functions U, V : R→ [−∞,∞] are of the
same type if ∃A,B ∈ R, A > 0, such that

∀x ∈ R, V (x) = U(Ax+B).

The interesting fact about equality in type is that, if (MDA) or (MDA’) holds for two
different sequences, then the limits must be of the same type and the tails of the two sequences
must be linked in the same way, as made precise below.

Lemma 1.2.6 (Convergence to types, Khintchine)
Let (Fn)n, U be cumulative distribution functions, U being non-degenerate. Let an > 0 and
bn (n ∈ N) be two sequences of real numbers, such that

Fn( an · + bn ) w−→ U. (1.3)

Let ãn > 0, b̃n(n ∈ N) be two other sequences. Then, the following are equivalent:

(i) There exists another non-degenerate c.d.f. V such that

Fn(ãn · + b̃n) w−→ V

(ii) ∃A > 0, B ∈ R such that

ãn
an
−−−→
n→∞

A ; b̃n − bn
an

−−−→
n→∞

B.
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Also, if (i) or (ii) hold, then U and V are of the same type, namely

V ( · ) = U(A · + b) (x ∈ R). (1.4)

Proof.
1. (i) ⇒ (ii) and (1.4):
Assume that (i) holds. Using Lemma 1.2.4, weak convergences in (i) and (1.3) may be
inverted, so that

F←n − bn
an

w−→ U← and F←n − b̃n
ãn

w−→ V←

Non-degeneracy allows to pick y1 < y2 such that U←(y1) < U←(y2), and F←n (yi)−bn
an

w−→ U←(yi),
i = 1, 2. By substraction,

F←n (y2)− F←n (y1)
an

w−→ U←(y2)− U←(y1).

In the same way, we may find z1 < z2 such that V←(z2)− V←(z1) > 0,

F←n (z2)− F←n (z1)
ãn

w−→ V←(z2)− V←(z1).

Dividing the two (which is possible since the limits are nonzero) yields

ãn
an
−−−→
n→∞

A := U←(z2)− U←(z1)
V←(z2)− V←(z1) > 0.

Also for y ∈ C(U←) ∩ C(V←),

F←n (y)− bn
an

−AF
←
n (y)− b̃n

ãn

w−→ U←(y)−AV←(y).

However,
F←n (y)− bn

an
−AF

←
n (y)− b̃n

ãn
= F←n (y)− bn

an
−Aan

ãn

F←n (y)− b̃n
an

∼n→∞
F←n (y)− bn

an
− F←n (y)− b̃n

an

= b̃n − bn
an

whence b̃n−bn
an
→ B := U←(y)−AV←(y); and (ii) is proved.

Finally, for y ∈ C(V←) ∩ C(U←),

V←(y) = lim
n→∞

F←n (y)− b̃n
ãn

= lim
n→∞

an
ãn

(
F←n (y)− bn

an
− (b̃n − bn)

an

)
= A−1(U←(y)−B). (1.5)
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Since V← and U← are continuous from the left, the above equality holds for all y ∈ R,
whence, the two functions V← and A−1(U← − B) are identical. Now, if Y is a standard
uniform random variable, if we let X = V←(Y ) and X ′ = A−1(U←(Y )−B), then the c.d.f.’s
of X and X ′ are respectively V and U(A · +B). But (1.5) shows that X = X ′ almost surely.
Thus X and X ′ have the same distribution functions, which means that V (x) = U(Ax+B)
for x ∈ R and (1.4) is true.
2. (ii)⇒ (i) and (1.4): Put V (x) = U(Ax+B), x ∈ R. Then V←(y) = A−1(U←(y)−B), y ∈
R. Reversing the argument leading to (1.5), we obtain, for y ∈ C(U←) = C(V←),

Fn(ãn · + b̃n)←(y) = F←n (y)− b̃n
ãn

= an
ãn

(
F←n (y)− bn

an
− (b̃n − bn)

an

)
−−−→
n→∞

A−1(U←(y)−B) = V←(y). (1.6)

We have shown that Fn(ãn · +b̃n)← w−→ V←, which implies, by Lemma 1.2.4, that Fn(ãn · +
b̃n) w−→ V , which is (i).

Since we have already proved that (i) forces V (x) = U(Ax+B), the proof is complete. �

1.3 ‘Fundamental theorem’ of EVT: Limit laws for maxima

1.3.1 Max-stable distributions

Getting back to our analogy with the CLT, remind that the limiting distribution N of rescaled
sums (a Gaussian distribution) is stable, that is, if Xi

i.i.d.∼ N , then for n ∈ N, then ∃An, Bn:∑n

1 Xi−Bn
An

d= X1. Here and thereafter, ‘ d= ’ means equality in distribution.
Replacing the sum-operator by the max-operator, one may reasonably expect an analogous

property for extreme value distributions (i.e. the limit distributions G in (MDA’)). It is indeed
the case, if one consider max-stability instead of stability, as defined below.

Definition 1.3.1 (Max-stable distribution). A c.d.f. G is called max-stable if there exist
functions α(t) > 0, β(t) (t > 0) such that

∀t > 0, ∀x ∈ R, Gt(α(t)x+ β(t)) = G(x).

In particular, if (Zi)i=1,...,n
i.i.d.∼ G, then

∨n
i=1 Zi ∼ Gn, so that, letting αn = α(n), βn =

β(n), ∨
i=1:n Zi − βn

αn

d= Z1.

Proposition 1.3.2 (Max-stable and extreme value distributions are the same)
Let G be a non-degenerate cumulative distribution function. Then G is an extreme value
distribution if and only if it is max-stable.

Proof. If G is max-stable, it is obviously an extreme value distribution: (MDA’) holds with
an = α(n), bn = β(n).

Conversely, assume that (MDA’) holds for some F and sequences an > 0, bn. Fix t > 0.
On the one hand, for x ∈ C(G),

F bntc(abntcx+ bbntc) −−−→n→∞
G(x). (1.7)
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Also,

F bntc(anx+ bn) = (Fn(anx+ bn))
bntc
n −−−→

n→∞
Gt(x). (1.8)

Using Khintchine Lemma 1.2.6, with Fn = Fnt, U = Gt, V = G (note that Gt is necessarily a
non-degenerate c.d.f. if G is so), there exist two real numbers α(t) > 0, β(t), such that

abntc
an

−−−→
n→∞

α(t) ;
bbntc − bn

an
−−−→
n→∞

β(t) (1.9)

and
G(x) = Gt(α(t)x+ β(t)), x ∈ R.

�

Lemma 1.3.3
The functions t 7→ α(t) > 0 and t 7→ β(t) in the definition of a max-stable distribution are
uniquely determined by G, and are Borel-measurable.

Proof.
(1) To show that α and β are unique, it is enough to show that if a non degenerate c.d.f. G
satisfies

G(x) = G(ax+ b), x ∈ R,

for some a > 0, b ∈ R, then necessarily a = 1, b = 0. Define T : x 7→ ax+ b. The assumption
rewrites G = G ◦ T . Thus, G = G ◦ Tn, for n ∈ N. Thus, for x ∈ R, G(x) = limnG(Tnx). It
is then easy to see (exercise 1.1) that if a 6= 1, G must be degenerate, and then that b must
be null.
(2) The argument leading to (1.10) in the proof of Proposition 1.3.2, with F replaced with
G, shows that for t > 0,

α(bntc)
α(n) −−−→

n→∞
α(t) ; β(bntc)− β(n)

α(n) −−−→
n→∞

β(t) (1.10)

Now the functions t 7→ α(n)
α(bntc) and t 7→ β(n)−β(bntc)

α(bntc) are certainly measurable (they are piece-
wise constant). Since the pointwise limits of measurable functions are measurable, α and β
are measurable. �

Exercice 1.1:
Complete the proof of Lemma 1.3.3 (1): use the fact that for x ∈ R, the sequence (Tnx)n is
arithmetico-geometric, so that if a 6= 1, limn T

nx is either infinite, or a fixed point.

The next paragraph is the core of this chapter

1.3.2 Characterizing max-stable distribution

Before stating the result, notice that characterizing max-stable distributions is the same
as characterizing extreme value distributions (the possible limits in (MDA’), according to
Proposition 1.3.2.

Theorem 1.3.4 (Extreme value theorem (Fisher & Tipett 1928, Gnedenko 1943))
If G is a max-stable distribution, G is of one of the three types

10



(i) Fréchet : Φα(x) =
{
e−x

(−α) (x > 0)
0 (x ≤ 0).

,

With α > 0 ;

(ii) Weibull : Ψα(x) =
{
e−(−x)(−α) (x < 0)
1 (x ≥ 0).

,

With α < 0;

(iii) Gumbel : Λ(x) = e−e
−x, x ∈ R.

It is convenient to use a common parametrization for the three types, as in the following
statement (the verification is left to the reader):

Corollary 1.3.5
If G is a max-stable distribution, then ∃µ ∈ R, σ > 0, γ ∈ R, such that

G(x) = Gµ,σ,γ(x) := exp
[
−
(

1 + γ

(
x− µ
σ

))−1/γ

+

]
, (1.11)

where y+ = max(y, 0), and where the above expression for γ = 0 is understood as its limit as
γ → 0, that is

G(x) = exp
[
−e−

x−µ
σ

]
.

Also,

• γ = 0 if and only if G is of Gumbel type,

• γ > 0 if and only if G is of Fréchet type Φα with α = 1/γ,

• γ < 0 if and only if G is of Weibull type Ψα with α = 1/γ.

Before some examples and the proof, Figures 1.2, 1.3 and 1.4 illustrate the three types.
The first two figures explain why the distribution functions in the Fréchet domain of attrac-
tion as usually referred to as heavy tailed, whereas those in the Gumbel domain are called
light tailed (There is no agreement about the Weibull domain. Some authors use ‘light tails’,
some others use ‘bounded tails’). Also, Figure 1.4 indicates that a series of i.i.d. observations
of heavy tailed variables is likely to contain more ‘extreme’ events than a series of light tailed
variables: The Fréchet type corresponds to situation where extreme events occur ‘quite often’.
Typical examples include river discharge data, rainfall (in some cases), financial return times
series, insurance claims.

11



−2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

de
ns

ity

Fréchet, gamma = 1
Weibull, gamma = −1
Gumbel, gamma = 0
Gaussian

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
00

0.
05

0.
10

0.
15

x

de
ns

ity

Fréchet, gamma = 1
Gumbel, gamma = 0
Gaussian

Figure 1.2: Density plot for the three extremal types, respectively (γ = 1, µ = 1, σ = 1),
(γ = −1, µ = −1, σ = 1), (γ = 0, µ = 0, σ = 1); compared with the Gaussian density with
same mean and variance as the Gumbel one. The right panel is a zoom on the tail.
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Figure 1.3: Survival function 1− F (x) for the three extremal types, respectively (γ = 1, µ =
1, σ = 1), (γ = −1, µ = −1, σ = 1), (γ = 0, µ = 0, σ = 1); compared with the Gaussian
survival function with same mean and variance as the Gumbel one.
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Exemple 1.1 (Exponential variable, Gumbel domain):
Let F be an exponential distribution,

F (x) = 1x>0
(
1− e−λx

)
.

In order to ‘guess’ possible norming constant, we may use heuristic calculus, and prove in a second
step that the sequences are indeed suitable. We may assume that for x > 0, anx+ bn −−−→

n→∞
∞

(otherwise„ Fn(anx+ bn) −−−→
n→∞

0. Thus

F (anx+ bn) = 1anx+bn>0 (1− e−λ(anx+bn))n

= 1anx+bn>0 exp
(
n log(1− e−λanx+λbn)

)
≈ 1anx+bn>0 exp

(
ne−λanx−λbn

)
= 1anx+bn>0 exp

(
e−λanx+logn−λbn

)
If we set an = 1, bn = λ−1 logn, the latter expression does converge to G(x) = exp

(
−e−λx

)
,

which is of Gumbel type. Now we only need to check that the (MDA’) condition is indeed satisfied
with these sequences: for x ∈ R,

Fn(anx+ bn) = 1x+logn/λ>0(1− e−λ(x+log(n)/λ))n

= exp
(
n log(1− e−λx−log(n)))

)
(n ≥ e−λx)

= exp
(
n log(1− e−λx

n
)
)

= exp
(
n

(
−e
−λx

n
+ o(1/n)

))
−−−→
n→∞

exp
(
−e−λx

)
.

Exercice 1.2 (Weibull domain):
Check that the standard uniform variable is in the Weibull domain of attraction.
Hint: consider an = 1/n, bn = 1− 1/n. What is the corresponding limit distribution G ?

Exercice 1.3 (Fréchet domain of attraction ):
Show that the Pareto distribution F (x) = 1x>u

(
1− uα

xα

)
, where α > 0, u > 0, belongs to the

Fréchet max-domain of attraction. Exhibit suitable sequences an and bn and explicit the limit G.

Proof of Theorem 1.3.4. Our proof mainly follows Resnick (1987).
Let α > 0, β the norming functions such that for t > 0, x ∈ R,

G(x) = Gt(α(t)x+ β(t)). (1.12)

The key to the proof is to show that α and β satisfy a particular functional equation (the
Hamel equation, see below), which solutions are known, and then to obtain the expression of
G using (1.12) again.

First, for t, s > 0, x ∈ R,

G1/(ts)(x) = G(α(ts)x+ β(ts)).

14



but also

G1/(ts)(x) = [G1/s(x)]1/t = G1/t(α(s)x+ β(s)) = G(α(t)α(s)x+ α(t)β(s) + β(s)).

By Lemma 1.3.3, this implies that for t, s > 0,

α(ts) = α(t)α(s) (1.13)
β(ts) = α(t)β(s) + β(s) = α(s)β(t) + β(t), (1.14)

where the last equality follows by interchanging the roles of s and t.
One recognizes in (1.13) the Hamel equation. It is easy to prove that the only continuous

solutions of this equation are of the form f(t) = tγ , for some γ ∈ R (this is obvious for t ∈ N,
then by inversion also for t ∈ Q, and continuity achieves the proof for t ∈ R.) In fact, it may
be shown (See Hahn and Rosenthal (1948), pp. 116-118 ) that the only measurable solutions
are also of this kind. Now, by 1.3.3, we know that α and β are measurable. Whence, ∃γ ∈ R:

∀t > 0, α(t) = tγ

We distinguish three cases according to the sign of γ (to wit, γ will be the extreme value
index appearing in (1.11))

case 1: γ = 0 In this case α ≡ 1. Thus (1.14) yields β(ts) = α(t) + β(s), s, t > 0. This
is again the Hamel equation (up to log-scaling, that is: eβ satisfies (1.13)). Consequently, for
some σ ∈ R, eβ(t) = tσ (to wit, σ will be the scale parameter in (1.11)), that is

β(t) = σ log t, s, t > 0. (1.15)

Going back to (1.12), we have

G1/t(x) = G(x+ σ log t), x ∈ R, t > 0.

For x such that 0 < G(x) < 1 (which exists by non-degeneracy of G), the function t 7→ G1/t(x)
is strictly increasing on ]1,∞[, thus t 7→ σ log tmust be strictly increasing , which means σ > 0.
Then (1.12) with x = 0 yields ∀t > 0, G(σ log t) = G(0)1/t, i.e., with u = σ log t,

∀u ∈ R, G(u) = (G(0))e−u/σ

necessarily , 0 < G(0) < 1, otherwise G would be constant on R. Thus

∀u ∈ R, G(u) = exp
[
−e−u/σ(− logG(0))

]
= exp

[
−e−(u−µ)/σ

]
where µ is chosen so that eµ/σ = − logG(0), i.e. µ = σ log(− logG(0)). Thus G is of Gumbel
type (G(x) = Λ((x− µ)/σ).

case 2 : γ 6= 0 In this case, identity (1.14) implies, for s, t > 0,

β(t)(sγ − 1) = β(s)(tγ − 1)

15



Pick s 6= 1. Then for t > 0,

β(t) = sγ − 1
β(s)︸ ︷︷ ︸
C

(tγ − 1) = C(tγ − 1),

where C ∈ R is constant w.r.t. t. Going back to (1.12), we obtain, for x ∈ R,

G1/t(x) = G(tγx+ C(tγ − 1)) = G[tγ(x+ C)− C],

so that G1/t(x− C) = G[tγx− C]. Whence, putting Γ(x) = G(x+ C),

Γ1/t(x) = Γ(tγx), t > 0, x ∈ R. (1.16)

Note that this implies (setting x = 0 in the above equation) that Γ(0) ∈ {0, 1}. Also, Γ(1) > 0,
otherwise Γ would be identically equal to 0. To conclude, it is enough to show that Γ if of
one of the two first types (Fréchet or Gumbel). This will depend on the sign of γ.

1. Case γ > 0 Let us prove that we must have Γ(1) < 1: otherwise we would have
for t > 0, 1 = Γ(tγ), so that Γ(0) = limt→0 Γ(tγ) = 1. But then ∃x < 0 such that
0 < Γ(x) < 1, and for such an x the function t 7→ G1/t(x) is strictly increasing.
However, G1/t(x) = G(tγx), which is a non increasing function of t, a contradiction.
Thus 0 < Γ(1) < 1.
We may thus rewrite (1.16) as (with u = tγ , and x = 1)

Γ(u) = Γ(1)u−1/γ = exp
[
−u−1/γ(− log Γ(1))

]
= exp

[
−(u/σ)−1/γ

]
, u > 0. (1.17)

with σ = (− log Γ(1))γ . Thus G(x) = Γ(x+ C) = Φ1/γ((x+ C)/σ (Fréchet type).

2. Case γ < 0: with a similar argument, one obtains that G is of the Weibull type.

�

Remark 1.3.6 (Choice of norming sequences and parameters of the limit). If F satisfies
a MDA condition for some sequences (an, bn) and if the limit is of the form Gµ,σ,γ(x) as
in (1.11), then it is always possible to choose other sequences a′n, b′n such that

Fn(a′nx+ b′n) w−→G0,1,γ

where G0,1,γ(x) = exp
(
− (1 + γx)−1/γ

+

)
. Indeed, one may choose a′n = σan, b

′
n = bn + µan,

and use the convergence to type lemma 1.2.6.

Remark 1.3.7 (Continuity set of the limit). Since the max-stable distributions are continuous
on R (this is obvious from their parametric form (1.11)), if F is in the domain of attraction of
G, then convergence must occur for all x ∈ R. In other words, in this case, weak convergence
is the same as pointwise convergence on R.
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1.4 Equivalent formulations in terms of excesses above thresh-
olds

Our goal is to show that the condition (MDA’) is equivalent to the convergence of the condi-
tional distribution of excesses above t, in the following sense

Theorem 1.4.1 (Balkema, de Haan, 1974)
The following statements are equivalent

(i) ∃an > 0, bn: for all x ∈ R, Fn(anx+ bn) −−−→
n→∞

e−(1+γx)−1/γ
+

(ii) ∃σ : (0,∞)→ (0,∞) such that, for each x such that 1 + γx > 0,

P
(
X − t
σ(t) > x | X > t

)
−−−→
t→x?

− logG(x) = (1 + γx)−1/γ , (1.18)

where x? = F←(1) is the right end-point of the support of F ; which means in terms of
distribution functions that

1− F (t+ σ(t)x)
1− F (t) −−−→

t↗x?
(1 + γx)−1/γ

+ . (1.19)

In such a case, σ may be chosen as σ(t) = a
(

1
1−F (t)

)
.

For the proof, we will use a series of equivalent characterization of the (MDA’) condition
in terms of survival functions 1− F and inverse functions.

Lemma 1.4.2 (Convergence of survival functions)
The (MDA’) condition is satisfied if and only if

n(1− F (an · + bn)) w−→ − logG.

Proof. By continuity of the logarithm function and its inverse,

(MDA’) ⇐⇒ n logF (an · + bn) w−→ logG.

Now on both sides, for x such that logG(x), is finite F (anx+ bn) must converge to 1, thus

logF (anx+ bn) = log(1− (1− F (anx+ bn))) ∼n→∞ − [1− F (anx+ bn)] ,

whence the result. �

An immediate consequence is that (MDA’) is equivalent to

1
n(1− F (an · + bn))

w−→ −1
logG. (1.20)

Let U =
(

1
1−F

)←
(i.e. U(y) = F←(1− 1/y), y > 0 ) and Γ = −1

logG . From Lemma 1.2.4.

(1.20) ⇐⇒ U(n · )− bn
an

w−→ Γ← as n→∞ (1.21)

Define a(t) = abtc, b(t) = bbtc, t > 0. The next lemma extends the above equality to all
t > 0.
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Lemma 1.4.3
The (MDA’) condition is satisfied if and only if

U(t · )− b(t)
a(t)

w−→ Γ←, as t→∞ (1.22)

Proof. We only need to show that (MDA’) implies (1.22). Indeed, the converse is immediate
from (1.21).

Let y ∈ C(Γ←). By monotonicity of U ,

U(btcy)− b(t)
a(t) ≤ U(ty)− b(t)

a(t) ≤ U((btc+ 1)y)− b(t)
a(t) (1.23)

Fix ε >, and choose y′ > y such that Γ←(y′) < Γ←(y) + ε. Then for some t0 large enough
and t > t0, (btc + 1)y < ty′. Thus for large t, U((btc+1)y)−b(t)

a(t) ≤ U(ty′)−b(t)
a(t) → Γ←(y′) ≤

Γ←(y) + ε. Since the limit of the left-hand side of (1.23) is Γ←(y), and since ε is arbitrary,
the proof is complete. �

Remark 1.4.4 (Continuity points of Γ←). Notice that weak convergence in (1.21) and (1.22)
is equivalent to pointwise convergence for y > 0. Indeed, Γ = −1/ logG induces a bijection
(it is strictly increasing and continuous) from the interior of its support onto (0,∞). Thus,
its left inverse is a real inverse and is also continuous on (0,∞).

We may now proceed with the proof of the main result of this section.

Proof of Theorem 1.4.1. We prove that (MDA’) implies (1.18); the proof of the converse is
similar and is left as an exercise. Put σ(t) = a( 1

1−F (t)) It is easily verified that the left-
continuous inverse of the function

x 7→ 1− F (t)
1− F (t+ xσ(t))

is

y 7→
U( y

1−F (t))− t
σ(t) .

Using Lemma 1.2.4 and Remark 1.4.4, it is thus enough to show that

∀y > 0,
U
(

y
1−F (t)

)
− t

σ(t) −−−→
t↗x?

yγ − 1
γ

:= Γ←(y). (1.24)

However, using (1.22) from Lemma 1.4.3 for y = 1, we have

U(T )− b(T )
a(T ) −−−−→

T→∞
Γ←(1) = 1γ − 1

γ
= 0

But also for y > 0,
U(Ty)− b(T )

a(T ) −−−−→
T→∞

yγ − 1
γ

.

By substraction,
U(Ty)− U(T )

a(T ) −−−−→
T→∞

yγ − 1
γ

. (1.25)
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N.B: If we could replace T with 1/(1 − F (t)), and t with U(T ) in (1.25), we would ob-
tain (1.24) and the proof would be complete. This is the idea behind the remainder of the
proof.

It is easy to show that if f is a right-continuous, non decreasing function, for ε > 0, we
have f←(f(t)) ≤ t ≤ f←(f(t) + ε). Thus, for y > 0, 0 < t < x?,

0 ≤
t− U

(
1

1−F (t)

)
a
(

1
1−F (t)

) ≤
U
(

1
1−F (t) + ε

)
− U

(
1

1−F (t)

)
a
(

1
1−F (t)

)
≤
U
(

1
1−F (t)(1 + ε)

)
− U

(
1

1−F (t)

)
a
(

1
1−F (t)

)
−−−→
t↗x?

Γ←(1 + ε) = (1 + ε)γ − 1
γ

, (1.26)

where the last limit is obtained from (1.25) and the fact that 1/(1 − F (t)) −−−→
t↗x?

+∞

(indeed, in case x? < ∞, F cannot have a jump at x?, see e.g. Leadbetter et al. (2012),
Corollary 1.5.2). Since ε is arbitrary small, we conclude that

t− U
(

1
1−F (t)

)
a
(

1
1−F (t)

) −−−→
t↗x?

0. (1.27)

As a consequence, for y > 0,

U
(

y
1−F (t)

)
− t

σ(t) ∼
t↗x?

U
(

y
1−F (t)

)
− U

(
1

1−F (t)

)
σ(t)

−−−→
t↗x?

yγ − 1
γ

,

where the last limit is obtained from (1.25) as in (1.26). This shows (1.24) and completes the
proof. �

1.5 Case studies
The common idea between most statistical applications is to use the limits in the different
convergence results presented in the above sections as models for the extremal data, where
‘extremal’ can be understood either as ‘a maximum over a long period’ or ‘an excess above
a high threshold’. A variant of the ‘excess’ view is to consider the point process of excesses
above thresholds and use a Poisson approximation. This will be treated in the next chapter.

1.5.1 Annual maximum of the sea level

In order to fix a reasonable premium for real estate insurance, an insurance company is
interested to potential damage induced from floods in a city close to the sea level. A dike
does protect the city as long as the sea level is below some fixed level u0. The question is :
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what is the probability of a flood occurring during a given year ? It may be shown that under
weak temporal dependence (with mixing conditions), the extreme value theorem still holds.
Thus, one may use the approximation for the annual maximum Mn (n = 365):

Mn − bn
an

d≈ Z

where Z ∼ G is a standard EV distribution, G(x) = e−(1+γx)−1/γ , and an, bn are unknown
parameters. In other words, dropping the index n (which is fixed to 365), and setting µ = bn,
σ = an the assumption is

P(M ≤ x) = P((M − µ)/σ ≤ (x− µ)/σ) ' G((x− µ)/σ) = exp
[
−
(

1 + γ
x− µ
σ

)−1/γ

+

]
.

Thus, we assume thatM ∼ Gµ,σ,γ for some unknown (µ, σ, γ); in other words the statistical
model for M is the parametric model

P = {Gµ,σ,γ : µ ∈ R, σ > 0, γ ∈ R.}

A widely used approach for inference of the is the maximum likelihood approach. It
is implemented in numerous R models such as ismev, extRemes, evd, fExtremes, EVIM,
Xtremes, HYFRAN, EXTREMES . . . In our examples, we mainly use evd and ismev. Notice
that it is also possible to resort to probability weighted moment methods. The dataset
portpirie is part of these two packages. It contains annual maxima of the sea level at Port
Pirie (Australia) (Figure 1.5), where a disastrous flood occur ed in 1934 (Figure 1.6).
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Figure 1.5: portpirie data in package evd: Annual maxima of the sea level at Port Pirie,
1923-1987
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Figure 1.6: 1934 flood at Port Pirie, Australia

The next few lines of code show how to proceed with MLE estimation and obtain diagnostic
plots (Figure 1.5.1).

> library(evd)
> fitgevpirie <- fgev(portpirie)
> fitgevpirie

Call: fgev(x = portpirie)
Deviance: -8.678117

Estimates
loc scale shape

3.87475 0.19805 -0.05012

Standard Errors
loc scale shape

0.02793 0.02025 0.09826

Optimization Information
Convergence: successful
Function Evaluations: 30
Gradient Evaluations: 8

> plot(fitgevpirie)

The probability of an excess of any threshold u may now reasonably be estimated by a
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Figure 1.7: Graphical diagnostic plot for the GEV model fit on the Port Pirie dataset, as
provided by R package evd.

plugin method,
p̂ = 1−Gµ̂,σ̂,γ̂(u).

If the goal was to estimate a high quantile, say zp = F←n (1−p), where Fn is the distribution
of the annual maximum, one could again use plugin estimates and set

ẑp = G←
µ̂,σ̂,γ̂

(1− p) =


µ̂+ σ̂

γ̂

[( −1
log(1− p)

)γ
− 1

]
(γ 6= 0),

µ+ σ log
( −1

log(1− p)

)
(γ = 0).

In this introductory course, will not get into details about the consistency of these estimators.
However, one may notice that, on this example, the maximum likelihood estimate is close to
0, compared to its estimated standard deviation. One may thus wonder if the Gumbel sub-
model (γ = 0) provides a reasonable fit (this will impact in particular high quantile estimates,
since the Gumbel distribution has unbounded support, contrary to the Weibull).

A simple visual diagnostic for this hypothesis is the following: The inverse of G(x) =
e−e

−x−µσ is
G←(y) = σ [− log(− log(y))] + µ.

On the other hand, the empirical quantile of order y = i/n (i = 1, . . . , n) is

Ĝ←(i/n) = X(i)

(the ith order statistic)
If the Gumbel model is appropriate, we should have

X(i) ≈ σ − log(− log( i

n+ 1)) + µ,

for some σ > 0 and some µ ∈ R. Thus the graph of the points (− log(− log( i
n+1));X(i))

(the so-called Gumbel plot) should be approximately affine. The graph obtained with the
Port Pirie data is shown in Figure 1.5.1. It ‘confirms’ the null hypothesis of a Gumbel type
distribution.
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Figure 1.8: Gumbel plot for the Port Pirie dataset.

1.5.2 Method of block maxima

This is just a generalization of the above analysis. Given a series of n independent (or ‘weakly’
dependent), say daily, data Xi, i ≤ n, the analyst may divide the data set into m block of size
k = n/m each (say k = 30 to work with monthly maxima), and assume that the maximum
over each block

Mi =
n∨

r=ki+1
Xr, i = 1, . . . ,m

approximately follows a GEV distribution, which parameters remain to be estimated. The
rest follows the line of the Port Pirie example. Figure 1.5.2 illustrates this procedure.
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Figure 1.9: Work-flow for the block-maxima method.
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1.5.3 Peaks-Over-Threshold

The ‘Peaks-Over-Threshold’ (POT) methods consider excesses over a fixed, relatively high
threshold, instead of maxima. Consider the equivalent condition of (MDA) in terms of ex-
cesses above thresholds (1.18) (Theorem 1.4.1),

1− F (t+ σ(t) · )
1− F (t) −−−→

t↗x?
(1 + γ · )−1/γ

+ .

For fixed, large enough t (but not too large, in order to observe ‘some’ data above t), we
may use the approximation

1− F (t+ σx)
1− F (t) ≈ (1 + γx)−1/γ

+ .

In other terms, if X ∼ F ,

P ((X − t)/σ > x | X > t) ≈ (1 + γx)−1/γ
+ .

or, by a change of variables

P (X − t > x | X > t) ≈
(

1 + γ
x

σ

)−1/γ
, x > 0

for some unknown parameters (σ, γ).
Consider an i.i.d. sample Xi, i = 1, . . . n ∼ F . Estimation of the parameters (σ, γ) may be

done using the excesses above t,

{Xi : Xi > t, i = 1, . . . , n},

as illustrated in Figure 1.5.3 .
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Figure 1.10: Work-flow for the POT procedure above a high threshold t: the raw data are
the black dots, the ‘excess’ data Xi(r) used for inference correspond to the blue lines.

Let (i(1), . . . , i(m)) be the indices corresponding to an excess. Now the assumption for
further inference is

P
(
Xi(r) > x

)
≈
(

1 + γ
x− t
σ

)−1/γ

+
, x > t. (1.28)
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i.e. Xi(r) ∼ Ht,σ,ξ(y), where Hµ,σ,γ is the Generalized Pareto distribution (GPD) with
parameters µ ∈ R, σ > 0, γ ∈ R,

Hµ,σ,γ(x) = 1−
(

1 + γ
x− µ
σ

)−1/γ

+
, x > µ.

Notice that in (1.28), the location parameter is automatically µ = t. Also, the above quantity
for γ = 0 should be interpreted as its limit as γ → 0,

Hµ,σ,0(x) = 1− e−
x−µ
σ (x > µ).

The GPD model for the excesses (Xi(r), r = 1, . . .m) is thus

P = {Ht,σ,γ : σ > 0, γ ∈ R}.

Again, the packages mentioned in the Port Pirie example provide routines for maximum
likelihood estimation in the GPD model. In practice, one may use the estimated parameters
in a plugin method in order to predict the probability of an excess above a high threshold
t′ > t (even though no data has ever been observed above t′).
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Chapter 2

Regular variation and the Poisson
process

2.1 Regular variation of a real function

2.2 Karamata theorem and consequences

2.2.1 Karamata representation

2.2.2 von Mises conditions for Regular Variation

2.2.3 Fréchet domain of attraction

2.3 Regular variation and vague convergence

2.3.1 Vague convergence and limiting Poisson processes

2.4 Hill estimator
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Chapter 3

Multivariate extremes

3.1 Multivariate extreme value distributions
stating the MDA conditions; MEV distributions are the max-stable distributions

3.2 Standardization

3.3 Max infinite divisibility

3.4 Angular measure

3.5 Regularly varying measures and Poisson representation
vague convergence / connection to functional regular variation/ multivariate regular variation
of a random vector
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Appendix A

Technicalities for Chapter 1

A.1 Monotone functions: additional results
Lemma A.1.1 (local uniform convergence of monotone functions)
Let (Hn)n∈N and H be monotone functions R → [−∞,∞], such that Hn

w−→H. If H is
continuous on an interval I ⊂ R (in particular H has to be finite on I), then the convergence
is locally uniform on I, i.e. for a < b ∈ I,

sup
x∈[a,b]

|Hn(x)−H(x)| −−−→
n→∞

0.

Sketch of proof. Since H is uniformly continuous on [a, b]; For ε > 0, there is a subdivision
a = x0 < x1 < · · · < xK = b; such that the variations of H are less than ε on each [xi, xi+1].
Use pointwise convergence on the finite set (x0, . . . , xk) and monotonicity to conclude. �

A.2 Proof of Lemma 1.2.4 (Weak convergence of the inverse)

Weak convergence implies weak convergence of the inverse

We assume that Hn
w−→H, and we show that H←n

w−→H←. Let y ∈ C(H←). In particular
H←(y) is finite. Let ε > 0. Since the discontinuity points of a monotone functions are at
most countable, there exists x ∈ C(H) such that H←(y) − ε < x < H←(y). Then, from
Lemma 1.2.3, H(x) < y. Since for such an x, Hn(x) −−−→

n→∞
H(x), we have for n large

enough, Hn(x) < y as well, so that, from Lemma 1.2.3 again, x < H←n (y). Thus, ∃n0 such
that for n ≥ n0, H←(y)− ε < x < H←n (y). Since ε is arbitrary,

lim inf H←n (y) ≥ H←(y).

An upper bound on lim supH←n (y) is obtained similarly: Since y ∈ C(H←), we may choose
t > y such that H←(t) ≤ H←(y) + ε. Also, we may pick x′ in (H←(t), H←(t) + ε) ∩ C(H).
For such x′, Lemma 1.2.3 implies

H(x′) ≥ t > y

Thus, for some n1 and for all n ≥ n1, Hn(x′) ≥ y as well, and using from Lemma 1.2.3 again,
for such n,

H←n (y) ≤ x′ ≤ H←n (y) + 2ε.
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Thus
lim supH←n (y) ≤ H←(y),

and the proof is complete.

Converse statement

Let us assume that
H←n

w−→H← as n→∞.

and that conditions (i) and (ii) from Lemma 1.2.4 are satisfied. Let x ∈ C(H) (in particular,
H(x) is finite) and ε > 0. We need to show that for n large enough (say n ≥ n0),

Hn(x) ≤ H(x) + ε, (A.1)
and Hn(x) ≥ H(x)− ε (A.2)

We first show (A.1). By hypothesis (ii), ∃x′ > x : H(x) < H(x′) < supt:H(t)<∞H(t).
Thus H← is finite on the open interval (H(x), H(x′)). The number of discontinuity points of
H← on this interval is at most countable, thus ∃y ∈ C(H←) : H(x) < y < H(x) + ε. Using
Lemma 1.2.3, we obtain x < H←(y). Weak convergence of H←n then implies that for n large
enough, x < H←n (y) as well. Thus Hn(x) < y < H(x) + ε, which proves (A.1).

For the proof of (A.2), we need to distinguish between the cases H(x) > infRH and H(x) =
infRH.
Case 1: H(x) > infRH. By continuity of H at x, we may choose t < x such that
H(t) > max(H(x) − ε/2, infRH). Then H← is finite on (infRH,H(t)), and again, admits
only a countable number of discontinuity on this interval. Let then y′ ∈ C(H←) such that
H(t)− ε/2 < y′ < H(t). Lemma 1.2.3 again ensures that H←(y′) ≤ t < x, so that for n large
enough, H←n (y′) ≤ x as well, whence Hn(x) ≥ y′ > H(t)− ε/2 > H(x)− ε and (A.2) is true.

Case 2: H(x) = infRH. Since x ∈ C(H), necessarily H(x) = infRH is finite, and hy-
pothesis (i) ensures that for all n ∈ N, Hn(x) ≥ H(x) so that (A.2) is immediate.
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