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Chapter 1

Introduction to univariate extreme
value theory

It seems that the rivers know
the theory. It only remains to
convince the engineers of the
validity of this analysis.

Emil Julius Gumbel

• Course material for this chapter: Resnick (1987), chapters 0.1–0.3 (very concise); Lead-
better et al. (2012) (very detailed and easy to read), De Haan and Ferreira (2007),
chapter 1 (additional results, more advanced).

• Other readings : Beirlant et al. (2004) (chapter 1) or Resnick (2007) Chapter 1 : exam-
ples of case studies and exploratory data analysis ; Coles (2001), chapters 3, 4: classical
statistical methods.

1.1 Extreme Value Theory: what and why ?

1.1.1 Context, motivations

Extreme value theory (EVT) relies on elegant probability theory and finds natural statistical
applications in many fields related to risk management (insurance, finance, telecommunica-
tion, climate, environmental sciences. . . ).

To fix ideas (see Figure 1.1.1), call X our quantity of interest (X is a real valued random
variable), which may be e.g. the water level on a coastal point, temperature, insurance
claims . . . say we observe i.i.d. realizations Xt, 1 ≤ t ≤ n. Some questions of interest for risk
management are

• Given a high threshold u, find p = P(X ≥ p)

• Given p (e.g. p = 10−4), find u such that P(X > u) ≤ p.

• Given a long duration T (e.g. 104), and a high threshold u, find p = P(maxt≤T Xt ≤ u).
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In probabilistic terms, this is about estimating high quantiles or small probabilities. Unfor-
tunately, it may happen that the sample size is too small for the naive empirical estimators
to be of interest. As an example, if u is outside the range of observed data,

p̂n = 1
n

∑
t

1xt>u = 0.

Another example about quantiles: we adopt throughout this course the following definition
of the quantile function:

Q(p) = inf{x ∈ R : F (x) ≥ p} (1.1)

where F is the distribution function of the r.v. X under consideration.
An empirical counterpart of (1.1) based on n i.i.d. data is

Q̂n(p) = inf{x ∈ R : F̂n(x) ≥ p} = inf{x :
∑

1Xi≤x ≥ np}

= X(dnpe),

where X(1) ≤ X(2) ≤ . . . ≤ X(n) are the order statistics of the sample (Xt)1≤t≤n. If one is
interested in a very high quantile Q(p) (i.e. p close to one) such that 1 > p > 1 − 1/n, then
dnpe = n and Q̂n(p) = X(n). There is no hope to estimate correctly such a quantile in a
purely empirical manner.

To estimate such extremal quantities based on moderate sample sizes, one need addi-
tional assumption to be able to extrapolate, e.g. from what is observed above moderately
high thresholds (left panel of Figure 1.1.1). As we shall see later on, it turns out that the
answer to those questions depends on the (asymptotic) distribution of the maximum of n
i.i.d. realizations of X, when n is large.
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Figure 1.1: Why the empirical measure is not always useful as it is
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Notations the maximum operator is denoted by ∨, so that for real numbers xi, 1 ≤ i ≤ n,∨n
i=1 xi = maxni=1 xi. Similarly, ∧ is the minimum operator. In the multivariate case, these

operators are understood componentwise, i.e. if xi = (xi,1, . . . , xi,d),

n∨
i=1

xi = (∨ni=1xi,1, . . . ,∨ni=1.xi,d)

1.1.2 Rationale behind Extreme value theory (EVT)

The general purpose of EVT is to find statistical models for “extremes” (defined as maxima
or excesses above large thresholds), supported by the theory (together with estimation tools).
Consider i.i.d. copies Xi (i ∈ N) of a random variable / vector / process X. Let us denote
by

[
X
∣∣ ‖X‖ > u

]
the conditional distribution of X on the event {‖X‖ > u}. Then under

minimal assumptions,
n∨
i=1

Xi and
[
X
∣∣ ‖X‖ > u

]
both converge to a certain class (as n → ∞ or u → ∞), up to a suitable normalization.
Convergence of maxima is understood in the weak sense (convergence in distribution). Of
course, convergence of the conditional distribution [X |‖X‖ > u] is also a convergence in
distribution. Interestingly enough, convergence of the maxima is equivalent to convergence
of the conditional distribution of excesses. The main idea of extreme value analysis is to
use the class of possible limits as a model for the law of the maximum over a long period of
interest (the duration of a contract, the next 100 years for a dam, the next 1000 years for a
nuclear plant, . . . ) or for the distribution of ‘large’ values (above a sufficiently high threshold).
Inference in the appropriate model will be performed using the few (say k) largest data from
a dataset of size n. Convergence of the various estimators is generally obtained under the
assumption that n→∞, k = k(n)→∞, but k is a ‘small proportion’ of n, i.e. k = o(n).

Why do we need renormalization ? If F is the cumulative distribution function (c.d.f.) of
X and if the Xi’s are i.i.d., then the c.d.f. for Mn := ∨ni=1Xi is

Fn(x) = P(Mn ≤ x) = P(∀i ≤ n,Xi ≤ x) = F (x)n.

Thus, if we do not ‘normalize’ the maximum, its distribution Fn is such that Fn(x) → 0 as
soon as F (x) < 1 and the limit distribution function (if there is one) is degenerate. Similarly,
the distribution of X, given that ‖X‖ ≥ u ‘escapes’ to infinity.

1.1.3 A CLT for maxima ?

Recall hat the Central Limit Theorem states that, if X has finite second moment, we have∑n
i=1Xi − bn

an

w−→ Z

where w−→ stands for convergence in distribution, with Z a centered Gaussian distribution,
bn = nE(X) and an =

√
n.

In extreme value theory, the focus is on the maximum rather than the mean. The working
hypothesis is the so-called maximum-domain of attraction condition (MDA):
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There exist two sequences (an)n≥0, (bn)n≥0 of real numbers, with an > 0 ∀n, and a non-
degenerate random variable Z, such that∨n

i=1Xi − bn
an

w−→ Z (MDA)

where (Xi)i are i.i.d. random variables distributed as X.

Remark 1.1.1 (‘non-degenerate’). A random variable is called ‘non-degenerate’ if its distri-
bution is not concentrated at a single point. In other terms, it means that its c.d.f. F is such
that ∃x < y ∈ R : F (x) < F (y) < 1.

In terms of distribution functions, the (MDA) is equivalent to the existence of a non-
degenerate distribution function G such that

Fn(anx+ bn) −−−→
n→∞

G(x) (MDA’)

a each point x which is a continuity point of the limit G. If (MDA) (or alternatively (MDA’))
holds, X (or F ) is said to belong to the maximum domain of attraction of Z (or G).

Definition 1.1.2 (Extreme Value Distribution). A non-degenerate distribution function G
is called an extreme value distribution if (MDA’) is satisfied for some distribution function
F and some sequences an > 0, bn.

Some natural questions are

• Under which conditions on F do we have (MDA’) for some c.d.f. G ?

• What are the possible forms of the limit G ?

• How can we choose the sequences an, bn ?

• What is the relation between (MDA) and the convergence of the conditional distribution
of excesses above large thresholds ?

The aim of this chapter (and the next one) is to bring some answers, in the case where X is
a real-valued random variable. The multivariate case will be the subject of the last chapter.
This course does not cover the case where X is a (continuous) stochastic process.

1.2 Intermediate results

1.2.1 Monotone functions and weak convergence

It is a standard fact that convergence in distribution for random variables is the same as
convergence of the associated distribution functions at each continuity point of the limit. In
EVT, it is useful to extend this type of convergence to the whole class of monotone functions,
as follows.
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Definition 1.2.1 (Weak convergence of monotone functions). Let (Hn)n∈N be a family of
monotone functions R → [−∞,∞]. The functions Hn are said to converge weakly, and we
write Hn

w−→ H, if there exists a monotone function H : R→ [−∞,∞] such that

∀x ∈ C(H), Hn(x) −−−→
n→∞

H(x).

where C(H) is the set of continuity points of H, that is

C(H) = {x ∈ R : H(x) ∈ R and H is continuous at x. }

With this definition, if (Xn)n≥0 and X are random variables with associated distribution
functions (Fn)n≥0 and F , then we indeed have

Xn
w−→ X ⇐⇒ Fn

w−→ F as n→∞.

Notations When compositions of functions with affine scalings (or with other simple trans-
formations) are involved, e.g. if we consider functions of the kind x 7→ F (ax + b), we will
usually use the notation ‘ F (a · + b)’ instead. As an example,

Fn(an · + bn) w−→ G, (n→∞)

means
{x 7→ Fn(anx+ bn)} w−→ G (n→∞).

1.2.2 Weak convergence of the inverse

Definition 1.2.2 (Left-continuous inverse). Let H be a non-decreasing, right continuous
function R→ [−∞,∞]. The left-continuous inverse of H is the function

H← : R→ [−∞,∞]
y 7→ H←(y) = inf{x ∈ R : H(x) ≥ y},

with the convention that inf R = −∞ and inf ∅ = +∞.

Remark 1.2.3. It is left as an exercise to verify that H← is indeed continuous from the left.

Lemma 1.2.4 (Order relations)
Let H : R → [−∞,∞] be a non-decreasing, right-continuous function, and let x ∈ R and
y ∈ R. Define Ay = {t ∈ R : H(t) ≥ y}.
Then Ay is a closed set, and

H(x) ≥ y ⇐⇒ x ≥ H←(y). (1.2)

Proof. Notice first that Ay must be either the empty set, or R, or of the form (u,∞) or [u,∞),
for some u ∈ R.

1. If Ay = R, Ay is obviously closed, and H←(y) = −∞. Then both sides of (1.2) hold for
any x ∈ R.

2. if A(y) = ∅, Ay is closed again, and H←(y) = +∞. Also, ∀t ∈ R, H(t) < y, thus neither
side of (1.2) can be true.
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3. Otherwise, consider a sequence un ↓ u. Each un belongs to Ay, thus H(un) ≥ y. Since
H is continuous from the right, H(u) ≥ y too, whence u ∈ Ay. Thus Ay = [u,∞)
is closed in R. By definition of H←, we have H←(y) = inf Ay = u. Finally, (1.2) is
obtained by noticing that

H(x) ≥ y ⇐⇒ x ∈ Ay ⇐⇒ x ∈ [H←(y),∞) ⇐⇒ x ≥ H←(y)

�

Lemma 1.2.5 (Weak convergence of the inverse)
Let (Hn)n∈N and H be monotone functions R→ [−∞,∞]. If

Hn
w−→ H as n→∞,

then also
H←n

w−→ H← as n→∞.

Conversely, if we assume in addition that

(i) For all n ∈ N, infRHn ≥ infRH,

(ii) For all x ∈ R such that H(x) <∞, H(x) < supt:H(t)<∞H(t),

Then weak convergence of H←n to H← implies weak convergence of Hn to H.

The proof is deferred to Appendix A.2 Notice that the two conditions (i) and (ii) for the
converse satement of Lemma 1.2.5 may seem intricate, but they are indeed satisfied in the
particular case where we need it (i.e. in the proof of Theorem 1.4.1).

1.2.3 Convergence to types

The limiting form in (MDA’) will be obtained ‘up to rescaling’, in the sense defined below.

Definition 1.2.6 (Functions of the same type). to functions U, V : R→ [−∞,∞] are of the
same type if ∃A,B ∈ R, A > 0, such that

∀x ∈ R, V (x) = U(Ax+B).

The interesting fact about equality in type is that, if (MDA) or (MDA’) holds for two
different sequences, then the limits must be of the same type and the tails of the two sequences
must be linked in the same way, as made precise below.

Lemma 1.2.7 (Convergence to types, Khintchine)
Let (Fn)n, U be cumulative distribution functions, U being non-degenerate. Let an > 0 and
bn (n ∈ N) be two sequences of real numbers, such that

Fn( an · + bn ) w−→ U. (1.3)

Let ãn > 0, b̃n(n ∈ N) be two other sequences. Then, the following are equivalent:

(i) There exists another non-degenerate c.d.f. V such that

Fn(ãn · + b̃n) w−→ V

8



(ii) ∃A > 0, B ∈ R such that

ãn
an
−−−→
n→∞

A ; b̃n − bn
an

−−−→
n→∞

B.

Also, if (i) or (ii) hold, then U and V are of the same type, namely

V ( · ) = U(A · + b) (x ∈ R). (1.4)

Proof.
1. (i) ⇒ (ii) and (1.4):
Assume that (i) holds. Using Lemma 1.2.5, weak convergences in (i) and (1.3) may be
inverted, so that

F←n − bn
an

w−→ U← and F←n − b̃n
ãn

w−→ V←

Non-degeneracy allows to pick y1 < y2 ∈ C(U←) ∩ C(V←) such that U←(y1) < U←(y2) and
V←(y1) < V←(y2). Thus F←n (yi)−bn

an

w−→ U←(yi), i = 1, 2. By substraction,

F←n (y2)− F←n (y1)
an

w−→ U←(y2)− U←(y1).

In the same way, we have

F←n (y2)− F←n (y1)
ãn

w−→ V←(y2)− V←(y1).

Dividing the two (which is possible since the limits are nonzero) yields

ãn
an
−−−→
n→∞

A := U←(y2)− U←(y1)
V←(y2)− V←(y1) > 0.

Also for y ∈ C(U←) ∩ C(V←),

F←n (y)− bn
an

−AF
←
n (y)− b̃n

ãn

w−→ U←(y)−AV←(y).

However,
F←n (y)− bn

an
−AF

←
n (y)− b̃n

ãn
= F←n (y)− bn

an
−Aan

ãn

F←n (y)− b̃n
an

∼n→∞
F←n (y)− bn

an
− F←n (y)− b̃n

an

= b̃n − bn
an

whence b̃n−bn
an
→ B := U←(y)−AV←(y); and (ii) is proved.

Another consequence is that the function y 7→ U←(y)−AV←(y) is identically equal to B
on C(V←) ∩ C(U←), so that V←(y) = U←(y)−B

A = U [A · +B]←. By continuity from the left
this identity holds everywhere on R. We obtain

V← =
[
U(A · +B)

]←
. (1.5)
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In order to conclude that V = U(A · +B), we need to show that, for two non decreasing
functions G1, G2 such that G←1 = G←2 , it holds that G1 = G2. To see this, write for x ∈ R,

G1(x) = sup{y : G1(x) ≥ y}
= sup{y : x ≥ G←1 (y)} from Lemma 1.2.4
= sup{y : x ≥ G←2 (y)}
= G2(x).

2. (ii)⇒ (i) and (1.4): Put V (x) = U(Ax+B), x ∈ R. Then V←(y) = A−1(U←(y)−B), y ∈
R. Reversing the argument leading to (1.5), we obtain, for y ∈ C(U←) = C(V←),

Fn(ãn · + b̃n)←(y) = F←n (y)− b̃n
ãn

= an
ãn

(
F←n (y)− bn

an
− (b̃n − bn)

an

)
−−−→
n→∞

A−1(U←(y)−B) = V←(y). (1.6)

We have shown that Fn(ãn · + b̃n)← w−→ V←, which implies, by Lemma 1.2.5, that
Fn(ãn · + b̃n) w−→ V , which is (i).

Since we have already proved that (i) forces V (x) = U(Ax+B), the proof is complete. �

1.3 ‘Fundamental theorem’ of EVT: Limit laws for maxima

1.3.1 Max-stable distributions

Getting back to our analogy with the CLT, remind that the limiting distribution N of rescaled
sums (a Gaussian distribution) is stable, that is, if Xi

i.i.d.∼ N , then for n ∈ N, ∃An, Bn:∑n

1 Xi−Bn
An

d= X1. Here and thereafter, ‘ d= ’ means equality in distribution.
Replacing the sum-operator by the max-operator, one may reasonably expect an analogous

property for extreme value distributions (i.e. the limit distributions G in (MDA’)). It is indeed
the case, if one consider max-stability instead of stability, as defined below.

Definition 1.3.1 (Max-stable distribution). A c.d.f. G is called max-stable if there exist
functions α(t) > 0, β(t) (t > 0) such that

∀t > 0, ∀x ∈ R, Gt(α(t)x+ β(t)) = G(x).

In particular, if (Zi)i=1,...,n
i.i.d.∼ G, then ∨ni=1 Zi ∼ Gn, so that, letting αn = α(n), βn =

β(n), ∨
i=1:n Zi − βn

αn

d= Z1.

Proposition 1.3.2 (Max-stable and extreme value distributions are the same)
Let G be a non-degenerate cumulative distribution function. Then G is an extreme value
distribution if and only if it is max-stable.

Proof. If G is max-stable, it is obviously an extreme value distribution: (MDA’) holds with
an = α(n), bn = β(n).
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Conversely, assume that (MDA’) holds for some F and sequences an > 0, bn. Fix t > 0.
On the one hand, for x ∈ C(G),

F bntc(abntcx+ bbntc) −−−→n→∞
G(x). (1.7)

Also,

F bntc(anx+ bn) = (Fn(anx+ bn))
bntc
n −−−→

n→∞
Gt(x). (1.8)

Using Khintchine Lemma 1.2.7, with Fn = Fnt, U = Gt, V = G (note that Gt is necessarily a
non-degenerate c.d.f. if G is so), there exist two real numbers α(t) > 0, β(t), such that

abntc
an

−−−→
n→∞

α(t) ;
bbntc − bn

an
−−−→
n→∞

β(t) (1.9)

and
G(x) = Gt(α(t)x+ β(t)), x ∈ R.

�

Lemma 1.3.3
The functions t 7→ α(t) > 0 and t 7→ β(t) in the definition of a max-stable distribution are
uniquely determined by G, and are Borel-measurable.

Proof.
(1) To show that α and β are unique, it is enough to show that if a non degenerate c.d.f. G
satisfies

G(x) = G(ax+ b), x ∈ R,

for some a > 0, b ∈ R, then necessarily a = 1, b = 0. Define T : x 7→ ax+ b. The assumption
rewrites G = G ◦ T . Thus, G = G ◦ Tn, for n ∈ N. Thus, for x ∈ R, G(x) = limnG(Tnx). It
is then easy to see (exercise 1.1) that if a 6= 1, G must be degenerate, and then that b must
be null.
(2) The argument leading to (1.9) in the proof of Proposition 1.3.2, with F replaced with G,
shows that for t > 0,

α(bntc)
α(n) −−−→

n→∞
α(t) ; β(bntc)− β(n)

α(n) −−−→
n→∞

β(t) (1.10)

Now the functions t 7→ α(n)
α(bntc) and t 7→ β(n)−β(bntc)

α(bntc) are certainly measurable (they are piece-
wise constant). Since the pointwise limits of measurable functions are measurable, α and β
are measurable. �

Exercise 1.1:
Complete the proof of Lemma 1.3.3 (1): use the fact that for x ∈ R, the sequence (Tnx)n is
arithmetico-geometric, so that if a 6= 1, limn T

nx is either infinite, or a fixed point.

The next paragraph is the core of this chapter
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1.3.2 Characterizing max-stable distribution

Before stating the result, notice that characterizing max-stable distributions is the same
as characterizing extreme value distributions (the possible limits in (MDA’), according to
Proposition 1.3.2.

Theorem 1.3.4 (Extreme value theorem (Fisher & Tipett 1928, Gnedenko 1943))
If G is a max-stable distribution, G is of one of the three types

(i) Fréchet : Φα(x) =
{
e−x

(−α) (x > 0)
0 (x ≤ 0).

,

With α > 0 ;

(ii) Weibull : Ψα(x) =
{
e−(−x)(−α) (x < 0)
1 (x ≥ 0).

,

With α < 0;

(iii) Gumbel : Λ(x) = e−e
−x, x ∈ R.

It is convenient to use a common parametrization for the three types, as in the following
statement (the verification is left to the reader):

Corollary 1.3.5
If G is a max-stable distribution, then ∃µ ∈ R, σ > 0, γ ∈ R, such that

G(x) = Gµ,σ,γ(x) := exp
[
−
(

1 + γ

(
x− µ
σ

))−1/γ

+

]
, (1.11)

where y+ = max(y, 0), and where the above expression for γ = 0 is understood as its limit as
γ → 0, that is

G(x) = exp
[
−e−

x−µ
σ

]
.

Also,

• γ = 0 if and only if G is of Gumbel type,

• γ > 0 if and only if G is of Fréchet type Φα with α = 1/γ,

• γ < 0 if and only if G is of Weibull type Ψα with α = 1/γ.

Before some examples and the proof, Figures 1.2, 1.3 and 1.4 illustrate the three types.
The first two figures explain why the distribution functions in the Fréchet domain of attrac-
tion are9+ usually referred to as heavy tailed, whereas those in the Gumbel domain are called
light tailed (There is no agreement about the Weibull domain. Some authors use ‘light tails’,
some others use ‘bounded tails’). Also, Figure 1.4 indicates that a series of i.i.d. observations
of heavy tailed variables is likely to contain more ‘extreme’ events than a series of light tailed
variables: The Fréchet type corresponds to situation where extreme events occur ‘quite often’.
Typical examples include river discharge data, rainfall (in some cases), financial return times
series, insurance claims.
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Figure 1.2: Density plot for the three extremal types, respectively (γ = 1, µ = 1, σ = 1),
(γ = −1, µ = −1, σ = 1), (γ = 0, µ = 0, σ = 1); compared with the Gaussian density with
same mean and variance as the Gumbel one. The right panel is a zoom on the tail.
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Figure 1.3: Survival function 1− F (x) for the three extremal types, respectively (γ = 1, µ =
1, σ = 1), (γ = −1, µ = −1, σ = 1), (γ = 0, µ = 0, σ = 1); compared with the Gaussian
survival function with same mean and variance as the Gumbel one.
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Example 1.1 (Exponential variable, Gumbel domain):
Let F be an exponential distribution,

F (x) = 1x>0
(
1− e−λx

)
.

In order to ‘guess’ possible norming constant, we shall proceed with heuristic computations, and
prove in a second step that the sequences are indeed suitable. We may assume that for x > 0,
anx+ bn −−−→

n→∞
∞ (otherwise„ Fn(anx+ bn) −−−→

n→∞
0. Thus

Fn(anx+ bn) = 1anx+bn>0 (1− e−λ(anx+bn))n

= 1anx+bn>0 exp
(
n log(1− e−λanx+λbn)

)
≈ 1anx+bn>0 exp

(
ne−λanx−λbn

)
= 1anx+bn>0 exp

(
e−λanx+logn−λbn

)
If we set an = 1, bn = λ−1 logn, the latter expression does converge to G(x) = exp

(
−e−λx

)
,

which is of Gumbel type. Now we only need to check that the (MDA’) condition is indeed satisfied
with these sequences: for x ∈ R,

Fn(anx+ bn) = 1x+logn/λ>0(1− e−λ(x+log(n)/λ))n

= exp
(
n log(1− e−λx−log(n)))

)
(n ≥ e−λx)

= exp
(
n log(1− e−λx

n
)
)

= exp
(
n

(
−e
−λx

n
+ o(1/n)

))
−−−→
n→∞

exp
(
−e−λx

)
.

Exercise 1.2 (Weibull domain):
Check that the standard uniform variable is in the Weibull domain of attraction.
Hint: consider an = 1/n, bn = 1− 1/n. What is the corresponding limit distribution G ?

Exercise 1.3 (Fréchet domain of attraction ):
Show that the Pareto distribution F (x) = 1x>u

(
1− uα

xα

)
, where α > 0, u > 0, belongs to the

Fréchet max-domain of attraction. Exhibit suitable sequences an and bn and explicit the limit G.

Proof of Theorem 1.3.4. Our proof mainly follows Resnick (1987).
Let α > 0, β the norming functions such that for t > 0, x ∈ R,

G(x) = Gt(α(t)x+ β(t)). (1.12)

The key to the proof is to show that α and β satisfy a particular functional equation (the
Hamel equation, see below), which solutions are known, and then to obtain the expression of
G using (1.12) again.

First, for t, s > 0, x ∈ R,

G1/(ts)(x) = G(α(ts)x+ β(ts)).
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but also

G1/(ts)(x) = [G1/s(x)]1/t = G1/t(α(s)x+ β(s)) = G(α(t)α(s)x+ α(t)β(s) + β(t)).

By Lemma 1.3.3, this implies that for t, s > 0,

α(ts) = α(t)α(s) (1.13)
β(ts) = α(t)β(s) + β(t) = α(s)β(t) + β(s), (1.14)

where the last equality follows by interchanging the roles of s and t.
One recognizes in (1.13) the Hamel equation. It is easy to prove that the only continuous

solutions of this equation are of the form f(t) = tγ , for some γ ∈ R (this is obvious for
log t ∈ N, then by inversion also for log t ∈ Q, and continuity achieves the proof for t ∈ R.) In
fact, it may be shown (See Hahn and Rosenthal (1948), pp. 116-118 ) that the only measurable
solutions are also of this kind. Now, by 1.3.3, we know that α and β are measurable. Whence,
∃γ ∈ R:

∀t > 0, α(t) = tγ

We distinguish three cases according to the sign of γ (to wit, γ will be the extreme value
index appearing in (1.11))

case 1: γ = 0 In this case α ≡ 1. Thus (1.14) yields β(ts) = β(t) + β(s), s, t > 0. This
is again the Hamel equation (up to log-scaling, that is: eβ satisfies (1.13)). Consequently, for
some σ ∈ R, eβ(t) = tσ (to wit, σ will be the scale parameter in (1.11)), that is

β(t) = σ log t, s, t > 0. (1.15)

Going back to (1.12), we have

G1/t(x) = G(x+ σ log t), x ∈ R, t > 0.

For x such that 0 < G(x) < 1 (which exists by non-degeneracy of G), the function t 7→ G1/t(x)
is strictly increasing on ]1,∞[, thus t 7→ σ log tmust be strictly increasing , which means σ > 0.
Then (1.12) with x = 0 yields ∀t > 0, G(σ log t) = G(0)1/t, i.e., with u = σ log t,

∀u ∈ R, G(u) = (G(0))e−u/σ

necessarily , 0 < G(0) < 1, otherwise G would be constant on R. Thus

∀u ∈ R, G(u) = exp
[
−e−u/σ(− logG(0))

]
= exp

[
−e−(u−µ)/σ

]
where µ is chosen so that eµ/σ = − logG(0), i.e. µ = σ log(− logG(0)). Thus G is of Gumbel
type (G(x) = Λ((x− µ)/σ).

case 2 : γ 6= 0 In this case, identity (1.14) implies, for s, t > 0,

β(t)(sγ − 1) = β(s)(tγ − 1).

Thus t 7→ β(t)/(tγ − 1) (for t 6= 1) is constant, i.e.

∃C ∈ R : β(t) = C(tγ − 1) (t 6= 1).
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Going back to (1.12), we obtain, for x ∈ R,

G1/t(x) = G(tγx+ C(tγ − 1)) = G[tγ(x+ C)− C],

so that G1/t(x− C) = G[tγx− C]. Whence, putting Γ(x) = G(x+ C),

Γ1/t(x) = Γ(tγx), t > 0, x ∈ R. (1.16)

Note that this implies (setting x = 0 in the above equation) that Γ(0) ∈ {0, 1}. Also, Γ(1) > 0,
otherwise Γ would be identically equal to 0. To conclude, it is enough to show that Γ if of
one of the two first types (Fréchet or Gumbel). This will depend on the sign of γ.

1. Case γ > 0 Let us prove that we must have Γ(1) < 1: otherwise we would have for t > 0,
1 = Γ(tγ), so that Γ(0) = limt→0 Γ(tγ) = 1. But then ∃x < 0 such that 0 < Γ(x) < 1,
and for such an x the function t 7→ Γ1/t(x) is strictly increasing. However, Γ1/t(x) =
Γ(tγx), which is a non increasing function of t, a contradiction. Thus 0 < Γ(1) < 1.
We may thus rewrite (1.16) as (with u = tγ , and x = 1)

Γ(u) = Γ(1)u−1/γ = exp
[
−u−1/γ(− log Γ(1))

]
= exp

[
−(u/σ)−1/γ

]
, u > 0. (1.17)

with σ = (− log Γ(1))γ . Thus G(x) = Γ(x+ C) = Φ1/γ((x+ C)/σ (Fréchet type).

2. Case γ < 0: with a similar argument, one obtains that G is of the Weibull type.

�

Remark 1.3.6 (Choice of norming sequences and parameters of the limit). If F satisfies
a MDA condition for some sequences (an, bn) and if the limit is of the form Gµ,σ,γ(x) as
in (1.11), then it is always possible to choose other sequences a′n, b′n such that

Fn(a′nx+ b′n) w−→ G0,1,γ

where G0,1,γ(x) = exp
(
− (1 + γx)−1/γ

+

)
. Indeed, one may choose a′n = σan, b

′
n = bn + µan,

and use the convergence to type lemma 1.2.7.

Remark 1.3.7 (Continuity set of the limit). Since the max-stable distributions are continuous
on R (this is obvious from their parametric form (1.11)), if F is in the domain of attraction of
G, then convergence must occur for all x ∈ R. In other words, in this case, weak convergence
is the same as pointwise convergence on R.

1.4 Equivalent formulations in terms of excesses above thresh-
olds

Our goal is to show that the condition (MDA’) is equivalent to the convergence of the condi-
tional distribution of excesses above t, in the following sense

Theorem 1.4.1 (Balkema, de Haan, 1974)
The following statements are equivalent

(i) ∃an > 0, bn: for all x ∈ R, Fn(anx+ bn) −−−→
n→∞

e−(1+γx)−1/γ
+
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(ii) ∃σ : (0,∞)→ (0,∞) such that, for each x such that 1 + γx > 0,

P
(
X − t
σ(t) > x | X > t

)
−−−→
t→x?

− logG(x) = (1 + γx)−1/γ , (1.18)

where x? = F←(1) is the right end-point of the support of F ; which means in terms of
distribution functions that

1− F (t+ σ(t)x)
1− F (t) −−−→

t↗x?
(1 + γx)−1/γ

+ . (1.19)

In such a case, σ may be chosen as σ(t) = a
(

1
1−F (t)

)
.

For the proof, we will use a series of equivalent characterization of the (MDA’) condition
in terms of survival functions 1− F and inverse functions.

Lemma 1.4.2 (Convergence of survival functions)
The (MDA’) condition is satisfied if and only if

n(1− F (an · + bn)) w−→ − logG.

Proof. By continuity of the logarithm function and its inverse,

(MDA’) ⇐⇒ n logF (an · + bn) w−→ logG.

Now on both sides, for x such that logG(x) is finite, F (anx+ bn) must converge to 1, thus

logF (anx+ bn) = log(1− (1− F (anx+ bn))) ∼n→∞ − [1− F (anx+ bn)] ,

whence the result. �

An immediate consequence is that (MDA’) is equivalent to

1
n(1− F (an · + bn))

w−→ −1
logG. (1.20)

Let U =
(

1
1−F

)←
(i.e. U(y) = F←(1− 1/y), y > 0 ) and Γ = −1

logG . From Lemma 1.2.5.

(1.20) ⇐⇒ U(n · )− bn
an

w−→ Γ← as n→∞ (1.21)

Define a(t) = abtc, b(t) = bbtc, t > 0. The next lemma extends the above equality to all
t > 0.

Lemma 1.4.3
The (MDA’) condition is satisfied if and only if

U(t · )− b(t)
a(t)

w−→ Γ←, as t→∞ (1.22)
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Proof. We only need to show that (MDA’) implies (1.22). Indeed, the converse is immediate
from (1.21).

Let y ∈ C(Γ←). By monotonicity of U ,

U(btcy)− b(t)
a(t) ≤ U(ty)− b(t)

a(t) ≤ U((btc+ 1)y)− b(t)
a(t) (1.23)

Fix ε >, and choose y′ > y such that Γ←(y′) < Γ←(y) + ε. Then for some t0 large enough
and t > t0, (btc + 1)y < btcy′. Thus for large t, U((btc+1)y)−b(t)

a(t) ≤ U(btcy′)−b(t)
a(t) → Γ←(y′) ≤

Γ←(y) + ε. Since the limit of the left-hand side of (1.23) is Γ←(y), and since ε is arbitrary,
the proof is complete. �

Remark 1.4.4 (Continuity points of Γ←). Notice that weak convergence in (1.21) and (1.22)
is equivalent to pointwise convergence for y > 0. Indeed, Γ = −1/ logG induces a bijection
(it is strictly increasing and continuous) from the interior of its support onto (0,∞). Thus,
its left inverse is a real inverse and is also continuous on (0,∞).

We may now proceed with the proof of the main result of this section.

Proof of Theorem 1.4.1. We prove that (MDA’) implies (1.19); the proof of the converse is
similar and is left as an exercise. Put σ(t) = a( 1

1−F (t)) It is easily verified that the left-
continuous inverse of the function

x 7→ 1− F (t)
1− F (t+ xσ(t))

is
y 7→

U( y
1−F (t))− t
σ(t) .

Using Lemma 1.2.5 and Remark 1.4.4, it is thus enough to show that

∀y ≥ 1,
U
(

y
1−F (t)

)
− t

σ(t) −−−→
t↗x?

yγ − 1
γ

:= Γ←(y). (1.24)

However, using (1.22) from Lemma 1.4.3 for y = 1, we have

U(T )− b(T )
a(T ) −−−−→

T→∞
Γ←(1) = 1γ − 1

γ
= 0

But also for y > 0,
U(Ty)− b(T )

a(T ) −−−−→
T→∞

yγ − 1
γ

.

By substraction,
U(Ty)− U(T )

a(T ) −−−−→
T→∞

yγ − 1
γ

. (1.25)

N.B: If we could replace T with 1/(1 − F (t)), and t with U(T ) in (1.25), we would ob-
tain (1.24) and the proof would be complete. This is the idea behind the remainder of the
proof.
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It is easy to show that if f is a right-continuous, non decreasing function, for ε > 0, we
have f←(f(t)) ≤ t ≤ f←(f(t) + ε). Thus, for y > 0, 0 < t < x?,

0 ≤
t− U

(
1

1−F (t)

)
a
(

1
1−F (t)

) ≤
U
(

1
1−F (t) + ε

)
− U

(
1

1−F (t)

)
a
(

1
1−F (t)

)
≤
U
(

1
1−F (t)(1 + ε)

)
− U

(
1

1−F (t)

)
a
(

1
1−F (t)

)
−−−→
t↗x?

Γ←(1 + ε) = (1 + ε)γ − 1
γ

, (1.26)

where the last limit is obtained from (1.25) and the fact that 1/(1 − F (t)) −−−→
t↗x?

+∞
(indeed, in case x? < ∞, F cannot have a jump at x?, see e.g. Leadbetter et al. (2012),
Corollary 1.5.2). Since ε is arbitrary small, we conclude that

t− U
(

1
1−F (t)

)
a
(

1
1−F (t)

) −−−→
t↗x?

0. (1.27)

As a consequence, for y > 0,

U
(

y
1−F (t)

)
− t

σ(t) ∼
t↗x?

U
(

y
1−F (t)

)
− U

(
1

1−F (t)

)
σ(t)

−−−→
t↗x?

yγ − 1
γ

,

where the last limit is obtained from (1.25) as in (1.26). This shows (1.24) and completes the
proof. �

1.5 Case studies
The common idea between most statistical applications is to use the limits in the different
convergence results presented in the above sections as models for the extremal data, where
‘extremal’ can be understood either as ‘a maximum over a long period’ or ‘an excess above
a high threshold’. A variant of the ‘excess’ view is to consider the point process of excesses
above thresholds and use a Poisson approximation. This will be treated in the next chapter.

1.5.1 Annual maximum of the sea level

In order to fix a reasonable premium for real estate insurance, an insurance company is
interested to potential damage induced from floods in a city close to the sea level. A dike
does protect the city as long as the sea level is below some fixed level u0. The question is :
what is the probability of a flood occurring during a given year ? It may be shown that under
weak temporal dependence (with mixing conditions), the extreme value theorem still holds.
Thus, one may use the approximation for the annual maximum Mn (n = 365):

Mn − bn
an

d≈ Z
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where Z ∼ G is a standard EV distribution, G(x) = e−(1+γx)−1/γ , and an, bn are unknown
parameters. In other words, dropping the index n (which is fixed to 365), and setting µ = bn,
σ = an the assumption is

P(M ≤ x) = P((M − µ)/σ ≤ (x− µ)/σ) ' G((x− µ)/σ) = exp
[
−
(

1 + γ
x− µ
σ

)−1/γ

+

]
.

Thus, we assume thatM ∼ Gµ,σ,γ for some unknown (µ, σ, γ); in other words the statistical
model for M is the parametric model

P = {Gµ,σ,γ : µ ∈ R, σ > 0, γ ∈ R.}

A widely used approach for inference of the is the maximum likelihood approach. It
is implemented in numerous R models such as ismev, extRemes, evd, fExtremes, EVIM,
Xtremes, HYFRAN, EXTREMES . . . In our examples, we mainly use evd and ismev. Notice
that it is also possible to resort to probability weighted moment methods. The dataset
portpirie is part of these two packages. It contains annual maxima of the sea level at Port
Pirie (Australia) (Figure 1.5), where a disastrous flood occur ed in 1934 (Figure 1.6).
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Figure 1.5: portpirie data in package evd: Annual maxima of the sea level at Port Pirie,
1923-1987
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Figure 1.6: 1934 flood at Port Pirie, Australia

The next few lines of code show how to proceed with MLE estimation and obtain diagnostic
plots (Figure 1.5.1).

> library(evd)
> fitgevpirie <- fgev(portpirie)
> fitgevpirie

Call: fgev(x = portpirie)
Deviance: -8.678117

Estimates
loc scale shape

3.87475 0.19805 -0.05012

Standard Errors
loc scale shape

0.02793 0.02025 0.09826

Optimization Information
Convergence: successful
Function Evaluations: 30
Gradient Evaluations: 8

> plot(fitgevpirie)

The probability of an excess of any threshold u may now reasonably be estimated by a
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Figure 1.7: Graphical diagnostic plot for the GEV model fit on the Port Pirie dataset, as
provided by R package evd.

plugin method,
p̂ = 1−Gµ̂,σ̂,γ̂(u).

If the goal was to estimate a high quantile, say zp = F←n (1−p), where Fn is the distribution
of the annual maximum, one could again use plugin estimates and set

ẑp = G←µ̂,σ̂,γ̂(1− p) =


µ̂+ σ̂

γ̂

[( −1
log(1− p)

)γ
− 1

]
(γ 6= 0),

µ+ σ log
( −1

log(1− p)

)
(γ = 0).

In this introductory course, will not get into details about the consistency of these estimators.
However, one may notice that, on this example, the maximum likelihood estimate is close to
0, compared to its estimated standard deviation. One may thus wonder if the Gumbel sub-
model (γ = 0) provides a reasonable fit (this will impact in particular high quantile estimates,
since the Gumbel distribution has unbounded support, contrary to the Weibull).

A simple visual diagnostic for this hypothesis is the following: The inverse of G(x) =
e−e

−x−µσ is
G←(y) = σ [− log(− log(y))] + µ.
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On the other hand, the empirical quantile of order y = i/n (i = 1, . . . , n) is

Ĝ←(i/n) = X(i)

(the ith order statistic)
If the Gumbel model is appropriate, we should have

X(i) ≈ σ − log(− log( i

n+ 1)) + µ,

for some σ > 0 and some µ ∈ R. Thus the graph of the points (− log(− log( i
n+1));X(i))

(the so-called Gumbel plot) should be approximately affine. The graph obtained with the
Port Pirie data is shown in Figure 1.5.1. It ‘confirms’ the null hypothesis of a Gumbel type
distribution.
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Figure 1.8: Gumbel plot for the Port Pirie dataset.

1.5.2 Method of block maxima

This is just a generalization of the above analysis. Given a series of n independent (or ‘weakly’
dependent), say daily, data Xi, i ≤ n, the analyst may divide the data set into m block of size
k = n/m each (say k = 30 to work with monthly maxima), and assume that the maximum
over each block

Mi =
n∨

r=ki+1
Xr, i = 1, . . . ,m

approximately follows a GEV distribution, which parameters remain to be estimated. The
rest follows the line of the Port Pirie example. Figure 1.5.2 illustrates this procedure.
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Figure 1.9: Work-flow for the block-maxima method.

1.5.3 Peaks-Over-Threshold

The ‘Peaks-Over-Threshold’ (POT) methods consider excesses over a fixed, relatively high
threshold, instead of maxima. Consider the equivalent condition of (MDA) in terms of ex-
cesses above thresholds (1.18) (Theorem 1.4.1),

1− F (t+ σ(t) · )
1− F (t) −−−→

t↗x?
(1 + γ · )−1/γ

+ .

For fixed, large enough t (but not too large, in order to observe ‘some’ data above t), we
may use the approximation

1− F (t+ σx)
1− F (t) ≈ (1 + γx)−1/γ

+ .

In other terms, if X ∼ F ,

P ((X − t)/σ > x | X > t) ≈ (1 + γx)−1/γ
+ .

or, by a change of variables

P (X − t > x | X > t) ≈
(

1 + γ
x

σ

)−1/γ
, x > 0

for some unknown parameters (σ, γ).
Consider an i.i.d. sample Xi, i = 1, . . . n ∼ F . Estimation of the parameters (σ, γ) may be

done using the excesses above t,

{Xi : Xi > t, i = 1, . . . , n},

as illustrated in Figure 1.5.3 .
Let (i(1), . . . , i(m)) be the indices corresponding to an excess. Now the assumption for

further inference is
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Figure 1.10: Work-flow for the POT procedure above a high threshold t: the raw data are
the black dots, the ‘excess’ data Xi(r) used for inference correspond to the blue lines.

P
(
Xi(r) > x

)
≈
(

1 + γ
x− t
σ

)−1/γ

+
, x > t. (1.28)

i.e. Xi(r) ∼ Ht,σ,ξ(y), where Hµ,σ,γ is the Generalized Pareto distribution (GPD) with
parameters µ ∈ R, σ > 0, γ ∈ R,

Hµ,σ,γ(x) = 1−
(

1 + γ
x− µ
σ

)−1/γ

+
, x > µ.

Notice that in (1.28), the location parameter is automatically µ = t. Also, the above quantity
for γ = 0 should be interpreted as its limit as γ → 0,

Hµ,σ,0(x) = 1− e−
x−µ
σ (x > µ).

The GPD model for the excesses (Xi(r), r = 1, . . .m) is thus

P = {Ht,σ,γ : σ > 0, γ ∈ R}.

Again, the packages mentioned in the Port Pirie example provide routines for maximum
likelihood estimation in the GPD model. In practice, one may use the estimated parameters
in a plugin method in order to predict the probability of an excess above a high threshold
t′ > t (even though no data has ever been observed above t′).
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Chapter 2

Regular variation and tail measures

2.1 Regular variation of a real function
Definition 2.1.1 (Regular variation). A function U : R+ → R+ is regularly varying (RV) if
∃ρ ∈ R such that

∀x > 0, lim
t→∞

U(tx)
U(t) = xρ.

The parameter ρ is called the regular variation index. We write ‘U ∈ RV (ρ)’, meaning U is
RV with regular variation index ρ. If ρ = 0, U is called slowly varying.

Example 2.1 (Fréchet survival function):
U(x) = 1− Φα(x) = 1− e−x−α is RV (−α).

Example 2.2 (Generalized Pareto):
U(x) = (1 + γx)−1/γ is RV (−1/γ).

Example 2.3 (Canonical: Pareto tail):
U(x) = x−α, x > 1, is RV (−α).

Example 2.4 (slow variation):
U(x) = log(1 + x) is slowly varying. If limt→∞ f(t) = ` ∈ R, then f is slowly varying, the
converse is false.

Remark 2.1.2. Remind from last chapter that the max-domain of attraction condition (MDA)
is equivalent to condition (1.19) concerning the tail regularity, which is

1− F (t+ σ(t)x)
1− F (t) −−−→

t↗x?
(1 + γx)−1/γ

+ .

This ‘resembles’ a RV condition. It will be shown that it is equivalent to regular variation of
U = 1− F in the case γ > 0.

Remark 2.1.3 (Equivalent formulation of RV). U is RV (ρ) ⇐⇒ ∃L a slowly varying
function such that U(x) = xρL(x).
(Proof: exercise)

Proposition 2.1.4 (A sufficient condition for RV)
If ∃h : R+∗ → R+∗, measurable such that ∀x > 0, limt→∞

U(tx)
U(t) = h(x) then U is RV.
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Proof. (sketch of): Show that such h satisfies the Hamel equation h(xy) = h(x)h(y). �

Proposition 2.1.5 (Another sufficient condition)
If U is non decreasing and if ∃(an)n≥0 ∈ R s.t. an → +∞, and a function h : R+∗ → R+∗

such that ∀x > 0, limn nU(anx) = h(x) then U is RV.

Proof. Put n(t) = inf{n ≥ 0 : an ≥ t}. Then

U(an(t)−1x)
U(an(t))

≤ U(tx)
U(t) ≤

U(an(t)x)
U(an(t)−1) ,

and both sides of the sandwich converge to h(x). Using Proposition 2.1.4 concludes. �

Exercise 2.1 (Reciprocal for Proposition 2.1.5):
Let F be a cdf and asssume that (1−F ) ∈ RV (−α), for some α < 0. Define U(t) = 1/(1−F )(t)
and let an = U←(n). Show that

n(1− F (anx))→ x−α, for x > 0, as t→∞. (2.1)

hint: consider the ratio 1−F (anx)
1−F (an) , and derive the limit of U(U←(n))/n.

Exercise 2.2 (regular variation and Fréchet domain of attraction):
Let F be a c.d.f. The goal is to show the following: ‘(1−F ) is regularly varying with index −α < 0
if and only if

∃(an)n≥0 > 0 : Fn(an · )→ Φα, where Φα(x) = e−x
−α
, x > 0, (2.2)

and to characterize the possible sequences an, up to tail equivalence.

1. Show that (2.2)⇒ ∀x > 0, F (x) < 1, F (anx)→ 1, and an →∞.

2. Prove that (2.2)⇒ 1− F is RV (−α).

3. Switching to the inverse function, show that (2.2)⇒ an ∼
(

1
1−F

)←
(n) as n→∞.

4. Check that if (1− F ) n(1− F (anx))→ x−α for some sequence an, then (2.2) holds true.
Check that convergence also holds for any sequence ãn ∼ an. Conclude.

2.2 Karamata theorem and consequences
Idea: For integration purposes (of the kind

∫∞
x U(t)dt or

∫ x
0 U(t)dt), If U is RV (ρ) then it

behaves as t 7→ tρ would, as x→∞. More precisely,

• if U(t) = tρ and ρ < −1,
∫∞
x U(t)dt = −(ρ+ 1)−1xρ+1 = −(ρ+ 1)−1xU(x).

• if U(t) = tρ and ρ > −1,
∫ x

0 U(t)dt = (ρ+ 1)−1xρ+1 = (ρ+ 1)−1xU(x).

Karamata’s theorem says that the same is true as x→∞ when U ∈ RV (ρ).

Theorem 2.2.1 (Karamata)
Let U : R+ 7→ R+ be a RV (ρ) function, s.t.

∫ x
0 U <∞∀x > 0.
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1. If ρ ≥ −1 then x 7→
∫ x
0 U is RV (ρ+ 1) and

lim
x→∞

xU(x)∫ x
0 U

= ρ+ 1. (2.3)

Conversely if (2.3) then U ∈ RV (ρ).

2. If ρ < −1 of if ρ = 1 and
∫∞

1 U <∞ then x 7→
∫∞
x U is RV (ρ+ 1) and

lim
x→∞

xU(x)∫∞
x U

= −ρ− 1. (2.4)

Conversely if (2.4) then U ∈ RV (ρ).

Proof. See Resnick (1987), p. 17 or Resnick (2007), p. 25. �

Corollary 2.2.2 (Karamata representation)
A function L : R+ → R+ is slowly varying if and only if

• ∃c : R+ → R+ such that lim∞ c(x) = c ∈ (0,∞), and

• ∃ε : R+ → R+ such that lim∞ ε(x) = 0,

such that

L(x) = c(x) exp
(∫ x

1

ε(t)
t

dt
)
. (2.5)

Proof. The proof of the sufficiency of (2.5) is an easy exercise. For the converse, let L ∈
RV (0). From Karamata theorem, we have

b(x) := xL(x)∫ x
0 L

→ 1 as x→∞.

By definition of b we may write

L(x) = b(x)
x

∫ x

0
L = b(x) exp{log

∫ x
0 L

x
} (2.6)

But also

log
∫ x
0 L

x
=
∫ x

1

d
dt
[

log
( ∫ t

0
L
)
− log t

]
dt+D (D : a constant)

=
∫ x

1

(
L(t)∫ t

0 L
− 1
t

)
dt+D (D : a constant)

=
∫ x

1

b(t)− 1
t

dt+D

Setting ε(t) = b(t)− 1, we have ε(t)→ 0 and the latter display combined with (2.6) yields

L(x) = b(x)eD︸ ︷︷ ︸
:=c(x)→eD>0

exp
{∫ x

1

ε(t)
t

dt
}
,

which concludes the proof.
�
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Corollary 2.2.3 (Karamata representation of RV functions)
U ∈ RV (ρ) ⇐⇒ U(x) = c(x) exp

∫ x
1 α(t)/tdt, for some functions c(x)→ c > 0 and α(t)→ ρ.

Proof.

U ∈ RV (ρ) ⇐⇒ U(x) = L(x)xρ

⇐⇒ U(x) = c(x) exp
( ∫ x

1
ε(t)/tdt

)
exp(ρ log x) (Corollary 2.2.2)

⇐⇒ U(x) = c(x) exp
( ∫ x

1
[ε(t) + ρ]/tdt

)
.

�

The Karamata representation will prove useful at the end of this chapter, for proving the
consistency of the Hill estimator (an estimator for the regular variation index).

2.3 Vague convergence of Radon measures
Most of the material of this section is borrowed from Resnick (1987), Chapter 3, which
contains detailed proofs.

2.3.1 The space of Radon measures

In this course, the ’extreme events’ will take place in a ‘nice’ space such as (0,∞) or (0,∞].
Later on, for multivariate extremes, a very convenient space will be E = [0,∞]d \ {0} where
0 = (0, . . . , 0). The reason why we include +∞ (via the Alexandroff’s compactification) is
that it makes the intervals [x,∞], for x > 0 compact.

Remark 2.3.1 (Alexandroff’s space ). The space [0,∞] is defined as [0,∞) ∪ {+∞}, where
+∞ is an arbitrary element which is greater than any element of [0,∞). The order ≤ on
[0,∞) is thus extended to [0,∞]. The topology on [0,∞], i.e. the family of open sets then
consists of

• All sets V ⊂ [0,∞) which are open sets for the usual topology (Euclidean) on R.

• All sets V ⊂ [0,∞] such that +∞ ∈ V and V c is compact in [0,∞).

After having compactified [0,∞) at infinity, it is convenient to ’uncompactify’ it by removing
0. We obtain the space E = (0,∞]. The idea behind is that we want tx → ∞ as t → ∞ for
all x ∈ E.

Exercise 2.3:
Prove that the sets [a,∞], for a > 0 are compact in E = (0,∞].

More generally, in the remainder of this course, we consider a space E which is locally
compact, second countable, Hausdorff (LCSCH). Locally compact means that each point in E
has a compact neighborhood. Second countable means that the topology on E has a countable
base. Finally, Hausdorff means that for any pair x 6= y ∈ E, there exists disjoint open sets
U, V such that x ∈ U and y ∈ V . In the sequel E is endowed with the Borel σ-field E .

Definition 2.3.2 (Radon measures).
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• A measure µ : (E, E)→ [0,∞] is called a Radon measure if for all compact set K ⊂ E,
µ(K) <∞.

• We denote M(E) the set of all Radon measures on E.

• In particular, M(E) contains Mp(E) the set of Radon point measures, i.e. measures of
the kind µ = ∑

i∈D δxi; where D is countable, and (xi)i∈D ∈ E has no accumulation
point.

2.3.2 Vague topology on M(E)
Let (µn)n∈N, µ ∈ M(E). The sequence (µn) converges vaguely to µ if for all function f ∈ CK
(continuous with compact support),

∫
E fdµn →

∫
E fdµ. We denote µn v−→ µ. In the sequel

we denote µ(f) :=
∫

E fdµ. The topology associated to this notion of convergence is called the
vague topology on M(E), denoted by V. It is the topology generated by the evaluation maps
Tf : µ 7→ µ(f), for f ∈ CK . A basis for V is the family of open sets{

V = {µ ∈ M(E) : ai < µ(fi) < bi, ∀1 ≤ i ≤ k}, k ∈ N, ai < bi ∈ R, fi ∈ CK
}
.

It can be shown that (M(E),V) is a Polish space (separable, completely metrizable). Separable
means that it contains a dense sequence; completely metrizable means that one can construct
a distance on M(E) which is compatible with the topology, and for which M(E) becomes a
complete space.

Similarly to the case of weak convergence, we have a ‘Portmanteau theorem’

Theorem 2.3.3
The following are equivalent:

(i) µn
v−→ µ.

(ii) µn(B)→ µ(B) for all set B such that B̄ is compact and µ(∂B) = 0.

(iii) For all compact K ⊂ E, lim supµn(K) ≤ µ(K) and for all open set G ⊂ E, lim inf µn(G) ≥
µ(G).

2.3.3 Regular variation and vague convergence of tail measures

In this section E = (0,∞].

Theorem 2.3.4
Let F be a c.d.f. and X ∼ F . The following are equivalent

(i) F belongs to the max-domain of attraction of Φα (Fréchet distribution)

(ii) 1− F ∈ RV (−α)

(iii) ∃(an)n≥0 : n(1− F (anx)) −−−→
n→∞

x−α.

(iv) µn( · ) := nP( Xan ∈ ( · )) v−→ να( · ), where να[x,∞) = x−α, x > 0.
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Proof. (ii) ⇐⇒ (iii) and (ii)⇒ (i) have been proven in Exercise 2.2. The fact that (i)⇒ (ii)
is shown in Resnick (1987), proposition 1.11 p. 54. The proof relies on Karamata’s theorem.
It remains to see why (iii) ⇐⇒ (iv). Assume (iv). Then for x > 0,

n(1− F (anx)) = nP(X/an ∈ (x,∞))
= µn(x,∞)
→ να(x,∞) = x−α by Theorem 2.3.3 (ii),

which proves (iii). Now assume (iii). On order to show that (iv) holds, we need to show that
for f ∈ CK , µn(f) → να(f). Let f ∈ CK . Let S = supp(f) = cl{x > 0 : f(x) > 0}, where
cl(A) = Ā denotes the closure of a set A. Necessarily 0 /∈ S otherwise S would not be closed
in (0,∞]. Thus S ⊂ [δ,∞] for some δ > 0. Introduce the probability measures Pn on [δ,∞]
defined by

Pn(A) = µn(A)/µn[δ,∞], A ⊂ [δ,∞],

(which is well defined because [δ,∞] is compact, thus µn[δ,∞] <∞).
Using (iii), for all x > δ, Pn[x,∞]→ (x/δ)−α. Thus, using the Portmanteau theorem for

probability measures, Pn converges weakly to P = δαν( · ). Now, f has compact support in
[δ,∞] implies that f is continuous and bounded on [δ,∞]. Thus, Pn(f)→ P (f), which yields
µn(f)→ µ(f). �

2.3.4 Exercises

The following exercises are borrowed from Resnick (1987), chapter 3.4

Exercise 2.4:
Show that the following transformations are continuous:

1.
T1 : M(E)×M(E)→ M(E)

(µ1, µ2)→ µ1 + µ2.

2.
T1 : M(E)× (0,∞)→ M(E)

(µ, λ)→ λµ.

Exercise 2.5:
Let (xn)n∈N, x in E and cn ≤ 0, c > 0. Show that in M(E),

µn := cnδxn
v−→ cδx

if and only if xn −−−→
n→∞

x and cn −−−→
n→∞

c.

Exercise 2.6:
Let mn = ∑

i∈N∗ n
−1δ( in) and let m be the lebesgue measure on (0,∞). Show that mn

v−→ m.
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2.4 Weak convergence of tail empirical measures

2.4.1 Random measures

Recall (M(E),V) is a topological space. Thus it has a Borel σ-fieldM(E). It can be shown
by monotone class arguments thatM(E) is generated by the evaluation maps Tf : µ 7→ µ(f),
for f ∈ CK(E), or by the TF : µ 7→ µ(F ), for F ⊂ E closed. Thus

M(E) = σ
{
Tf , f ∈ CK

}
= σ

{
TF , F ⊂ E, closed

}
.

Given a probability space (Ω,A,P), a random measure ξ is thus a measurable mapping
(Ω,A)→ (M(E),M(E)). A point process is a special case of such mapping, taking its value in
(Mp(E),Mp(E)),whereMp(E) is the trace σ-field ofM on Mp. The distribution of a random
measure ξ is entirely determined by the ’finite dimensional distributions’, i.e. by the laws of
the random vectors (ξ(f1), . . . , ξ(fk)), where k ∈ N and fi ∈ CK , i ≤ k.

A convenient tool for characterizing the law of random measures and their convergence in
distribution is the Laplace transform, defined next.

Definition 2.4.1 (Lapace transorm of a random measure). The Laplace transform of a ran-
dom measure ξ is the functional

Lξ : CK → R

f 7→ Lξ(f) = E
(
e−ξ(f)

)
=
∫

Ω
e−
∫

E f(x)ξ(ω,dx) dP(ω)

Since the law of a random vector X ∈ Rk is determined by its (usual) Laplace transform
t 7→ E

(
e−〈t,X〉

)
, it is easy to see that the Laplace transform of a random measure also

determines uniquely its distribution. In fact more is true: pointwise convergence of Laplace
transforms of a sequence (ξn) determines weak convergence, as stated next.

2.4.2 Weak convergence in M(E)
Proposition 2.4.2 (Characterization of weak convergence)
Let (ξn)n∈N be a sequence of random measures on E. The following statements are equivalent

(i) ξn
w−→ ξ, i.e.∀φ bounded continuous M(E)→ R, E (ϕ(ξn))→ E (ϕ(ξ)).

(ii) ∀k ∈ N, ∀(f1, . . . , fk) ∈ CK , (ξn(f1), . . . , ξn(fk))
w−→ (ξ(f1), . . . , ξ(fk)).

(iii) ∀f ∈ CK , Lξn(f)→ Lξ(f) (pointwise convergence of the Laplace transforms)

Proof.

• (ii) ⇐⇒ (iii) comes from standard properties of weak convergence in Rk. Assume (ii)
and fix f ∈ CK . Then letting Xn = ξn(f) and X = ξ(f), we have

Lξn(f) = E
(
e−ξn(f)

)
= LXn(1)→ LX(1),

where the latter convergence comes from the fact that pointwise convergence of the
Laplace transform of random variables is equivalent to their weak convergence. This
proves (iii).
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Conversely, assume (iii) and notice that the Laplace transform of the random vector
Xn = (ξn(f1), . . . , ξn(fk)) is, for t ∈ Rk,

LXn(t) = E
(
e−〈t,X

)
= E

(
e−
∑

i
tiξn(fi)

)
= E

(
e−ξn(∑i

tifi)
)

= Lξn

(∑
i

tifi

)
.

Since ∑i tifi ∈ Ck, the right-hand-side converges to Lξ(
∑
tifi) = LX(t), where X =

(ξ(f1), . . . , ξ(fk)) and the proof of (iii)⇒ (ii) is complete.

• (i) ⇒ (ii) is a direct application of the continuous mapping theorem applied to the
mapping T : µ 7→ (µ(f1), . . . , µ(fk)), which is continuous by definition of the vague
topology.

• (ii)⇒ (i) :
Assume (ii). We need to show that (ξn)n∈N is (a) relatively compact (i.e.that its closure
is compact for the weak topology of weak convergence in M(E)), and (b) the limits of
any two converging subsequence coincide in distribution.
(b) is an easy exercise: it is enough to show that for two possible limits ξ1, ξ2,

P
(
ai < ξ1(fi) < bi, 1 ≤ i ≤ k, ai < bi

)
= P

(
ai < ξ2(fi) < bi, 1 ≤ i ≤ k, ai < bi

)
.

(a) requires more care. Since M(E) is a separable, metric space, the Prohorov’s theorem
applies (tightness implies relative compactness). It is thus enough to show that (ξn) is
tight. To do this, use Lemma 3.20 p.153 in Resnick (1987): a sufficient condition is that
ξn(f)n∈N be tight, for all fixed f ∈ CK . Now the latter condition is satisfied because
ξn(f) converges weakly in R.

�

2.4.3 Tail measure and tail empirical measure

In this section E = (0,∞]. Recall from Theorem 2.3.4 that for a c.d.f. F and X ∼ F , the
following equivalence:

• 1− F is RV (−α), (i.e. ∃(an)n≥0 : n(1− F (anx)→ x−α)
⇐⇒

• µn
v−→ να, where µn(A) = nP(X/an ∈ A), A ⊂ (0,∞] and να[x,∞] = x−α, x > 0.

We now define the empirical version of µn, and we shall see that this empirical version (a
random measure) converges in distribution to να as well, under the same assumptions.

Definition 2.4.3 (tail empirical measure). Let F be a c.d.f. on R+ and X, (Xi)i∈N i.i.d.∼ F .
Let (an)n∈N > 0 a sequence of positive numbers.

Consider a sequence of integers k(n)n∈N ∈ N, such that k(n) −−−→
n→∞

∞ and k(n)
n −−−→

n→∞
0.

Write k instead of k(n) for convenience. The tail empirical measure associated to F and the
sequence (an) is the random point measure

νn,k = 1
k

k∑
i=1

δ{ Xi
abn/kc

}
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Proposition 2.4.4 (weak CV of the tail empirical measure)
If F ∈ RV (−α) and (an)n≥0 > 0 is such that µn

v−→ να, then the tail empirical measures
converge weakly in M+(E),

νn,k
w−→ να.

Proposition 2.4.4 means that the tail empirical measure is a consistent estimator for the
tail measure.

Proof. (sketch of) According to Proposition 2.4.2, we need to show that Lνk,α(f)→ Lδνα (f) =
e−να(f), for f ∈ CK .
. . .

�

Exercise 2.7:
Let {Xk,n, 1 ≤ k ≤ n, n ≥ 1} be random elements of E such that for each n, the (Xk,n, k ≤ n)
are i.i.d. Let (an)n≥0 > 0 be a sequence such that an −−−→

n→∞
∞ and let µ ∈ M(E). Define

ξn = 1
an

∑n
k=1 δXk,n (a random measure) and µn = n

an
P
(
X1,n ∈ · ). Show that

µn
v−→ µ ⇐⇒ ξn

w−→ µ in M(E).

2.4.4 Statistical application: Hill estimator

The Hill estimator is a classical estimator of the tail index α. Many other estimators exist
(Pickand’s estimator, CFG estimator, . . . ). In this course we limit ourselves to studying
the consistency of the Hill estimator. Notice that sharper results exist such as asymptotic
normality or concentration inequalities under additional regularity assumptions on the tails.

The idea behind the estimator is the following: Notice first that∫ ∞
1

να[x,∞]x−1dx = 1/α.

The Hill estimator aims at approaching the quantity 1/α. The heuristic is to successively
replace να with µn, then an by a quantile, then µn with its empirical version νk,n, as follows

να(x,∞] ≈ n(1− F (anx)) = nP (X/an > x)

≈ νk,n[x,∞] = 1
k

n∑
i=1

1

{
Xi

abn/kc
> x

}
Now take an = (1/(1−F ))←(n) = F←(1−1/n) (see exercise 2.2 for the reason of this choice),
and replace F←(1−k/n) with its empirical version, which is the the kth largest order statistic
X(k), so that abn/kc ≈ X(n−k) . We get

1
α

=
∫ ∞

1
x−1να(x,∞]

≈
∫ ∞

1
x−1 1

k

n∑
i=1

1

{
Xi

X(k)
> x

}
dx

= 1
k

n∑
i=1

∫ ∞
1

x−1
1

{
x <

X(k)
Xi

}
dx

= 1
k

k∑
i=1

log
X(i)
X(k)

35



N.B Here the order statistics are ranked in decreasing order, X(1) ≥ X(2) ≥ · · · ≥ X(n).

Proposition 2.4.5 (Hill estimator)
Let X, (Xi) i.i.d.∼ F , where 1 − F ∈ RV (−α), for some α > 0. Let k = k(n) −−−→

n→∞
∞ such

that k/n −−−→
n→∞

0. The Hill estimator, defined by

1̂/αn = 1
k

k∑
i=1

log
X(i)
X(k)

is a consistent estimator of 1/α, i.e. it converges in probability to 1/α.

Proof. The proof follows the lines from Resnick (2007). Remind that a(t) = abtc. To alleviate
notations, we denote

νn = 1
k

k∑
i=1

δ{ Xi
a(n/k)

} (= νn,k)

ν̂n = 1
k

k∑
i=1

δ{ Xi
X(k)

}
According to the arguments leading to the statement, 1̂/αn =

∫∞
1 x−1ν̂n[x,∞]dx and

1/α =
∫∞

1 x−1να[x,∞]dx. We need to show that∫ ∞
1

x−1ν̂n[x,∞]dx P−−−→
n→∞

∫ ∞
1

x−1να[x,∞]dx. (2.7)

1. Behavior of the order statistics
We show that

X(k)
a(n/k)

P−−→ 1. (2.8)

Indeed for ε > 0,

P
(∣∣∣∣ X(k)
a(n/k) − 1

∣∣∣∣ > ε

)
= P

(
X(k)
a(n/k) > 1 + ε

)
+ P

(
X(k)
a(n/k) < 1− ε

)
= P

(
1
k

n∑
i=1

δ Xi
a(n/k)

(1 + ε,∞
)
> 1] + P

(
1
k

n∑
i=1

δ Xi
a(n/k)

(1− ε,∞
)
< 1]

= P(νn(1 + ε,∞] > 1) + P (νn(1− ε,∞) < 1]

Now, Proposition 2.4.4 implies that νn(1 + ε,∞] P−→ (1 + ε)−α < 1 and νn(1 − ε,∞] P−→
(1− ε)−α < 1. Whence, the latter display converges to zero and (2.8) is proved.

2. Convergence of ν̂n in probability in M+(0,∞]
Notice first that

ν̂n( · ) = νn

(
X(k)
a(n/k) ·

)
.

Consider the operator
T : M(0,∞]× R∗+ → M(0,∞]

(µ, x) 7→ µ(x · ).
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Then ν̂n = T
(
νn,

X(k)
a(n/k)

)
. It can be shown (SeeResnick (2007), p. 83) that T is continuous

at (να, x) for x > 0 (see Resnick (2007) p. 84). Then (2.8) combined with the continuous
mapping theorem yields

ν̂n
P−→ να in M(0,∞]. (2.9)

3. Convergence of
∫∞

1 x−1ν̂n[x,∞]dx We are ready to prove (2.7). For M > 0, (2.7) is
equivalent to∫ M

1
x−1ν̂n[x,∞]dx︸ ︷︷ ︸

AM,n

+
∫ ∞
M

x−1ν̂n[x,∞]dx︸ ︷︷ ︸
BM,n

P−→
∫ M

1
x−1να[x,∞]dx︸ ︷︷ ︸

AM

+
∫ ∞
M

x−1να[x,∞]dx︸ ︷︷ ︸
BM

(2.10)

• For any fixed M > 0, the mapping µ 7→
∫M

1 x−1µ[x,∞]dx is continuous on M(0,∞].
To see this, notice that the integrand is a decreasing function of x, so that the integral
can be framed between to Riemann sums. In addition, µn v−→ µ implies that for fixed
x > 0 which is not an atom of µ, µn[x,∞]→ µ[x,∞].

• The continuous mapping theorem combined with (2.9) thus implies that AM,n
P−→ AM ,

for any fixed M .

• Since limM→∞BM = 0, it is enough to show that for any ε > 0,∃M0 > 1 such that
∀M ≥M0 ,

lim
n

P(BM,n > ε) ≤ δ. (2.11)

Let M > 1 and η > 0. We have

P(BM,n > ε) = P
(
BM,n > ε,

∣∣∣∣ X(k)
a(n/k) − 1

∣∣∣∣ > η

)
︸ ︷︷ ︸

p1
n,M

+P
(
BM,n > ε,

∣∣∣∣ X(k)
a(n/k) − 1

∣∣∣∣ ≤ η)︸ ︷︷ ︸
p2
n,M

.

From (2.8), p1
n,M ≤ P

(∣∣∣ X(k)
a(n/k) − 1

∣∣∣ > η
)
→ 0 as n→∞. Also ,

p2
n,M = P

(∫ ∞
M

x−1νn

[
X(k)
a(n/k)x,∞

]
dx > ε ,

∣∣∣∣ X(k)
a(n/k) − 1

∣∣∣∣ ≤ η)
≤ P

(∫ ∞
M

x−1νn [(1− η)x,∞] dx > ε

)
= P

(∫ ∞
M(1−η)

y−1νn [y,∞] dy > ε

)
Markov
≤ 1

ε
E
(∫ ∞

M(1−η)
x−1νn [x,∞] dx

)

= 1
ε

∫ ∞
M(1−η)

x−1n

k
(1− F ) (a(n/k)x) dx

= 1
ε

n

k

∫ ∞
M(1−η)a(n/k)

x−1(1− F ) (x)︸ ︷︷ ︸
U(x)

dx
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The function U in the latter integrand is RV (−α − 1), so Karamata theorem implies
that

∫∞
T U ∼ TU(T )/α, with TU(T ) = (1− F )(T ), i.e.

1
ε

n

k

∫ ∞
M(1−η)a(n/k)

x−1(1− F ) (x) dx ∼n→∞
1
ε

n

k
(1− F )

(
M(1− η)a(n/k)

)
−−−→
n→∞

1
ε
να
[
M(1− η),∞

]
= 1

ε
(M(1− η))−α

Choosing M0 large enough so that the latter quantity is less than δ/2 for M = M0
shows (2.11) and concludes the proof.

�
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Chapter 3

Multivariate extremes

In this chapter, the multivariate extensions of ideas from univariate EVT are exposed. In
particular the possible limiting distribution for maxima of multivariate samples are derived,
and equivalent formulations in terms of limiting distributions of excesses are stated. Mul-
tivariate regular variation plays a central role when considering such multivariate ‘excesses
above large thresholds’.

Notations The usual order relation ≤ on R is extended to a partial order � on Rd: a � b
means ∀j ∈ {1, . . . , d}, aj ≤ bj . Similarly a ≺ b means aj ≺ bj for all j ≤ d. For a � b, the
‘rectangle’ [a, b] is the product ∏d

i=1[ai, bi]. Binary operations are understood componentwise,
e.g. ∨(a, b) = (∨(a1, b1),∨(a2, b2), . . . ,∨(ad, bd)). If (Xn)n≥0 is an i.i.d. sample Ω → Rd we
denote X(j)

i the jth component of Xi.

3.1 Limit distributions of maxima
Let X,X1, . . . , Xn

i.i.d.∼ F , where F is a multivariate c.d.f. Rd → R+ and X = (X(1), . . . , X(d))
is a d-variate random vector. The basic assumption in multivariate EVT (MEVT) is that
∃(an = (a1,n, . . . , ad,n))n∈N � 0, ∃(bn = (b1,n, . . . , bd,n))n∈N ∈ Rd,∃Z a non-degenerate r.v.,
such that ∨n

i=1Xi − bn
an

w−→ Z. (3.1)

An equivalent statement in terms of distribution is that ∃G an non-degenerate c.d.f. on Rd,
such that

Fn(an · +bn) w−→ G( · ). (3.2)

Any such limit G is called a Multivariate extreme value distribution (MEVD).

3.1.1 Max-stability

Definition 3.1.1. A c.d.f. G : Rd → [0, 1] is called max-stable if ∀t > 0,∃α(t) � 0,∃β(t) ∈
Rd :

G(x) = Gt(α(t)x+ β(t)). (3.3)

A non-degenerate random variable Z is called max-stable if its distribution function is.
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Remark 3.1.2. If (3.3) holds true for t ∈ N, then it also holds for rational t’s, thus also for
every positive real t. Thus, a non-degenerate random variable Z is max-stable if and only if
for an i.i.d. sample (Zn)n≥1 ∼ Z, ∀n ∈ N∗, ∃α(n) � 0, ∃β(n) ∈ Rd :∨n

i=1 Zi − β(n)
α(n)

d= Z (3.4)

Proposition 3.1.3
A non-degenerate multivariate c.d.f. is a MEVD if and only if it is max-stable.

Proof. The fact that a max-stable distribution is a MEVD one is immediate: take an =
α(n), bn = β(n), then (3.2) since the right-hand side and the left-hand side are equal for all
n. For the converse statement, notice first that multivariate weak convergence (3.2) entails
weak convergence of the margins (to see this, apply (3.2) to x = (∞,∞, . . . , x,∞, . . .)). The
arguments in the proof of Proposition 1.3.2 show that for all 1 ≤ j ≤ d and t > 0,

∃αj(t) > 0, ∃βj(t) :
aj,bntc
aj,n

−−−→
n→∞

αj(t) ;
bj,bntc − bj,n

aj,n
−−−→
n→∞

βj(t).

Define α(t) = (α1(t), . . . , αd(t)) and β(t) similarly. On the one hand, for all x ∈ Rd,we have

F bntc(abntcx+ bbntc) −−−→n→∞
G(x). (3.5)

On the other hand, write

anx+ bn = abntc

(
an
abntc

(
x−

(bbntc − bn)
an

))
︸ ︷︷ ︸

=yn

+bbntc.

Notice that yn −−−→
n→∞

x−β(t)
α(t) := y. Thus

F bntc(anx+ bn) = F bntc(abntcyn + bbntc) −−−→n→∞
G(y)

where the latter convergence is easily proved using yn → y and the continuity of the limit G
at y. The latter display combined with (3.5) shows that Gt(x) = G(x−β(t)

α(t) ). �

3.1.2 Max infinite divisibility

Definition 3.1.4. A c.d.f. F on Rd is called max-infinitely divisible (max-id) if ∀t > 0,
F t is a distribution function on Rd.

Remark 3.1.5. 1. A function H : Rd → [0, 1] ‘is a c.d.f.’ if it is the distribution function
of a probability measure on Rd. This is the case if and only if the following conditions
are satisfied

(a) limxi→−∞H(x1, . . . , xi, . . . , xd) = 0, ∀i ≤ d, ∀(xj)j 6=i ∈ Rd−1.
(b) limx1,...,xd→+∞H(x1, . . . , xd) = 1
(c) ∀j ≤ d, xj 7→ H(x1, . . . , xj , . . . , xd) is right-continuous.
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(d) For a � b, denoting for β ⊂ {1, . . . d}, xβ,j
{
aj if j ∈ β
bj if j ∈ {1, . . . , d} \ β

, it holds

that
H{(a, b]} :=

∑
β⊂{1,...,d}

(−1)|β|H(xβ) ≥ 0.

Thus, if F is a multivariate c.d.f. then F t is a c.d.f. if and only if condition (d) is
satisfied for F t.

2. If d = 1 and F is a c.d.f. then F t is a c.d.f. for all t > 0. Thus every univariate c.d.f.
is max-id.

3. Every max-stable distribution is max-id

Exercise 3.1:
Are the c.d.f.’s F associated with the following probability distributions P max-id ?

1. in Rd, P = δa for some a ∈ Rd.

2. in R2 , P = 1
2

(
δ(1,0) + δ(0,1)

)
3. in R2, P = 1

2

(
δ(0,0) + δ(1,1)

)
3.1.3 Characterizing Max-ID distributions

To begin with, we give an example of construction of max-id distribution. We shall prove
later on that every max-id distribution can be represented this way.

Canonical example Let ` ∈ Rd and let E = [`,∞]\{`} the compactified orthant deprived
from its ‘origin’ `. In the sequel we need the following definition. Recall that point processes
are special cases of random measures taking value in Mp(E).

Definition 3.1.6 (Poisson process). A point process N = ∑
i≥1 δXi on a LCSCH space E is

a Poisson process if and only if there is a Radon measure λ on E such that for all disjoint,
measurable sets (C1, . . . , Ck) in E,

1. (N(C1), . . . , N(Ck)) is a random vector

2. the random variables N(Ci)i≤k are independent

3. N(Ci) ∼ Poisson(λ(Ci))

The measure λ is called the intensity measure of N and we write N ∼ PP (λ) (PP stands for
‘Poisson Process’).

Let µ be a Radon measure on (E, E). Consider the product space E′ = R+×E. Define a
Radon measure on E′ as the product measure Lebesgue ⊗µ, that is

λ((t1, t2)×A) = (t2 − t1)µ(A) , A ∈ E , t1 ≤ t2.
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Let N ∼ PP (λ). Then one may write N = ∑
n≥0 δ(tn,Zn), where tn ∈ R+ and Zn ∈ E. For

t > 0 consider the random variable

Y (t) =

 ∨
{k : tk<t}

Zk

 ∨ `.
Let Ft denote the distribution function of Y (t). We shall show that Ft = F t1, thus F1 will be
proved to be a max-id distribution on Rd, provided Y (1) is indeed real valued with probability
1. By definition of Ft, we have for x 6� `, Ft(x) = 0 and for x � `,

Ft(x) = P

 ∨
k:tk≤t

Zk � x


= P (N ([0, t]× [`, x]c) = 0)
= exp{−λ([0, t]× [`, x]c)}
= e−tµ([`,x]c),

where [`, x]c = E \ [`, x] ⊂ E.
In particular F1(x) = e−µ[`,x]c and we indeed have Ft = F t1. To make sure that Y (1) ∈ Rd

with probability 1, we need to ensure that

1. F1(x) −−−−→
x→+∞

1, i.e. µ[`, x]c → 0 as x→∞ in Rd,

2. F1(x) −−−−−→
xj→−∞

0 for all j ≤ d,

This is the case if and only if µ is such that
µ
[
∪dj=1 {xj = +∞}

]
= 0 (‘µ puts no mass on lines at infinity’ ) (3.6a)

` � ∞ or µ[`, x]c −−−→
x↘`

+∞ (explosion at the origin) (3.6b)

Every Radon measure µ satisfying (3.6a) and (3.6b) thus gives rise to a max-id distribution
function F (x) = e−µ[`,x]c on Rd. In fact, every max-id distribution is of this kind, as shown
next.

Proposition 3.1.7 (characterization of max-id distributions)
Let F be a non degenerate c.d.f. on Rd and let Y ∼ F . Then F is max-id if and only if
∃` ∈ [−∞,∞]d \ {∞}, ∃µ a Radon measure on E = [`,∞] \ `, satisfying 3.6a and 3.6b, such
that

F (x) =
{

0 if ` 6� x
e−µ[`,x]c if ` � x.

(3.7)

In such a case, ∃N = ∑
k≥0 δ(tk,Zk) a Poisson Process on E′ = R+×E with intensity measure

λ = Lebesgue ⊗ µ, such that
Y

d=
(

max
k:tk≤1

Zk

)∨
`,

with the convention that
∨
k∈∅ Zk = −∞.
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sketch of proof. The sufficiency has been shown in the argument before the statement.
Conversely, let F be max-id. We need to show that

1. The set R = {x ∈ [−∞,∞]d : F (x) > 0} is a rectangle of the kind ∏d
j=1Rj with

Rj = (`j ,∞] or Rj = [`j ,∞] for some `j ∈ [−∞,∞).

2. There exists a Radon measure µ on [−∞,∞]d satisfying 3.6a, 3.6b such that{
µ[`, x]c = − logF (x) (x � `)
µ[−∞,∞]d \ [`,∞)d = 0.

(3.8)

1. Define Rj = {x ∈ [−∞,∞] : Fj(x) > 0}. We want to show that R = ∏d
j=1Rj .

First, if x ∈ R then for all j Fj(xj) > 0 thus x ∈ ∏
Rj . To prove the converse

inclusion, let x ∈ ∏j Rj . We need to show that x ∈ R. For all i ≤ d it holds that
Fi(xi) > 0, whence ∃yi ∈ R such that xi = πi(yi). Define y = ∧dj=1yj . By construction,
πi(y) ≤ πi(yi) = xi for all i, thus y � x. It remains to show that (i) y ∈ R, and that
(ii) (y ∈ R,y � x ⇒ x ∈ R). Claim (ii) derives immediately from the fact that F
is non-decreasing along each coordinate. As for claim (i), since yi ∈ R for all i, it is
enough to show that for y, z ∈ R, we have y ∧ z ∈ R. To do so, we use the fact that for
any distribution function H, by a union bound on the event Z 6� (y ∧ z) where Z ∼ H,
we have

1−H(y ∧ z) ≤ (1−H(y)) + (1−H(y)).

Since F is max-id, F 1/n is a distribution function for all n, so that the previous display
yields

n(1− F 1/n(y ∧ z) ≤ n(1− F 1/n(y)) + n(1− F 1/n(y)).

Taking the limit as n→∞ we obtain

− logF (y ∧ z) ≤ − logF (y)− logF (z)

thus
F (y ∧ z) ≥ F (y)F (z).

Finally, if y, z ∈ R then F (y) > 0 and F (z) > 0. The previous display implies F (y∧z) >
0, i.e. y ∧ z ∈ R, which concludes the proof of (1).

2. We shall obtain µ as a vague limit of rescaled versions of the probability distributions
Pt associated with F t. Define µn = nP1/n. We show that µn is relatively compact and
that the limits of two subsequences must coincide.

• for x � `, denoting [`, x]c = [`,∞] \ [`, x], we have

µn[`, x]c = n(1− F (x)1/n)
= n(1− e1/n logF (x)) ∼n→∞ n(−1/n logF (x))
−−−→
n→∞

− logF (x)

Thus two limits of any two subsequences must coincide on the sets [`,∞]c, which
generate the Borel σ-field E on E, so that thy coincide everywhere.
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• As for sequential compactness, it is enough to show that for all compact set K in
E = [`,∞] \ {`}, supn µn(K) <∞. But for such K, we have K ⊂ [`,∞] \ [`, δ] for
some δ � `. Thus supn µn(K) ≤ supn µn[`,∞] \ [`, δ] <∞ since µn[`,∞] \ [`, δ]→
− logF (δ) <∞.

�

Exercise 3.2 (Resnick (1987), chap. 5: dependence structures):

1. Let F be max-id on Rd with exponent measure µ. Show that F is a product F (x) =∏d
j=1 Fj(xj) ⇐⇒ µ concentrates on the translated axes Cj = {`j + tej , t ≥ 0}, where ej

is the jth canonical basis vector.

2. Let Y with max-id distribution in R4 with exponent measure µ. Give necessary and sufficient
conditions on µ for (Y1, Y2) to be independent from (Y3, Y4).

3. Give an example of exponent measure in R3 such that µ(`,∞]3 = 0 but no Yi is independent
from the complementary pair (for Y ∼ F with exponent measure µ).

3.2 Characterization of simple max-stable distributions

3.2.1 Reduction to the standard case

Since max-stable distributions are in particular max-id, we already know that any max-stable
distribution G writes G(x) = e−µ[`,x]c

1x�` for some ` ∈ [−∞,∞)d and some Radon measure
µ satisfying 3.6a and 3.6b. More structure can be obtained when G has ‘standard’ margins,
i.e.unit Fréchet margins

Definition 3.2.1 (Simple max-stable vector/distribution). Z : Ω→ Rd is ‘simple max-stable’
if

1. For all j ∈ {1, . . . , d}: Z(j) ∼ Φ1, i.e. P(Z(j) ≤ x) = e−1/x, x > 0, and

2. 1
n

∨n
i=1 Zi

d= Z1, for (Zi)i∈N i.i.d.∼ Z.

Proposition 3.2.2 (Standardizing max-stable distribution)
Let Z be a non-degenerate random vector. Then Z is a max-stable vector with normalizing
sequences (an, bn) such that

∨
Zi−bn
an

d= Z for Zi
i.i.d.∼ Z, if and only if

1. ∀j, Z(j) is a max-stable variable with norming constants (an,j , bn,j)

2. Z∗ := (−1/ logG1(Z(1), . . . ,−1/ logGd(Z(d))) is a simple max-stable vector.

The proof is left as an exercise.
Hint: For the direct implication, show that for x � 0, P (∨ni=1Z

∗
i /n � x) = P (Z∗1 � x). The

converse is similar.
A consequence of Proposition 3.2.2 is that it is enough to characterize simple max-stable

vectors.
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3.2.2 Angular Measure

If G is simple max-stable, we have Gt(tx) = G(x) and the support of G is [0,∞]d. We thus
take E = [0,∞]d \ {0}, and we have

G(x) =
{
e−µ[0,x]c if x � 0
0 otherwise .

From the homogeneity property of G we deduce that for t > 0,

µ([0, tx]c) = t−1µ[0, x]c,

so that for any A ∈ E, measurable, µ(tA) = t−1µ(A).
Choose any norm ‖ · ‖ on Rd and denote Sd−1 the corresponding positive orthant of the

unit sphere. Define a (finite) measure Φ on Sd−1 :

Φ(A) = µ{tA : t ≥ 1}.

Exercise 3.3:
Show that Φ is a finite measure.

Let T denote the polar coordinate transformation, that is

T : [0,∞]d \ {0} → (0,∞]× Sd−1

x 7→ (‖x‖, 1
‖x‖

x).

Now the image measure of µ satisfies, for r > 0 and A ⊂ Sd−1,

µ ◦ T−1[r,∞]×Ar−1Φ(A),

it is thus a product measure. In other words, if (R,W ) is a random pair following the
probability measure µ◦T−1

µ◦T−1[1,∞]×Sd−1
, Then R ⊥⊥W ,W ∼ Pareto(1) andW ∼ Φ( · )/Φ(Sd−1).

Notice that R is a ‘radius’ and W is an ‘angle’.
From a statistical point of view, this means that only the angular component of µ need

to be estimated.

Recovering G from Φ Recall G(x) = exp{−µ[0, x]c}. How to write G as a function of Φ ?
A change of variables and a call to Fubini show that

µ[0, x]c =
∫
Sd−1

max
j=1,...,d

wj
xj

dΦ(w).

Exercise 3.4:
Prove the latter display.

Thus, for x � 0,

G(x) = e
−
∫
Sd−1

maxj=1,...,d
wj
xj

dΦ(w)
(3.9)

The choice of unit Fréchet margins implies thatGj(1) = e−1. Writing (3.9) at x = (0, . . . , 0, 1, 0, . . .),
one obtains ’first moment constraints’ of Φ,

∀j ≤ d,
∫
Sd−1

wjdΦ(w) = 1. (3.10)
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Exercise 3.5:
Show that conversely, any distribution function of the kind G(x) = exp{−µ[0, x]c} with dµ ◦
T−1 = dr

r2 dΦ where Φ is finite and satisfies (3.10) is simple max-stable.

We summarize the discussion:

Proposition 3.2.3 (Characterization of simple max-stable distributions)
Let G be a c.d.f. on Rd, and let Y be a random vector distributed according to G. Define
E = [0,∞]d \ {0}. The following are equivalent.

1. G is simple max-stable.

2. ∃µ a Radon measure on E verifying

∀t > 0, ∀A ⊂ E measurable, µ(tA) = t−1µ(A) (3.11)
µ{x ∈ E : xj ≥ 1} = 1, ∀j ∈ {1, . . . , d} . (3.12)

such that

G(x) =

 0 if x 6∈ E
exp

{
− µ[0, x]c if x ∈ E

3. ∃Φ a finite measure on Sd−1 satisfying the moment constraints (3.10) such that for
x ∈ Rd,

G(x) =

 0 if x 6∈ E
exp

{
−
∫
Sd−1

maxdj=1
wj
xj

dΦ(w)
}

if x ∈ E

4. ∃ a Radon measure µ satisfying (3.11) and (3.12) and ∃ a point process N = ∑
k≥1 δtk,Zk

with intensity measure dλ = dt
t2 ⊗ dµ such that

Y =
∨

k:tk≤1
Zk
∨

0.

5. ∃Φ a finite measure on Sd verifying (3.10) and ∃Γ = ∑
k≥0 δRk,Wk

a Poisson process
with intensity measure dr

r2 ⊗ dΦ such that Y d= ∨
k≥1RkWk.

Proof. The equivalence between (1), (2), (3) and (4) follows from the argument prreceding
the statement. The equivalence with statement (5) remains to be shown. We prove (3)⇐⇒
(5).
. . . �

We conclude this section with a series of exercises taken from Resnick (1987), chapter 5.4.

Exercise 3.6:
Give an example of one of each of the following

• A c.d.f. G which is max-id but not max-stable

• A max-stable distribution which has one marginal distribution degenerate

• A max-stable distribution which is not absolutely continuous with respect to the Lebesgue
measure on Rd.
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(take d = 2 for simplicity)

Exercise 3.7:
On R3

+, define G(x, y, z) = exp{−1
2(x−1 ∨ y−1 + x−1 ∨ z−1 + y−1 ∨ z−1)}. Check that G is

simple max-stable. Pick a norm, and characterize the angular measure Φ associated with µ, where
G(x) = e−µ[0,x]c .

Exercise 3.8:
Same as Exercise 3.7 with G(x, y, z) = exp

{
− 1

2(
√
x−2 + y−2 +

√
x−2 + z−2 +

√
y−2 + z−2)

}
.

Exercise 3.9:
Consider d = 2 and the angular measure for the L2 norm, Φ =

√
2δ(1/

√
2,1/
√

2)). Give the
expression of the simple max-stable c.d.f. G associated with Φ.

3.3 Maximum domain of attraction and Peaks-Over-Threshold:
the multivariate case

As in the 1D case, the MDA condition may be reformulated in terms of Peaks-Over-Threshold
conditions. A preliminary step is standardization. Then the 1D definition of regular variation
can be extended and an interpretation in terms of point process convergence is possible.

3.3.1 Standardization in a max-domain of attraction

Idea: the multivariate MDA condition for a random vector X is equivalent to

1. MDA conditions on every component X(j)

2. A standard MDA condition on the standardized variable

X∗ = (−1/ logF1(X(1)), . . . ,−1/ logFd(X(d))),

which writes 1
n

∨n
1 X

∗
i

w−→ Z∗, where Z∗ is a simple max-stable random vector.

Proposition 3.3.1
Let X,Xi, i = 1, . . . , n i.i.d.∼ F . Assume that the marginal distributions Fj are continuous.
Define for i ≥ 1,

X∗i =
( 1

1− F1(Xi,1) , . . . ,
1

1− Fd(Xi,d
)
)
.

Let G be a non-degenerate max-stable d.f. and let Y ∼ G. The following statements are
equivalent.

1. ∃(an)n≥0 ∈ (R∗+)d, ∃(bn)n≥0 ∈ Rd :
∨n

i=1 Xi−bn
an

w−→ Y

2. Marginal and joint weak convergence both occur: ∀j ∈ {1, . . . , d},
∨n

i=1Xi,j−bn,j
an,j

w−→ Yj ∼ Gj ,
1
n

∨n
i=1X

∗
i

w−→ Y ∗ := ( −1
logG1(Y1) , . . . ,

−1
logGd(Yd))
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Proof. We show that 1. ⇒ 2., the proof of the converse statement is similar.
Assume 1. Then marginal convergence is immediate (joint weak convergence implies marginal
weak convergence). We need to prove the weak convergence of the standardized maxima. It
is enough to show that

Pn(X∗ ≺ nx) w−→ P(Y ∗ ≺ x).

For x ∈ C(Y ∗), we have, denoting Uj(p) = F←j (1− 1/p).

Pn(X∗ ≺ nx) = P
(
Fj(Xj) < 1− 1

nxj
, j = 1, . . . , d

)n

= P
(
Xj < F←j (1− 1

nxj
), j = 1, . . . , d

)n

= P
(
Xj − bn,j
an,j

<
Uj(nxj)− bn,j

an,j
, j = 1, . . . , d

)n

Now, the function x 7→ Uj(nxj)−bn,j
an,j

is the generalized inverse of x 7→ 1/
(
n(1−Fj(an,jx+bn,j))

)
.

The latter expression is equivalent, for fixed x as n→∞, to −1/ log(Fnj (an,jx+ bn,j)) which
converges weakly to −1/ logGj(xj) by continuous mapping. Lemma 1.2.4 (weak convergence
of the inverse) thus implies that Uj(nxj)−bn,j

an,j

w−→ (−1/ log(Gj(x)))← = G←j (e−1/x). By
continuity, we obtain that

Pn(X∗ ≺ nx) ∼n→∞ P
(
Xj − bn,j
an,j

< G←j (e−1/xj ), j = 1, . . . , d
)n

−−−→
n→∞

G(G←1 (e−1/x1), . . . , G←1 (e−1/x1))

= P(Gj(Yj) < e−1/xj , j = 1, . . . , d)
= P(Y ∗ ≺ x).

�

Proposition 3.3.1 tells us that we may restrict ourselves to the max-domain of attraction of
simple max-stable vectors, i.e. consider random vectors X∗ ∈ Rd such that

1
n

n∨
i=1

X∗i
w−→ Y ∗ (3.13)

where Y ∗ is simple max-stable with distribution G∗(x) = e−µ[0,x]x , x � 0. We shall see in
the next paragraphs that this condition is equivalent to the weak convergence of properly
normalized excesses above large multivariate thresholds, and also to a condition on the the
cdf of X∗ which is a multivariate generalization of the Regular variation condition (2.1)
introduced in Chapter 2.
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3.3.2 Convergence of multivariate Peaks-over-Threshold

Let us rephrase the standard MDA condition (3.13): we have

(3.13) ⇐⇒ F ∗(nx) −−−→
n→∞

G∗(x), x � 0

⇐⇒ n log[1− (1− F ∗(nx))] −−−→
n→∞

logG∗(x), x � 0

⇐⇒ n(1− F ∗(nx)) −−−→
n→∞

− logG∗(x) = µ[0, x]c, x � 0

⇐⇒ nP
(
n−1X∗ ∈ [0, x]c

)
−−−→
n→∞

µ[0, x]c

⇐⇒ tP
(
t−1X∗ ∈ [0, x]c

)
−−−−−−→
t→∞,t∈R

µ[0, x]c

where the last equivalence is obtained by monotonicity of F ∗. The same argument as in the
proof of Proposition 3.1.7 shows that the above condition implies that the measures µt( · ) =
tP(t−1X∗ ∈ · ) converge vaguely to µ, and the converse implication is immediate. Another
consequence is that µ characterizes the distribution of X ‘far from the origin’. Indeed consider
the conditional distribution Pt(A) = P (X∗ ∈ tA | ‖X∗‖ > t) defined on Ωc = {x : ‖x‖ ≥ 1}.
Under the standard MDA condition, we have

Pt(A) = P (X∗ ∈ tA)
P(‖X∗‖ > t)

= tP (X∗ ∈ tA)
tP(‖X∗‖ > t)

µ(A)
µ(Ωc)−−−→
t→∞

= 1
Z
µ(A)

with Z = µ(Ωc) a normalizing constant. We summarize the discussion and leave the proofs
of the remaining equivalences to the reader.

Proposition 3.3.2
Let X = (X1, . . . , Xd) be a random vector with distribution F with marginal distributions
Fj , j ≤ d, and let Y be a random vector with simple max-stable cdf G∗(x) = e−µ[0,x]c on
E = [0,∞]d] \ {0} and angular measure Φ(B) = µ{tW, t ≥ 1, w ∈ B}, for B ⊂ Sd−1,
measurable. The following conditions are equivalent

1. Fn(nx) −−−→
n→∞

G∗(x), x � 0.

2. 1
n

∨
i≤nXi

w−→ Y .

3. µt( · ) = tP
(
t−1X ∈ ·

) v−→ µ on E.

4. Fn1 (nx1) −−−→
n→∞

e−1/x1, x1 > 0 and on the space E,

P
(
t−1X ∈ ·

∣∣∣ ‖X‖ > t
)

v−→ µ( · )
µ(Ωc) .

5. Fn1 (nx1) −−−→
n→∞

e−1/x1, x1 > 0 and letting R = ‖X‖ and W = ‖X‖−1X, for B ⊂ Sd−1
and r ≥ 1,

P (W ∈ B,R > tr | R > t) −−−→
t→∞

1
r

Φ(B)
Φ(Sd−1) .
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Exercise 3.10:
Show that (4.) implies (3.) in Proposition 3.3.2.

3.3.3 Multivariate regular variation

Definition 3.3.3 (Multivariate RV of functions). Let E = [0,∞]d \ {0} and U : E → R+
a real valued function of d variables. U is called multivariate regularly varying if denoting
by 1 the constant vector (1, . . . , 1) ∈ Rd, there exists a function λ : E → R+ such that for all
x ∈ E,

U(tx)
Ut1 −−−→

t→∞
λ(x)

Proposition 3.3.4
Let λ be a limit function in the setting of Definition 3.3.3. Then ∃ρ ∈ R such that λ is
ρ-homogeneous, i.e. for x ∈ E and s > 0,

λ(sx) = sρλ(x).

Exercise 3.11:
Prove Proposition 3.3.4.
hint: prove the statement for fixed x then show that the RV index ρ(x) does not depend on x.

If U is a multivariate RV function which limit function λ has homogeneity index ρ, then
U is said to be regularly varying with index ρ and we denote U ∈ RV (ρ).

Proposition 3.3.5 (Equivalent characterization of RV (ρ))
A function U : E → R+ is RV (ρ) for some ρ ∈ R iff. There exists a function V : R∗+ →
R∗+ ∈ RV (ρ) (in the univariate sense) and a limit function λ̃ : E → R+ such that for x ∈ E,

1
V (t) U(tx) −−−→

t→∞
λ̃(x)

Exercise 3.12:
Prove Proposition 3.3.5.

In a probabilistic context, the considered RV function are the tail distributions of random
variables.

Definition 3.3.6 (multivariate RV tails). A c.d.f. F in Rd+ has multivariate regularly varying
tail if 1− F is a multivariate RV function in the sense of Definition 3.3.3.

The relationships between multivariate POT, vague convergence of tail measures and tail
regular variation is summarized in the next proposition (See Resnick (2007), Th. 6.1)

Proposition 3.3.7 (Tail multivariate regular variation and vague convergence of measures)
Let E = [0,∞]d \{0} and let X ∼ F a random vector valued in Rd+. Let α > 0. The following
are equivalent

1. 1− F ∈ RV (−α).
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2. ∃(an)n →∞ and ∃ ν ∈ M(E) such that

nP
(
a−1
n X ∈ ·

)
v−→ ν

where ν is a homogeneous measure with index −α, i.e. ν(tA) = t−αν(A), for t > 0 and
A ⊂ E, measurable.

3. There exist H a probability measure on the sphere Sd−1, a constant c > 0, and a sequence
an →∞ such that letting R = ‖X‖ and W = X/R,

nP ((R/an,W ) ∈ · ) v−→ cνα ⊗H

in M((0,∞]× Sd−1), where να[x,∞] = x−α, x > 0.

3.4 Tail regular variation and Poisson limits
Recall Definition 3.1.6 for a Poisson process on a general space. In the sequel we denote
PRM(λ) (Poisson Random Measure) a Poisson point process with intensity λ. The main
result of this section stated below is that tail regular variation is equivalent to convergence
of the normalized marked point process ∑i δ(i/n,Xi/an) towards a Poisson point process which
intensity measure is closely linked to the limit measure associated to the normalizing sequence
an.

Theorem 3.4.1 (Multivariate extremes and Poisson Process)
Let (Xi)i≥1

i.i.d.∼ X be random variables valued in Rd+ , let an be a normalizing sequence and
let µ be a radon measure on E = [0,∞]d \ {0}. The following are equivalent.

1. nP
(
a−1
n X ∈ ·

) v−→ ν

2. The point process Nn = ∑n
i=1 δ(i/n,Xi/an)

w−→ N = PRM(Lebesgue⊗ µ) on [0, 1]× E.

To prove this result we need some facts about Poisson processes.

Proposition 3.4.2 (Poisson process: characterization and construction)
Definition 3.1.6 is non empty, i.e. for any Radon measure λ on a LCSCH space E there exists
a random measure N ∼ PRM(λ) satisfying properties 1.,2., 3. therein. Also, properties 2.
and 3. from the definition entirely characterize the law of the considered random measure,
which Laplace transform is given by

LN (f) = exp
{
−
∫
E

1− e−f(x)dλ(x)
}
,

for f a non-negative, measurable function.

Proof.
1. uniqueness, Laplace transform. We first prove the second assertion. Let λ be a
Radon measure and let N be a point process satisfying the conditions of the definition. Since
the Laplace transform entirely characterizes the law of N it is enough to show that LN is
entirely determined and that it writes as in the statement.
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(a) For f a weighted indicator function f = c1A for some c > 0 and A ⊂ E, measurable,

LN (f) = E
(
e−N(f)

)
= E

(
e−cN(A)

)
=
∑
k≥0

e−kc
λ(A)k
k! e−λ(A)

=

∑
k≥0

(
λ(A)e−c

)k
k! e−λ(A)e−c


︸ ︷︷ ︸

=1

e−λ(A)(1−e−c)

= e−
∫

(1−e−f )dλ

which proves the statement for f = c1A.

(b) For f = ∑p
i=1 ci1Ai with ci > 0 and where Ai, i ≤ p are disjoint measurable sets,

LN (f) = E
(
e
−
∑

i≤p ciN(Ai)
)

= E

∏
i≤p

e−ciN(Ai)


=
∏
i≤p

E
(
e−ciN(Ai)

)
(independence of the N(Ai)′s)

=
∏
i≤p

exp
{
−
∫

(1− e−ci1Ai )dλ
}

(from (a) )

= exp
{
−
∑
i≤p

∫
(1− e−ci1Ai )dλ

}
= exp

{
−
∫

(1− e−
∑

i≤p ci1Ai )dλ
}

(A′is are disjoint)

= e−
∫

(1−e−f )dλ,

where the penultimate equality comes from the fact that if x /∈ ∪iAi, then ∑
i(1 −

e−ci1Ai (x)) = 0, otherwise if x ∈ Ai for some i, ∑i(1− e−ci1Ai (x)) = 1− e−ci .

(c) For f ≥ 0, measurable, there exists a pointwise non decreasing sequence (fn)n≥0 of simple
positive functions of the kind fn = ∑

i≤pn ci,n1Ai,n where the Ai,n’s are disjoint for fixed
n, such that fn → f pointwise. By the monotone convergence theorem, almost surely,
N(f) =

∫
fdN = limnN(fn). Also for all n, e−N(fn) ≤ 1. We may thus apply the

dominated convergence theorem to the random variables e−N(fn), which yields

LN (f) = lim
n
LN (fn)

= lim
n

exp
{∫

(1− e−fn)dλ
}

= exp
{∫

(1− e−f )dλ
}

By monotone convergence again, which concludes the proof of the second assertion.
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2. Existence: proof by construction. We now give a constructive proof of the
existence of a random measure N satisfying the conditions of the definition. We proceed in
two steps, first assuming that λ is finite on E, then relaxing this assumption.

2.(a): finite measure. Assume first that λ is a finite measure on E. Let M be a
random variable following a Poisson distribution with parameter λ̃ = λ(E). Let Xi, i ≥ 1 be
an i.i.d. sequence independent from M following the probability distribution ν( · ) = λ( · )/λ̃
on E. Set N = ∑M

i=1 δXi . Then condition 1. of Definition 3.1.6 is obviously satisfied. Also for
A ⊂ E measurable, since conditionally to M = m, the number of Xi’s belonging to A follows
a binomial distribution (m, p = ν(A)),

P (N(A) = k) =
∞∑
m=0

P
(
M = m,

m∑
i=1

1A(Xi) = k

)

=
+∞∑
m=k

λ̃m

m! e
−λ̃ ×

(
m

k

)
ν(A)k(1− ν(A))m−k

=
+∞∑
m=k

λ̃m

m! e
−λ̃ ×

(
m

k

)
λ(A)k(λ̃− λ(A))m−kλ̃−m

=
+∞∑
m=k

λ(A)k
k!

(λ̃− λ(A))m−k
(m− k)! e−λ̃

= λ(A)k
k! e−λ(A)

∞∑
m=k

(λ̃− λ(A))m−k
(m− k)! e−(λ̃−λ(A))

︸ ︷︷ ︸
=1

which proves that N(A) ∼ Poiss(λ(A)).
Turning to the independence property, let A1, . . . , Ap be disjoint measurable sets in E and
let A0 = E \ ∪iAi. For k1, . . . , kp ∈ Np, set π = P(N(Ai) = ki, i = 1, . . . , p) and K = ∑n

i=1 ki.
We need to prove that π = ∏p

i=1 P(N(Ai) = ki). Conditionally to M = m, the ran-
dom vector (N(A0), N(A1), . . . , N(Ap)) follows a multinomial distribution with parameters
(m, (ν(A0), . . . , ν(Ap)). Whence

π =
∞∑

m=K
P (S = m)P (N(A0) = m−K,N(Ai) = ki, i = 1, . . . , p)

=
∞∑

m=K

λ̃m

m! e
−λ̃ × m!

(m−K)!k1! · · · kp!
ν(A0)m−K

p∏
i=1

ν(Ai)ki

=
∞∑

m=K
e−λ(E) λ(A0)m−K ∏p

i=1 λ(Ai)ki
(m−K)!k1! · · · kp!

=
p∏
i=1

λ(Ai)ki
ki!

e−λ(Ai) ×
∞∑

m=K
e−λ(A0)λ(A0)m−K

(m−K)!︸ ︷︷ ︸
=1

=
p∏
i=1

P (N(Ai) = ki) .

2.(b): Infinite measure Assume now that λ(E) = +∞. Since E is locally compact
and second countable, and since the measure λ of any compact set is finite (Radon measure),
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we may write E as a disjoint union E = t∞k=1Ek with λ(Ek) < ∞. Set λk = λ( · ∩ Ek).
Each λk is finite and we have λ = ∑

k λk. Construct on each Ek a Poisson Point process
Nk ∼ PRM(λk) as in 2.(a), independently from each other and let N = ∑

k≥1Nk. It is now
easy to show that N is a Poisson point process with intensity λ, by computing the Laplace
transform of N . �

Exercise 3.13:
Finish part 2.(b) of the proof of Proposition 3.4.2, i.e. show that the process N constructed in
the proof is indeed a Poisson process.

The following proposition allows to construct variants of a Poisson point process by trans-
formation and marking

Proposition 3.4.3 (transformation and marking)
In the following statements, I is an index set which maybe N or a random integer interval

of the kind {i = 1, . . . ,M} where M is a random integer.

(a) Let E,F be LCSCH spaces and let T : E → F be a continuous mapping. If N ∼ PRM(λ)
on E then the image (random) measure Ñ = N ◦ T−1 on F follows a PRM(λ ◦ T−1).
Also is N admits the representation N = ∑

i∈I δXi, then

Ñ
d=
∑
i∈I

δT (Xi).

(b) If N = ∑
i∈I δXi ∼ PRM(λ) on E and if (Yi)i≥1 are i.i.d. according to some distribution

P , independent from N , then

Ñ =
∑
i∈I

δ(Xi,Yi) ∼ PRM(λ⊗ P ) on E × F

Such a process Ñ is called a marked Poisson process.

Consider now an array Xi,n, i ≥ 1, n ≥ 1, where for each n, the Xi,n are i.i.d. according
to some distribution Pn on a LCSCH space E (In our context Xi,n = Xi/an). Define a finite
measure on E , µn = nP(X1,n ∈ · ). In the above section we have shown that if an → ∞
and Xi,n = Xi/an, then vague convergence of µn is equivalent to tail regular variation of
X1. We now show that this condition is in turn equivalent to the convergence of a marked
point process based on the Xi,n’s towards a Poisson point process. Theorem 3.4.1 is thus an
immediate consequence of the following proposition.

Proposition 3.4.4 (Vague convergence and Poisson process limit)
Let Xi,n, i ≥ 1, n ≥ 1 be a random array such that for each n, the Xi,n’s are i.i.d. according to
some distribution Pn on a LCSCH space E. Define µn = nPn and let µ be a Radon measure
on E. Define a sequence of marked point processes Nn = ∑

i≥1 δ(i/n,Xi,n) on R × E. The
following statements are equivalent

1. µn
v−→ µ on E

2. Nn
w−→ N ∼ PRM(Lebesgue⊗ µ) on R+ × E.
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Proof.
1. ⇒ 2. Assume condition 1. from the statement. We need to show that for any non negative
function f ∈ CK(R+ × E)

LNn(f)→ LN (f) = exp
[
−
∫
R+

∫
E

(1− e−f(t,x))dtdµ(x)
]
.

LNn(f) = E
(

exp
{
−
∞∑
i=1

f(i/n,Xi,n)
})

=
∞∏
i=1

E (exp[−f(i/n,X1,n))]

=
∞∏
i=1

(
1−

∫
E

1− e−f(i/n,x)dPn(x)
)

Taking the negative logarithm,

− logLNn(f) = −
∞∑
i=1

log
(

1−
∫
E

1− e−f(i/n,x)dPn(x)
)

We now show that − log
(
1−

∫
E 1− e−f(i/n,x)dPn(x)

)
may be replaced with ci,n :=

∫
E 1 −

e−f(i/n,x)dPn(x) in the above expression. If K is the compact support of f , note that 1 −
e−f(t,x) ≤ 1K(t, x). Also there exists compact sets A ⊂ E and I ⊂ R+, such that K ⊂ I ×A.
Thus

sup
i≥1

ci,n ≤ P (Xi,n ∈ A) = 1
n
µn(A).

Using the fact that | log(1 + z)− z| ≤ z2 for |z| ≤ 1/2 we obtain for n sufficiently large,∣∣∣∣∣− logLNn(f)−
∞∑
i=1

∫
E

1− e−f(i/n,x)dPn(x)
∣∣∣∣∣

=
∣∣∣∣∣
∞∑
i=1

log(1− ci,n) + ci,n

∣∣∣∣∣
≤
∞∑
i=1

c2
i,n

≤ sup
i≥1

ci,n ×
∞∑
i=1

ci,n︸ ︷︷ ︸
:=Sn

≤ µn(A)
n
× Sn. (3.14)
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In addition, the sum Sn can be seen as an integral on the product space R+×E with respect
to the measure λn = (∑i≥1 δi/n)⊗ Pn,

Sn =
∑
i≥1

∫
E

1− e−f(i/n,x)dPn(x)

=
∫
R+×E

1− e−f(t,x)dλn(t, x).

Now it is easy to see that µn v−→ µ if and only if λn v−→ Lebesque ⊗ µ on R+ × E. The
function (t, x) 7→ 1 − e−f(t,x) is continuous and its support is the same as the support K of
f , which is compact in R+ × E by assumption. Thus vague convergence of λn yields

Sn −−−→
n→∞

∫
R+×E

1− e−f(t,x)dt⊗ dµ(x) <∞. (3.15)

Combining (3.14) and (3.15) shows that∣∣∣∣∣∣∣∣∣∣
− logLNn(f)−

∞∑
i=1

∫
E

1− e−f(i/n,x)dPn(x)︸ ︷︷ ︸
Sn

∣∣∣∣∣∣∣∣∣∣
−−−→
n→∞

0. (3.16)

Finally, (3.15) and (3.16) imply that

− logLNn(f) −−−→
n→∞

∫
R+×E

1− e−f(t,x)dt⊗ dµ(x)

which concludes the proof.

2. ⇒ 1. Assume that Nn
w−→ N as in the statement.We use the fact that to prove vague

convergence µn v−→ µ it is enough to show that for any function g ∈ C+
K(E),∫

E
1− e−gdµn →

∫
E

1− e−gdµ. (3.17)

Indeed in such a case, for any set A with compact closure such that µ(∂A) = 0, one may
approach 1A by functions hM = 1 − e−M1A and then M1A by continuous functions gM,p in
C+
K . The condition µ(∂A) = 0 implies that µ(A) = limM,p→∞

∫
E 1 − e−gM,pdµ whence the

sufficiency of (3.17) for vague convergence of µn towards µ.
Let g ∈ C+

K . We need to show (3.17). Set f(t, x) = 1[0,1](t)g(x). f is not continuous but
may be approached by continuous functions hm ∈ C+

K(R+ × E), so that weak convergence
Nn

w−→ N implies convergence of the Laplace transforms LNn(f)→ LN (f). Also , we have

Nn(f) =
∑
i≥1

1[0,1](i/n)g(Xi,n) =
n∑
i=1

g(Xi,n),

thus
LNn(f) = E

(
e−
∑n

i=1 g(Xi,n)
)

E
(
e−g(X1,n)

)n
=
(

1−
∫
E 1− e−gdµn

n

)n
(3.18)
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On the other hand

LN (f) =
∫
R+×E

1− e−1[0,1](t)g(x)dtdµ(x)

=
∫
E

1− e−g(x)dµ(x) (3.19)

In view of (3.18) and (3.19), LNn(f)→ LN (f) implies that
∫
E 1−e−gdµn →

∫
E 1−e−gdµ. �
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Appendix A

Technicalities for Chapter 1

A.1 Monotone functions: additional results
Lemma A.1.1 (local uniform convergence of monotone functions)
Let (Hn)n∈N and H be monotone functions R → [−∞,∞], such that Hn

w−→ H. If H is
continuous on an interval I ⊂ R (in particular H has to be finite on I), then the convergence
is locally uniform on I, i.e. for a < b ∈ I,

sup
x∈[a,b]

|Hn(x)−H(x)| −−−→
n→∞

0.

Sketch of proof. Since H is uniformly continuous on [a, b]; For ε > 0, there is a subdivision
a = x0 < x1 < · · · < xK = b; such that the variations of H are less than ε on each [xi, xi+1].
Use pointwise convergence on the finite set (x0, . . . , xk) and monotonicity to conclude. �

A.2 Proof of Lemma 1.2.5 (Weak convergence of the inverse)

Weak convergence implies weak convergence of the inverse

We assume that Hn
w−→ H, and we show that H←n

w−→ H←. Let y ∈ C(H←). In particular
H←(y) is finite. Let ε > 0. Since the discontinuity points of a monotone functions are at
most countable, there exists x ∈ C(H) such that H←(y) − ε < x < H←(y). Then, from
Lemma 1.2.4, H(x) < y. Since for such an x, Hn(x) −−−→

n→∞
H(x), we have for n large

enough, Hn(x) < y as well, so that, from Lemma 1.2.4 again, x < H←n (y). Thus, ∃n0 such
that for n ≥ n0, H←(y)− ε < x < H←n (y). Since ε is arbitrary,

lim inf H←n (y) ≥ H←(y).

An upper bound on lim supH←n (y) is obtained similarly: Since y ∈ C(H←), we may choose
t > y such that H←(t) ≤ H←(y) + ε. Also, we may pick x′ in (H←(t), H←(t) + ε) ∩ C(H).
For such x′, Lemma 1.2.4 implies

H(x′) ≥ t > y

Thus, for some n1 and for all n ≥ n1, Hn(x′) ≥ y as well, and using from Lemma 1.2.4 again,
for such n,

H←n (y) ≤ x′ ≤ H←n (y) + 2ε.
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Thus
lim supH←n (y) ≤ H←(y),

and the proof is complete.

Converse statement

Let us assume that
H←n

w−→ H← as n→∞.

and that conditions (i) and (ii) from Lemma 1.2.5 are satisfied. Let x ∈ C(H) (in particular,
H(x) is finite) and ε > 0. We need to show that for n large enough (say n ≥ n0),

Hn(x) ≤ H(x) + ε, (A.1)
and Hn(x) ≥ H(x)− ε (A.2)

We first show (A.1). By hypothesis (ii), ∃x′ > x : H(x) < H(x′) < supt:H(t)<∞H(t).
Thus H← is finite on the open interval (H(x), H(x′)). The number of discontinuity points of
H← on this interval is at most countable, thus ∃y ∈ C(H←) : H(x) < y < H(x) + ε. Using
Lemma 1.2.4, we obtain x < H←(y). Weak convergence of H←n then implies that for n large
enough, x < H←n (y) as well. Thus Hn(x) < y < H(x) + ε, which proves (A.1).

For the proof of (A.2), we need to distinguish between the cases H(x) > infRH and H(x) =
infRH.
Case 1: H(x) > infRH. By continuity of H at x, we may choose t < x such that
H(t) > max(H(x) − ε/2, infRH). Then H← is finite on (infRH,H(t)), and again, admits
only a countable number of discontinuity on this interval. Let then y′ ∈ C(H←) such that
H(t)− ε/2 < y′ < H(t). Lemma 1.2.4 again ensures that H←(y′) ≤ t < x, so that for n large
enough, H←n (y′) ≤ x as well, whence Hn(x) ≥ y′ > H(t)− ε/2 > H(x)− ε and (A.2) is true.

Case 2: H(x) = infRH. Since x ∈ C(H), necessarily H(x) = infRH is finite, and hy-
pothesis (i) ensures that for all n ∈ N, Hn(x) ≥ H(x) so that (A.2) is immediate.
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