
INTRODUCTION TO BAYESIAN LEARNING ANNE SABOURIN

MASTER DATA SCIENCE - UNIVERSITÉ PARIS-SACLAY

LAB SESSION 1

The aim of this lab session is double: first if you are not familiar with R, to give you a quick-start.
Second to give you the opportunity to implement some of the methods and principles described in the
two first lectures.

This lab session is not marked, you are not supposed to hand out your work in the end. It is a training
step to make you ready for the second lab session which will be marked.

1 Introduction to R

If you have never used R before or for a quick reminder, open tutorial Rtutorial.html in a web
browser and follow the instructions.

N.B if you are a student from Telecom you have already seen this tutorial last year. This is just a
rehearsal.

2 Bayesian linear regression

The linear model is one of the simplest in the supervised context of regression. Given a training set
(xi, yi)i=1,...,n, with xi ∈ X and yi ∈ R, the first goal is to learn a linear regression function of the kind
h(x) =

∑p
j=1 φj(x)θj = 〈φ(x), θ〉 where φ = (φ1, . . . , φp) is a vector of basis functions that are fixed

in advance and θ ∈ Rp is the regression parameter that we want to learn. The estimated θ̂(x1:n, y1:n)
should fit the data well, i.e. the empirical error

Rn(θ, x1:n, y1:n) =

n∑
i=1

(yi − 〈θ, φ(xi)〉)2

should be small. Also to prevent over-fitting, one would like the estimator θ̂ to be robust, i.e. ideally ‖θ‖1
or ‖θ‖2 should remain moderate.

In a probabilistic setting the yi’s are viewed as realizations of random variables Yi’s such that

Yi = 〈θ, φ(xi)〉+ εi, i ∈ N with (εi)i∈N
i.i.d∼ N (0, β−1). (1)

Here the noise precision β is viewed as a fixed and known model parameter.
In a Bayesian setting one defines a prior π on θ. In this particular case a Gaussian prior is convenient

because it is conjugate. Remind from last lecture that choosing a prior precision of the kind αIp and zero
prior mean yields an easy-to-handle posterior distribution The Bayesian linear model considered in this
lab session is thus {

θ ∼ N (0p, α
−1Ip)

L(Yi|θ) = N (〈θ, φ(xi)〉, β−1)
(2)

where α, β are hyper-parameters and L(Yi|θ) is the conditional distribution of Yi given θ = θ.
Remind from last lecture that the posterior distribution takes the form

π( · |y1:n) = N (mn, Sn) with

mn =
(α
β
Ip + Φ>Φ

)−1
Φ>y1:n , Sn =

(
αIp + βΦ>Φ

)−1
.

(3)
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2.1 Posterior distribution in a linear model

Write a function returning the posterior mean and variance as a list, according to the following model.
N.B. Argument feature_map below is a function, e.g. for a polynomial basis function model
feature_map = function(x){c(1, x,x^2,x^3, x^4)}.

glinear_fit <- function(Alpha, Beta, data, feature_map, target)
## Alpha: prior precision on theta
## Beta: noise precision
## data: the input variables (x): a matrix with n rows

#### where n is the sample size
##feature_map: the basis function, returning a vector of

#### size p equal to the dimension of theta
## target: the observed values y: a vector of size n

{
Phi <- ## complete:
## ? apply
## ? t
p = ncol(Phi)
posterior_variance <- ## complete
posterior_mean <- ## complete
return(list(mean=posterior_mean, cov=posterior_variance))

}

To test your model,

1. Generate a dataset (x1:n, Y1:n) according to model (1) with fixed θ0 ∈ R5 and β0 > 0 and the
polynomial basis function Fmap <- function(x){c(1, x,x^2,x^3, x^4)}. For the
input data x1:n, you may e.g. generate n uniform random variables in [−3, 3]. As default values
for a start, you may take e.g. θ0 = (5, 2, 1,−1,−0.1) β0 = 1 and n = 100.

2. Compute the posterior distribution of θ and check that the posterior mean converges to θ0 for large
sample sizes. How does the posterior variance behave ? For plotting, you may adapt the following
code to your purposes.

## dummy plotting example
xx <- 1:100
yy <- sin(xx/10) * xx/10
pp <- yy + rnorm(n=100)
interv <- sqrt(abs(yy))
lsup <- yy+ 1.96*interv
linf <- yy- 1.96*interv
plot(xx, yy, type='l', lwd=3, ylim=range(lsup,linf))
lines(xx, lsup, col='red')
lines(xx, linf, col='red')
points(xx, pp, pch=19,col='blue')
legend('top', legend=c('estimate', 'credible levels', 'data'),

col=c('black', 'red', 'blue'),
pch= c(NA, NA, NA, 19),
lwd=c(3,1,1,NA)
)
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3. Generate a dataset of size N = 1000 and for n ∈ {1, . . . , N} compute the posterior means
and variance of θ using the first n values of the dataset. Concerning the covariance, only keep
track of the diagonal entries, i.e. the posterior variances of the θj’s. Plot on the same figure, for
j = 1, . . . , 4, the true value θ0,j the graph (as a function of n) of the mean estimators of E (θj |x1:n)
and centered 95% posterior credible intervals for each value of n. You can use vertical arrows for
the latters (see help(arrows)).

2.2 Predictive distribution

1. Recall the definition of the posterior predictive distribution of Ynew at a new input point xnew.
What is its expression in the Bayesian linear model ?

2. Write a function returning the mean and variance of the predictive distribution, at new input points
xnew, according to the following model

glinear_pred <- function(Alpha, Beta, fitted, data, feature_map)
## Alpha: prior pecision for theta
## Beta: noise variance
## fitted: the output of glinear_fit: the posterior mean and

#### variance of the parameter theta.
## data: new input data where the predictive distribution

#### of Y must be computed
## feature map: the vector of basis functions

{
Phi_transpose <- ## complete
pred_mean <- ## complete
pred_variance <- ## complete
return(list(mean = pred_mean, variance = pred_variance))

}

3. Take (xnew,i), i ∈ {1, . . . , 200} on a regular grid on the interval [−3, 3]. (see ? seq ). Compute
the posterior predictive distribution of the Ynew,i’s using the function glinear_pred. On the
other hand generate new targets Ynew,i using the same true parameters as in Section 2.1. Plot on
the same graph:

• the posterior predictive mean and posterior credible intervals for the predictive distribution
as a function of xnew,

• the true regression function

• the generated ‘true’ labels Ynew,i.

2.3 Empirical Bayes for linear regression

Until now, the hyper parameter α for the prior precision on θ has been set to arbitrary values. Also, the
parameter β (noise precision) is needed to fit the model, whereas the true value β0 is in general unknown.
Finally, the number of basis functions (i.e. the model dimension) has been set to p = 5 both for data
simulation and mode fitting. However in practice, the data may not come exactly from a polynomial
basis function model and even though, the dimension is unknown. Let us denote by γ = (α, β, p) the
unknown parameters (except from θ) which need to be chosen.
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Given a set of Bayesian models {Mγ , γ ∈ Γ} with Mγ = {Pθ, θ ∈ Θγ ,πγ} and a dataset z1:n (here
z1:n = (y1:n, x1:n), empirical Bayes consists in selecting γ∗ as a maximizer of the model evidence

p(z1:n|γ) =

∫
Θγ

pθ(z1:n)πγ(θ) dθ.

1. Show that the log-evidence of for γ = (p, α, β) is

log p(y1:n|p, α, β) =
−n
2

log(2π)− 1

2
log det Σ− 1

2
y>1:nΣ−1y1:n ,

with Σ =
(
α−1ΦΦ> + β−1In

)
.

hint: the evidence is the marginal density of Y1:n evaluated at y1:n, where Y1:n is viewed as a
component of the random vector (Y1:n,θ) and where θ ∼ πγ . Write Y1:n as a function of (θ, ε)
and conclude.

2. (homework) Show that the log-evidence can be written

log p(y1:n|p, α, β) =
−n
2

log(2π)+
n

2
log(β)+

p

2
log(α)−1

2
log(detA)−β

2
‖y1:n−Φmn‖2−

α

2
m>nmn

with A = αI + βΦ>Φ. This alternative expression is particularly useful when n � p because it
does not require inverting a n× n matrix.

To do so, use the previous result and the identities

det(Ip +A>B) = det(In +AB>) for A,B ∈ Rn×p

(A+BD−1C)−1 = A−1 −A−1B(D + CA−1B)−1CA−1 for A,B,D,C such that

the products are well defined

3. implement a function logevidence computing the log-evidence of the hyper parameters ac-
cording to the model below. Notice that the dimension p of the model is implicit and can be
deduced from the argument feature_map.

logevidence <- function(Alpha, Beta, data ,feature_map, target)
## Alpha: prior precision for theta
## Beta: noise precision
## data: the input points x_{1:n}
## feature_map: the vector of basis functions
## target: the observed values y: a vector of size n.

{
Phi_transpose <- ## complete the code
if(is.vector(Phi_transpose)){

Phi_transpose = matrix(Phi_transpose,nrow=1)
}
## avoids undesired matrix-> vector conversions for one
## dimensional feature maps

Phi <- t(Phi_transpose)
N <- nrow(Phi)
p <- ncol(Phi)

### complete the code

return(res)
}
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4. Use the function logevidence to choose the parameter α when setting all other unknown
parameters to their true values (β = β0, p = 5). Proceed by grid-search, i.e. compute the log-
evidence for α varying on a regularly spaced grid and determine the maximizer. Plotting the
log-evidence curve is a good idea.
hint: The functions sapply and which.max may be useful.

5. Proceed similarly with β and check that the chosen β∗ is close to β0.

6. proceed similarly with the polynomial order of the regression, by computing the model evidence
for a polynomial order ranging from 0 to 7. You may copy-paste the following basis functions

F7 <- function(x){c(1, x, x^2, x^3, x^4,x^5, x^6, x^7)}
F6 <- function(x){c(1, x, x^2, x^3, x^4,x^5, x^6)}
F5 <- function(x){c(1, x, x^2, x^3, x^4,x^5)}
F4 <- function(x){c(1, x, x^2, x^3, x^4)}
F3 <- function(x){c(1, x, x^2, x^3)}
F2 <- function(x){c(1, x, x^2)}
F1 <- function(x){c(1, x)}
F0 <- function(x){1}
listF=list(F0,F1,F2,F3,F4,F5,F6,F7)

7. perform a joint optimization over p (polynomial order +1), α, β. A joint optimization over (α, β)
can easily be achieved using the optimization routine optim from R. The "L-BFGS-B"
method (passed as argument method to optim ) allows for box constraints.
Discuss the results.

8. model misspecification: instead of generating data from the polynomial basis linear model, fix
as true regression function the sinusoidal h0(x) = sin(x). Follow the same lines as above and
discuss the results.
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