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Course mechanism

• 6 sessions of 3.5 hours each
• 2 lab session (sessions 3 and 6)
• Grading : 40% homework (2nd lab report), 60% written exam.
• Course Software : R.

2/70



Syllabus

1. Bayesian learning : basics
2. Bayesian methods for unsupervised and supervised problems,

Bayesian decision theory
3. Lab session I : R tutorial, Naive Bayes, Bayesian regression
4. Variational methods
5. Sampling methods : Monte-Carlo Markov Chain
6. Lab session II : variational and sampling methods
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Lecture 1, Basics of Bayesian learning : Outline
1. When is a Bayesian approach needed ?

2. The Bayesian framework

3. Construction of estimators
Point estimation
Interval estimation

4. Prior choices : conjugate priors, exponential family and alternatives
Exponential family
conjugate priors in exponential families
Prior choice

5. A glimpse at Bayesian asymptotics
Example : Beta-Binomial model
Posterior consistency
Asymptotic normality

6. Exercises
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The English lady, the music lover and the drunkard
The English Lady claims that she can tell whether the milk was
poured before or after the tea, after one sip.

Ten trials are made. At each trial the milk is randomly poured before or
after the tea. The lady’s gess is true 9 times over 10.

What is your verdict : can she really tell ?
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The English lady, the music lover and the drunkard
A music lover claims that he can tell if a piece is from Haydn or
Mozart after listening only ten seconds of it.

Ten trials are made. At each trial a music piece is randomly chosen from
Haydn or Mozart. The music lover’s guess is true 9 times over 10.

What is your verdict : can he really tell ?
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The English lady, the music lover and the drunkard
Your drunken friend claims that he can predict the outcome of a flip
of a fair coin.

Ten trials are made. At each trial a coin is flipped. The drunkard’s
guess is true 9 times over 10.

What is your verdict : can he really tell ?
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Issues

• The 3 datasets are the same and the task is similar, however would
you give the same answer in the 3 situations ?

• What level of confidence would you have concerning your answer ?
Are the asymptotic confidence intervals from the Central Limit
Theorem reliable ?

Bayesian statistics provide a formalism to
• Include prior beliefs in the analysis of data.
• Quantify the uncertainty by providing ‘credible intervals’

(6= classical confidence intervals)
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Probabilistic modeling

• Dataset X = X1:n = (X1, . . . ,Xn), Xi ∈ X = {0, 1}
Xi = 1 if right guess, 1 ≤ i ≤ n.
X is the sample space, n is the sample size.

• Statistical model :
Xi ∼ Pθ = Ber(θ) (Bernoulli distribution) : Pθ{1} = θ.
θ ∈ Θ = [0, 1] unknown parameter.
Θ is the parameter space.

• i.i.d.(independent, identically distributed) data :
X = (X1, . . . ,Xn) ∼ P⊗nθ : product distribution.
• Underlying probability space (Ω,A,Pθ). Xi : Ω→ X ,

Pθ = Pθ ◦ X−1
i .

Here Pθ{1} = Pθ ◦ X−1
i ({1}) = Pθ{Xi = 1}. Pθ = Pθ ◦ X−1

i .
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Statistical model

Definition : statistical model
A family P = {Pθ, θ ∈ Θ} of probability distributions indexed by θ ∈ Θ,
over a sample space X . Θ is the parameter space.
• ‘parametric model’ : when Θ ⊂ Rd .
• ‘non parametric model’ : when Θ is infinite-dimensional (example :

mixture model with infinitely many components)

Goal
Learn about θ0 using a dataset X = X1:n = (X1, . . . ,Xn) , assuming that
Xi ∼ Pθ0 , 1 ≤ i ≤ n for some θ0 ∈ Θ.

• Xi ∈ Rp : unsupervised learning,
versus
• Xi = (zi ,Yi ) : supervised learning (Yi : label)
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What is a Bayesian model ?

• ‘Prior knowledge’ about θ represented by a
probability distribution π : the prior distribution.

• One can define a random variable θ, with θ ∼ π.

• The Xi ’s are independent conditionnally to θ.

• We assume that a single θ0 which is a realisation of θ produces the
data, i.e. X1:n is distributed according to P⊗nθ0 , for some θ0 ∈ Θ.

Definition : Bayesian model
A statistical model P = {Pθ, θ ∈ Θ} together with a prior distribution π
on Θ.
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Example : the English lady
• θ ∈ [0, 1] : probability of a right guess.
• Prior knowledge : The true θ0 is ‘probably’ close to 0.5, maybe

higher.
• Prior distribution : a Beta distribution Beta(α, β) on (0, 1),

π(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

• E(θ) = α
α+β , Var(θ) = αβ

(α+β)2(α+β+1)
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3 examples of Beta density
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Doing Bayesian inference = conditioning upon the data

• The bayesian model results in a Joint distribution over the
product space Θ×X :

Q(A× B) =

∫
θ∈A

Pθ(B) dπ(θ) , A ⊂ Θ, B ⊂ X .

Pθ is viewed as a conditional distribution of Xi given θ.
• Learning = conditioning prior knowledge about θ upon data X .

Definition : posterior distribution
conditional distribution of θ given X

• All the inference (estimation, prediction, . . .) is derived from the
posterior distribution.
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i.i.d. samples : notational conventions

When X = X1:n = (X1, . . . ,Xn), Xi
i.i.d∼ Pθ, 1 ≤ i ≤ n.

• Then X : Ω→ X n and X ∼ P⊗nθ (product measure)

• Joint distribution over Θ×X n,

Q(A× B) =

∫
θ∈A

P⊗nθ (B) dπ(θ), B ⊂ X n

• If Pθ has a density pθ(x), x ∈ X , then P⊗nθ has density
p⊗nθ (x) =

∏n
i=1 pθ(xi ), x = (x1, . . . , xn) ∈ X n.

• For convenience we omit the ‘ ⊗n’ sign.

14/70



Computing the posterior distribution : Assumptions

• π has density π w.r.t. reference measure µ (σ-finite), dπ
dµ = π.

• Dominated model : ∃ reference measure λ on X such that each Pθ
has density pθ w.r.t. λ : dPθ

dλ = pθ.

• For a given x , θ 7→ pθ(x) is the likelihood function

• Notation : p(x |θ) := pθ(x).

• x : realisation of X : a single r.v. or an i.i.d. sample (X1, . . . ,Xn)
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Computing the posterior distribution : Bayes theorem

Under the previous assumptions :

Bayes Theorem
The posterior distribution has a density w.r.t. µ given by

π(θ|x) =
p(x |θ)π(θ)∫

Θ p(x |t)π(t) dµ(t)

posterior ∝ likelihood × prior

For any x ∈ X such that the denominator is > 0.

• Denominator : m(x) =
∫

Θ p(x |t)π(t) dµ(t) , marginal density of X

• remind P(A|B) = P(B|A)P(A)
P(B) when P(B) 6= 0.
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Example : The English lady

• Assumptions are met with
• λ : counting measure on X = {0, 1}, λ{0} = λ{1} = 1.
• pθ(x) = θx(1− θ)1−x

• µ : Lebesgue measure on (0, 1)
• π : Beta density Beta(α, β)

• Computing the posterior density :

π(θ|x) =
pθ(x)π(θ)

m(x)︸ ︷︷ ︸
does not depend on θ

∝ pθ(x)π(θ) (∝: proportional to)

= θα+
∑n

i=1 xi−1(1− θ)β+n−
∑n

i=1 xi−1

∝ density of Beta(α +
∑

xi , β + n −
∑

xi )
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Posterior density for the English lady

0.0 0.2 0.4 0.6 0.8 1.0

prior:  α = 1.1  ,  β = 1.1

θ

π(
θ)

density
mean
0.1 and 0.9 quantiles

0.0 0.2 0.4 0.6 0.8 1.0

posterior:  α = 10.1  ,  β = 2.1

θ

π(
θ|

 x
 )

18/70



Influence of the prior
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19/70



Sequential nature of Bayesian learning
Posterior after n i.i.d. obs x1:n starting from prior π

=
Posterior after the latest obs xn starting from prior π(θ|x1:n−1)

Proof

π(θ|x1:n) =
π(θ)p(x1:n−1|θ)p(xn|θ)∫
π(t)p(x1:n−1|t) dµ(t)

×
∫
π(t)p(x1:n−1|t) dµ(t)∫
π(t)p(x1:n|t) dµ(t)

=
π(θ|x1:n−1)p(xn|θ)

m̃(x1:n)

with

m̃(x1:n) =

∫
π(t)p(x1:n−1|t)p(xn|t) dµ(t)∫
π(t|x1:n−1) dµ(t)︸ ︷︷ ︸

=1

m(x1:n−1)

=

∫
π(t|x1:n−1)p(xn|t) dt
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From posterior probability to estimation

• Raw output of Bayesian analysis : a posterior distribution
(represented as a density or as a sample (θ1, . . . , θN) ∼ π(θ|X1:n),
where N is fixed by the user

• In practice : one wants to answer questions of the kind
• Does θ ∈ Θ0 ⊂ Θ ?
• What is your best guess θ̂(X ) for θ, given data X ? (point estimation)
• Can you give a region R ⊂ Θ) such that P(θ ∈ R|X1:n) ≥ 1− α ?
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Bayesian point estimation

most popular estimators of θ : posterior mode and posterior mean.

• Posterior mode θ̃ = argmaxt π(t|X1:n)

• Posterior mean θ∗ = Eπ(θ|X1:n) =
∫

Θ θ π(dθ|X1:n).

• generalisation of posterior mean for a quantity of interest g(θ) :

g∗ = Eπ(g(θ)|X1:n) =

∫
Θ
g(θ) π(dθ|X1:n).

• Warning : posterior mode depends on the reference measure
Remark : all three estimators are ‘statistics’ : functions of X1:n.
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Discussion : posterior mode

• Intuition : θ̃ is the ‘center’ of the region δθ of measure µ(δθ) for
which the posterior mass ≈ π(θ̃)µ(δθ) is the highest.

• Warning (main criticism) : θ̃ depends on the reference measure.
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Discussion : posterior mean
Main justification (for g : Θ→ R)

g∗ := Eπ(g(θ)|X1:n) = argmin
γ∈R

Eπ
[(
g(θ)− γ

)2|X1:n

]
︸ ︷︷ ︸

ϕ(γ)

.

g∗ minimizes he posterior expectancy of the quadratic risk. Indeed,

ϕ(γ) =

∫
Θ

(
g(θ)2 − 2γg(θ) + γ2

)
π(dθ|X1:n)

= Cste − 2γ
∫

g(θ)π(dθ|X1:n)︸ ︷︷ ︸
Eπ(g(θ)|X1:n)

+γ2

ϕ′(γ) = 2(−Eπ(g(θ)|X1:n) + γ)

ϕ′(γ) = 0 ⇐⇒ γ = Eπ(g(θ)|X1:n)

This is indeed a minimum since ϕ′′(γ) ≡ 2 > 0.
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Example : Tea Lady
• prior over ]0, 1[ : π = Beta(α = 1.1, β = 1.1).
• posterior distribution : Beta(α′ = 10.1, β′ = 2.1).

mode : θ̃ =
α′ − 1

α′ + β′ − 2
=

9.1
10.2

mean : θ∗ =
α′

α′ + β′
=

10.1
12.2
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posterior mean
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Interval / Set estimation

In what reasonable interval/region of Θ do you believe θ to belong ?

Goal : find a region R ⊂ Θ with
• High posterior mass
• Moderate ‘size’ (w.r.t. the reference measure)

definition : poterior credible set
Given the data x , A posterior credible set of level α for a quantity of
interes g(θ) is any (measurable) region R ⊂ g(Θ) such that Pπ(g(θ) ∈
R|x) ≥ α.

credible sets 6= confidence regions Rclassic for an estimator
(classical setting), such that Pθ(Rclassic 3 g(θ)) ≥ α, ∀θ.
• in fact : confidence and credible sets ‘approximately’ coïncide for

large sample sizes (due to Bernstein-Von-Mises theorem, see last
section).
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Posterior quantiles

• similarly to confidence interval, there is no unique way to define
credible sets.

• easy way (for g(Θ) ⊂ R) : use posterior quantiles

• remind : if Q is a probability on R, an α-quantile relative to Q is
any qα ∈ R s.t. Q[−∞, qα] = α.

• When (1− α)/2 and (1 + α)/2 quantiles for π( · |x) exist, a credible
interval of level alpha is (q 1−α

2
, q 1+α

2
].
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Minimum volume sets

• It is the solution to the initial requirements (large posterior mass,
small reference measure)

• define R(u) = {θ : π(θ|x) ≥ u} (‘interior of a density level set)

• The minimum volume set of level α is Ruα , where

uα = sup{u ≥ 0 : π(R(u)|x) ≥ α}

• in practice (in general) : hard to compute. Need Monte-Carlo
methods, computationally intensive in high dimension.
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Conjugate priors

• In general, computing π(θ|x) is hard.
• Not when the prior is ‘conjugate’, that is when π and π( · |x) belong

to a parametric family with an explicit expression for the posterior.

definition : conjugate prior
A parametric family of priors F = {πγ , γ ∈ Γ} with Γ ⊂ Rd is conjugate
for the model {pθ, θ ∈ Θ} is for all x , for all π = πγ ∈ F , it holds that
π(θ|x) ∈ F , i.e. ∃γ′ such that π( · |x) = πγ′ .

• γ parameterizes the prior : it is called the hyper-parameter
• Justification for choosing a conjugate prior : computational

convenience only.
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Example I : Gaussian model with known variance

Setting : Θ = R, pθ(x) ∝ e−
∑

i (xi−θ)2/(2σ2).

• Thus pθ(x) ∝ exp{quadratic function of θ}.

• If π(θ) ∝ exp{quadratic function of θ},
then also :
π(θ|x) ∝ π(θ)pθ(x) ∝ exp{quadratic function of θ}

• The only densities of the kind f (θ) ∝ exp{quadratic function of θ}
are Gaussian

• Conclusion The prior family F = {N (µ, s2), µ ∈ R, s2 > 0} is
conjugate for the Gaussian model
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Example I cont’d

If π(θ) = N(x |µ, s2) and pθ(x) = N(x |θ, σ2), then

π(θ|x1:n) ∝ exp{−1/2
∑
i

(xi − θ)2

2σ2 +
(θ − µ)2

s2 }

∝ exp
{
θ2(n/σ2 + 1/s2)− 2θ(

∑
xi/σ

2 + µ/s2) + C
}

∝ N(θ|µn, s2
n)

with {
µn = (s2 + σ2/n)−1(s2 1

n

∑
xi + (σ2/n)µ)

1/s2
n = 1/s2 + n/σ2

N.B. µn is the posterior expectectancy, it may be taken as an estimate
for θ. It is a weighted average between the maximum likelihood
estimator and the prior mean (µ).
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Conjugate priors : exercises

1. Gaussian model N (µ, σ2) )with known mean and unknown
variance : Find a conjuate prior for the parameter λ = 1/σ2.

2. Gaussian model N (µ, σ2) with unknown mean and variance : same
question for the parameter θ = (µ, λ = 1/σ2).
(Hint : write π(µ, λ) = π(µ|λ)π(λ) and use the fact that the
likelihood writes as pµ,λ(x1:n) = fn,x(µ)gn,x ,µ(λ).
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conjugate priors for multivariate normal

• X ∼ N (µ,Λ−1), µ ∈ Rd ,Λ ∈ Rd×d positive, definite (precision
matrix : inverse of covariance matrix)

1. unknown mean → conjugate prior family on µ : a multivariate
Gaussian distributions

2. unknown precision → conjugate prior on Λ : Wishart distributions
W(ν,W ) with ν degrees of freedom (ν ∈ N∗) and W ∈ Rd×d .
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Wishart distribution
defined on the cone of positive definite matrices.
• The Wishart distribution W(ν,W ) has density

fW(Λ|ν,W ) = B detλ(ν−d−1)/2 exp
{−1

2
Tr(W−1Λ)

}
w.r.t. Lebesgue on R

d(d+1)
2 :

∏
i≤j dΛ(i ,j), restricted to the set of

positive definite matrices.
• B : a normalizing constant.
• probabilistic representation : let M be a random ν × d matrix with

i.i.d.rows M(i , · ) ∼ N (0,W ). Then

Λ ∼ W(ν,W ) ⇐⇒ Λ
d
= M>M =

n∑
i=1

M>(i , · )M(i , · )

• More details : see e.g. Eaton, Multivariate Statistics : A Vector
Space Approach, 2007 (Chapter 8)
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conjugate priors for multivariate normal, Cont’d

3. Unknown mean and precision → conjugate prior family on (µ,Λ) :
the Gaussian-Wishart distribution with hyper-parameters
(W , ν,m, β)

π(µ,Λ) = π1(Λ)π2(µ|λ)

with

π2 =W(W , ν), ν ∈ N,W positive definite,

π2( · |Λ) = N (m, (βΛ)−1), m ∈ Rd , β > 0
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Definition : exponential family

A dominated parametric model P = {Pθ, θ ∈ Θ} is an exponential family
if the densities write

pθ(x) = C (θ)h(x) exp
{
〈T (x),R(θ)〉

}
for some functions

R : Θ→ Rk , T : X → Rk ,

C : Θ→ R∗+, h : X → R∗+.

• C (θ) : a normalizing constant
• R(θ) : the natural parameter (R : the ‘good’ re-parametrization)
• If R(θ) = θ, the family is natural.

• Most textbook distributions are from the exponential family !
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Example I : Bernoulli model

• θ ∈ Θ =]0, 1[, X = {0, 1}
• The model is dominated by λ = δ0 + δ1

pθ(x) = θx(1− θ)1−x

= exp{x log θ + (1− x) log(1− θ)}

= (1− θ) exp
{

x︸︷︷︸
T (x)

log
θ

1− θ︸ ︷︷ ︸
R(θ)

}

• The model is an exponential family with
• T (x) = x
• natural parameter : ρ = R(θ) = log θ

1−θ .
• normalizing constant C (θ) = (1− θ)
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Example II : Gaussian model

• θ = (µ, σ2) ∈ Θ = R× R∗+
• the model is dominated by Lebesgue on X = R.

pθ(x) =
1√

2πσ2
exp
{−(x2 − 2µx + µ2)

2σ2

}
=

1√
2πσ2

exp{−µ
2σ2 }︸ ︷︷ ︸

C(θ)

exp
〈

( x
x2 )︸︷︷︸

T (x)

,
(

µ/σ2

−1/(2σ2)

)
︸ ︷︷ ︸

R(θ)

〉

• The model is an exponential family with
• T (x) = (x , x2)
• natural parameter : ρ = R(θ) = (µ/σ2,−1/2σ2).
• normalizing constant C (θ) = (2πσ2)−1/2
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likelihood for i.i.d. samples in exponential families

pθ(x1) = C (θ)h(x) exp
{
〈R(θ),T (x1)〉

}
⇒

p⊗nθ (x1:n) = C (θ)n
n∏

i=1

h(xi )︸ ︷︷ ︸
hn(x1:n)

exp
{〈 n∑

i=1

T (xi )︸ ︷︷ ︸
Tn(x1:n)

,R(θ)
〉}
.
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Natural parameter space

• natural parametrization : ρ = R(θ).
• The density pρ(x) = C (ρ)h(x) exp

〈
T (x) , ρ

〉
integrates to 1

⇐⇒ ρ ∈ E , the natural parameter space, i.e.

E =
{
ρ :

∫
X
h(x) exp

〈
T (x) , ρ

〉
dλ(x) <∞

}
• If E is open : the family is regular.
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Maximum likelihood in regular exponential families
natural parametrization : ρ = R(θ). λ : reference measure.

lemma : expression for Eρ
[
T (X )

]
Eρ
[
T (X )

]
= −∇ρ{lnC (ρ)}

Proof

1 ≡ C(ρ)

∫
X
h(x) exp

〈
T (x) , ρ

〉
dλ(x)

(with regularity to exchange
∫

and ∇)⇒)

0 = ∇ρC(ρ)

∫
X
h(x) exp

〈
T (x) , ρ

〉
dλ(x)︸ ︷︷ ︸

C(ρ)−1

+C(ρ)

∫
X
h(x)T (x) exp

〈
T (x) , ρ

〉
dλ(x)

⇒ 0 =
1

C(ρ)
∇ρC(ρ) + E

(
T (X )

)

44/70



Maximum likelihood in regular exponential families,
cont’d

proposition
The MLE estimator ρ̂ in a regular exponential family satisfies

Eρ̂[T (X )] =
1
n

∑
i

T (xi ).

Proof

∇ρ log pρ̂(x) = 0 ⇐⇒ ∇ρ{n logC (ρ) + 〈
∑

T (xi ), ρ〉} = 0

⇐⇒ ∇ρ logC (ρ̂) =
−1
n

∑
i

T (xi ).

then use the lemma.
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Conjugate priors in exponential family
Proposition
A natural exponential family with densities
pθ(x) = C (θ)h(x) exp〈θ,T (x)〉, admits a conjugate prior family
F = {πλ,µ, λ > 0, µ ∈ Mλ ⊂ Rk}, with

πλ,µ(θ) = K (µ, λ)C (θ)λ exp
{
〈θ, µ〉

}
and Mλ = {µ :

∫
Θ π(µ, λ) dθ <∞}.

The posterior for n observation is

πλ,µ(θ|x1:n) ∝ C (θ)λ+n exp
{
〈θ, µ +

∑
i

T (xi )〉
}

so that πλ,µ( · |x1:n) = πλn,µn( · ), with

λn = λ+ n ; µn = µ+
∑
i

T (xi )

proof exercise 47/70



Example : Poisson model

pθ(x) = e−θθx/x!, X = N, θ > 0

=
1
x!
e−θex log θ

→ an exponential family with

T (x) = x , ρ = R(θ) = log θ ∈ R , C (ρ) = exp{−eρ}

conjugate prior for ρ :

πa,b(ρ) ∝ exp{−beρ} exp{aρ}.

Back to θ :

π(θ) = ”
dπ
dρ

dρ
dθ

” = θa−1 exp{−bθ} (Gamma density)

→ The Gamma family is a conjugate prior for θ.
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About the choice of a conjugate prior

• A convenient choice only

• One must still choose hyper-parameters (λ, µ)

• This is an issue of model choice

• possible to do so via empirical Bayes methods, see lecture 2 and lab
session.
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Other prior choices : non informative priors

• Goal : minimize the bias induced by the prior

• If Θ compact : one can choose π(θ) = Constant
• If Θ non compact,

∫
θ π(θ) dθ =

∫
Θ C dθ = +∞

OK to do so as long as the posterior is well defined, i.e. when∫
Θ
pθ(x) dπ(θ) <∞.

uniform only w.r.t. the reference measure → not invariant
under re-parametrization.
e.g. Flat prior on ]0, 1[ in a Ber(θ) model → non flat over
ρ = log[θ/(1− θ)]
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Other prior choices : Jeffreys prior
• For Θ open in Rd . Reasonable with d = 1.

• Remind the Fisher information (in a regular model) :

I (θ) = Eθ
[(∂ log pθ(X )

∂θ

)2]
= −E

[∂2 log pθ(X )

∂θ2

]
.

• I (θ) is the expected curvature of the likelihood around θ.
• Interpretation as a an average information carried by X about θ.
• Idea : grant more prior mass to highly informative θ’s

Definition : Jeffreys prior
In a dominated model with densities pθ, θ ∈ Θ, the Jeffreys prior has
densities w.r.t. Lebesgue on Θ :

π(θ) ∝
√
I (θ).

• exercise compute the Jeffreys prior in the Bernoulli model, in the
location model N (θ, σ2), σ2 known and in the scale model
N (µ, θ2), µ known. 52/70



Invariance of the Jeffreys prior

• Change of variable : h(θ) = η. Then pθ = ph(θ).
• Let θ ∼ πJ,θ the Jeffreys prior. Then η ∼ πJ,θ ◦ h−1 with density

π(η)
for θ=h−1(η)

= πJ,θ(θ)
dθ
dη

=

√
I (θ)

h′(θ)

• On the other hand compute the Jeffreys prior on η :

πJ,η(η) =
√

Iη(η) = Eη
[(∂ log pη(X )

∂η

)2]1/2
θ=h−1(η)

= Eθ
[(∂ log pθ(X )

∂θ

dθ
∂η

)2]1/2
=

√
I (θ)

h′(θ)
.

• Same result : the Jeffreys prior in the η parametrization is the
image measure of the Jeffreys prior in the θ parametrization.
• In other words the Jeffreys prior is parametrization-invariant.
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Rough overview

as the sample size n→∞

• The influence of the prior choice vanishes

• The posterior distribution concentrates around the true value θ0
(almost surely)

• The posterior distribution is asymptotically normal with mean
θ̂ = the maximum likelihood, and variance n−1I (θ)−1 (same as
MLE’s)
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Reminder : Beta-Binomial model

• Bayesian model

{
θ ∼ π = Beta(a, b)

X |θ ∼ Ber(θ).

• Pθ∞ : distribution over X∞ of the random sequence (Xn)n≥1
i.i.d∼ Pθ

• posterior distribution (conjugate prior) :

π( · |x1:n) = Beta(a + s, b + n − s), s =
n∑
1

xi .
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Posterior expectation and variance

Eπ(θ|X1:n) =
a +

∑n
1 Xi

a + b + n

=
a/n + 1

n

∑n
1 Xi

(a + b)/n + 1
a.s.−−−→

n→∞
θ0 under P∞θ0

Varπ(θ|X1:n) =

(
a +

∑n
1 Xi

)(
b + n −

∑
1 Xi

)
(
a + b + n

)2(
a + b + n + 1

)
=

1
n

(
a/n + 1

n

∑n
1 Xi

)(
b/n + 1− 1

n

∑
1 Xi

)
(

(a + b)/n + 1
)2(

(a + b + 1)/n + 1
)

∼
P∞θ0−a.s.

θ0(1− θ0)

n
=

exercise
(n I (θ0))−1
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Concentration of the posterior distribution

• Write θ∗n = θ∗n(X1:n) = Eπ(θ|X1:n).
• Tchebychev inequality ⇒ ∀δ > 0, ∀U = (θ∗n − δ,θ∗n + δ),

Pπ (θ /∈ U|X1:n) = Pπ

((
θ − θ∗n

)2
> δ2|X1:n

)
≤ Varπ(θ|X1:n)

nδ2

∼
P∞θ0−a.s.

θ0(1− θ0)

nδ2
a.s.−−−→

n→∞
0.

• summary : P∞θ0 - a.s., we have that

• The posterior distribution concentrates around the posterior
expectancy θ∗

n

• π((θ0 − δ, θ0 + δ)|X1:n)→ 0.
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Posterior consistency

Definition
Let {Pθ, θ ∈ Θ},π be a Bayesian model and let θ0 ∈ Θ. The posterior is
consistent at θ0 if For all neighborhood U of θ0,

π(U|X1:n) −−−→
n→∞

1, P∞θ0 -a.s.

• In general consistency holds when Θ is finite dimensional if π
assigns positive mass to θ0’s neighborhoods.
• See e.g. [?], Chapter 1.3, 1.4 for details
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Doob’s theorem

Theorem
If Θ and X are complete, separable, metric spaces endowed with their
Borel σ-field, if θ 7→ Pθ is 1 to 1, then for any prior π on Θ, ∃Θ0 ⊂ Θ
with π(Θ0) = 1 such that for all θ0 ∈ Θ0, the posterior is consistent at θ0.

• issue The π-negligible set where consistency does not hold may be
large.
• Under additional regularity conditions, consistency holds at a given
θ0.
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Consistency at a given θ0.

Theorem([?], Th. 1.3.4)

Let Θ be compact, metric and θ0 ∈ Θ. Let T (x , θ) = log pθ(x)
pθ0 (x) . Assume

1. ∀x ∈ X , θ 7→ T (x , θ) is continuous
2. ∀θ ∈ Θ, x 7→ T (x , θ) is measurable
3. E (supθ∈Θ |T (θ,X1)|) <∞.

Then
1. The maximum likelihood estimator is consistent at θ0 (CV in

proba)
2. If θ0 ∈ Supp(π), then the posterior is consistent at θ0.
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Bayesian asymptotic normality : Overview

• Tells us about the rate of convergence of π( · |X1:n) towards δθ0 .

• With a
√
n re-scaling, a Gaussian limit centered at the MLE (under

appropriate regularity conditions)

• Good references : [?], [?], [?]
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Bernstein - Von Mises Theorem
(stated for Θ ⊂ R, similar statements for Θ ⊂ Rd).

Theorem
Under appropriate regularity conditions (detailed in [?], Th. 1.4.2),
Let s =

√
n(θ − θ̂n(X1:n)), with θ̂(X1:n) the MLE. Let π∗(s|X1:n) be the

posterior density of s. Then∫
R

∣∣∣π∗(s|X1:n)−
√

I (θ0)

2π
e
−s2I (θ0)

2

∣∣∣ ds a.s.−−−→
n→∞

0 under P∞θ0

• Interpretation : as n→∞,
√
n(θ − θ̂n(X1:n))

d
≈ N (0, I (θ0)−1), i.e.

θ
d
≈ N

(
θ̂n,

I (θ0)−1

n

)
• Multivariate case : similar result with multivariate Gaussian and

Fisher information matrix.
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Asymptotic normality of the posterior mean

θ∗n = Eπ[θ|X1:n], θ̂n : maximum likelihood.

Theorem
In addition to the assumptions of BVM Theorem, assume

∫
R |θ|π(θ) dθ <

∞. Then under P∞θ0 ,

1.
√
n(θ∗n − θ̂n) −−−→

n→∞
0 in probability

2.
√
n(θ∗n − θ0)

d−−−→
n→∞

N (0, I (θ0)−1).
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Regularity conditions for BVM theorem
1. {x ∈ X : pθ(x) > 0} does not depend on θ

2. L(θ, x) = log pθ(x) is three times differentiable w.r.t. θ in a
neighborhood of θ0.

3. Eθ0 | ∂∂θL(θ0,X )| <∞,Eθ0 | ∂
2

∂θ2
L(θ0,X )| <∞ and

Eθ0 supθ∈(θ0−δ,θ0+δ)
∂3

∂θ3
L(θ0,X )| <∞

4.
∫
X and ∂θ may be interchanged.

5. I (θ0) > 0.

Remark : under these conditions the MLE is asymptotically normal,
√
n(θ̂n − θ0)

d−→ N (0, I (θ0)−1 as well.
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Simpson Paradox

A university is accused of sexual disrimination beacuse 45% of male
applicants are accepted versus only 35% for female applicants.

However, each department (art department and engineering
department) accepts more female applicants than male applicants.

How do you explain this ?

hint : use Bayes theorem and the fact that the art department is
smaller than the engineering department (fewer applicants) and has a
lower overall acceptance rate.
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Normalizing constant for the Beta distribution ([?], ex.
2.5)

prove that ∫ 1

0
θa−1(1− θ)b−1 dθ =

Γ(a)Γ(b)

Γ(a + b)
.
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